1
|
Puhan MR, Sarkar P, R A, Nagendraprasad G, Reddy KA, Sutariya B, Karan S. Unraveling Anomalies in Preferential Liquid Transport through the Intrinsic Pores of Cyclodextrin in Polyester Nanofilms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404164. [PMID: 39091057 DOI: 10.1002/adma.202404164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The precise manipulation of the porous structure of the nanofiltration membrane is critical for unlocking enhanced separation efficiencies across various liquids and solutes. Ultrathin films of crosslinked macrocycles, specifically cyclodextrins (CDs), have drawn considerable attention in this area owing to their ability to facilitate precise molecular separation with high liquid permeance for both polar and non-polar liquids, resembling Janus membranes. However, the functional role of the intrinsic cavity of CD in liquid transport remains inadequately understood, demanding immediate attention in designing nanofiltration membranes. Here, the synthesis of polyester nanofilms derived from crosslinked β-CD, demonstrating remarkable Na2SO4 rejection (≈92 - 99.5%), high water permeance (≈4.4 - 37.4 Lm-2h-1bar-1), extremely low hexane permeance (<1 Lm-2h-1bar-1), and extremely high ratio (α > 500) of permeances for polar and non-polar liquids, is reported. Molecular simulations support the findings, indicating that neither the polar nor the non-polar liquids flow through the β-CD cavity in the nanofilm. Instead, liquid transport predominantly occurs through the 2.2 nm hydrophilic aggregate pores. This challenges the presumed functional role of macrocyclic cavities in liquid transport and raises questions about the existence of the Janus structure in nanofiltration membranes produced from the macrocyclic monomers.
Collapse
Affiliation(s)
- Manas Ranjan Puhan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pulak Sarkar
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Amal R
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Gunolla Nagendraprasad
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology, Tirupati, Andhra Pradesh, 517 619, India
| | - Bhaumik Sutariya
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Karan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Khatoon N, Ali N, Ali S, Chen Z, Jun W, Yang H. Preparation of a CPVC composite loose nanofiltration membrane based on plant polyphenols for effective dye wastewater treatment. RSC Adv 2024; 14:23352-23363. [PMID: 39049886 PMCID: PMC11267257 DOI: 10.1039/d4ra03570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The textile industry's high-salinity wastewater presents a significant difficulty for fractioning salts and dyes. To fractionate the dyes and salts, a high-performance CPVC composite loose nanofiltration membrane (LNM) was fabricated by interfacial polymerization. The organic phase was obtained by crosslinking polyethylenimine (PEI) with tannic acid (TA) and gallic acid (GA) using TMC. The resultant composite LNM performance was enhanced by adjusting the coating parameters, which included TA and GA concentrations as well as coating time. The study examined the effects of the total content of TA/PEI and GA/PEI concentrations on the chemical structure, surface roughness, and microstructure of the selective layer of LNM using SEM, AFM, FTIR, and water contact angle measurements. It also investigated the filtration performance of the membrane's selective layer, including pure water flux, PEG800 rejection rate, and membrane fouling analysis. However, the resultant membrane treated simulated reactive black 5 (RB5) dye wastewater. When the total content of TA/PEI is 4 kg L-1, the permeability of pure water flux is high at 7.5 L per m2 per h per bar when the total content of GA/PEI is 14 kg L-1 and the pure water flux is high at 8.8 L per m2 per h per bar. The overall PEG800 rejection rates were 97-98.98%. The optimal TA : PEI ratios reached a good pure water permeability up to 6.4 L per (m2 per h per bar) with a high rejection rate of 99.69% for a ratio 1/3 to dye, and GA : PEI ratios reached a good water permeability at 5.5 and 6.5 L per (m2 per h per bar) with rejection rates of 99.21% and 98.88% for ratio 1/3 and 3.5/10.5 for simulated RB5 dye, and the NaCl retention rate gradually decreased from 4% to 3%. The resultant LNM demonstrated promising applications in dye and salt fractionation.
Collapse
Affiliation(s)
- Noor Khatoon
- College of Environmental Science and Engineering, Donghua University Shanghai 201620 China
| | - Nadir Ali
- Department of Textile Engineering, Mehran University of Engineering & Technology Jamshoro 76060 Pakistan
| | - Sagar Ali
- Department of Environmental Engineering, Mehran University of Engineering & Technology Jamshoro 76060 Pakistan
| | - Zhang Chen
- College of Environmental Science and Engineering, Donghua University Shanghai 201620 China
| | - Wang Jun
- College of Environmental Science and Engineering, Donghua University Shanghai 201620 China
| | - Honghai Yang
- Department of Civil Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
3
|
Kamaraj M, Suresh Babu P, Shyamalagowri S, Pavithra MKS, Aravind J, Kim W, Govarthanan M. β-cyclodextrin polymer composites for the removal of pharmaceutical substances, endocrine disruptor chemicals, and dyes from aqueous solution- A review of recent trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119830. [PMID: 38141340 DOI: 10.1016/j.jenvman.2023.119830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, β-Cyclodextrin (βCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines βCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising βCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses βCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of βCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of βCD polymer composite membranes.
Collapse
Affiliation(s)
- M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, 600089, Tamil Nadu, India; Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
4
|
Hu D, Feng G, Xu M, Wang C, Li Y. Tailoring the performance of composite PEI nanofiltration membranes via incorporating activated cyclodextrins. CHEMOSPHERE 2023; 342:140180. [PMID: 37714471 DOI: 10.1016/j.chemosphere.2023.140180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Cyclodextrins (CDs) with unique cavity structures have been used as materials for nanofiltration membrane fabrications. In the present work, the activated CD (O-CD), oxidated by NaIO4, and polyethyleneimine (PEI) were co-deposited on a hydrolyzed polyacrylonitrile support, post-treated by glycerol protection and heating treatment, to prepare nanofiltration membranes with low molecular weight cut-off (MWCO). As the cavities in CD present and the aldehyde groups introduced after oxidation, the O-CDs were expected to crosslink the PEI layer and provide extra permeating channels. The filtration experiments showed that the incorporation of O-CDs improved the permeances of the O-CD-PEI/HPAN nanofiltration membranes. The performance can be tailored by the control of the loading or the oxidation degree of the O-CD. At optimal conditions, the permeance increment was nearly double (from 9.2 to 21.1 Lm-2·h-1·bar-1). While the selectivity was without significant sacrifice, the rejection of PEG 200 remained around 90%. Meanwhile, the membrane stability was demonstrated by pro-longed filtratiing a PEG 200 aqueous solution. The constant permeance and rejection confirmed the O-CD-PEI/HPAN membranes were stable. The incorporation of activated CD in PEI offers a facile strategy to promote the permeance of PEI-based membranes.
Collapse
Affiliation(s)
- Dujuan Hu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Guoying Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China; School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, China
| | - Man Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, Wuhan, Hubei, China
| | - Cunwen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Yanbo Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, China; Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Cheng L, Xie Y, Li X, Liu F, Wang Y, Li J. Lecithin decorated thin film composite (TFC) nanofiltration membranes for enhanced sieving performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Li J, Gong JL, Fang SY, Cao WC, Tang SQ, Qin M, Zhou HY, Wang YW. Low-pressure thin-film composite nanofiltration membranes with enhanced selectivity and antifouling property for effective dye/salt separation. J Colloid Interface Sci 2023; 641:197-214. [PMID: 36933467 DOI: 10.1016/j.jcis.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
For better sustainable resource recovery and elevating the separation efficiency of dye/salt mixture, it is essential to develop an appropriate nanofiltration membrane for the treatment of textile dyeing wastewater containing relatively smaller molecule dyes. In this work, a novel composite polyamide-polyester nanofiltration membrane was fabricated by tailoring amino functionalized quantum dots (NGQDs) and β-cyclodextrin (CD). An in-situ interfacial polymerization occurred between the synthesized NGQDs-CD and trimesoyl chloride (TMC) on the modified multi-carbon nanotubes (MWCNTs) substrate. The incorporation of NGQDs significantly elevated the rejection (increased by ∼ 45.08%) of the resultant membrane for small molecular dye (Methyl orange, MO) compared to the pristine CD membrane at low pressure (1.5 bar). The newly developed NGQDs-CD-MWCNTs membrane exhibited enhanced water permeability without compromising the dye rejection compared to the pure NGQDs membrane. The improved performance of the membrane was primarily attributed to the synergistic effect of functionalized NGQDs and the special hollow-bowl structure of CD. The optimal NGQDs-CD-MWCNTs-5 membrane expressed pure water permeability of 12.35 L m-2h-1 bar-1 at the pressure of 1.5 bar. Noteworthily, the NGQDs-CD-MWCNTs-5 membrane not only showed high rejection for the larger molecular dye of Congo Red (CR, 99.50%) but also for the smaller molecular dye of MO (96.01%) and Brilliant Green (BG, 95.60%) with the permeability of 8.81, 11.40, and 6.37 L m-2h-1 bar-1, respectively at low pressure (1.5 bar). The rejection of inorganic salts by the NGQDs-CD-MWCNTs-5 membrane was 17.20% for sodium chloride (NaCl), 14.30% for magnesium chloride (MgCl2), 24.63% for magnesium sulfate (MgSO4), and 54.58% for sodium sulfate (Na2SO4), respectively. The great rejection of dyes remained in the dye/salt binary mixed system (higher than 99% for BG and CR, <21% for NaCl). Importantly, the NGQDs-CD-MWCNTs-5 membrane exhibited favorable antifouling performance and potential good operation stability performance. Consequently, the fabricated NGQDs-CD-MWCNTs-5 membrane suggested a prospective application for the reuse of salts and water in textile wastewater treatment owing to the effective selective separation performance.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Ji-Lai Gong
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Si-Yuan Fang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Wei-Cheng Cao
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Si-Qun Tang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Meng Qin
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Huai-Yang Zhou
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yu-Wen Wang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
7
|
Zhang Z, Fan K, Liu Y, Xia S. A review on polyester and polyester-amide thin film composite nanofiltration membranes: Synthesis, characteristics and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159922. [PMID: 36336064 DOI: 10.1016/j.scitotenv.2022.159922] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) membranes have been widely used in various fields including water treatment and other separation processes, while conventional thin film composite (TFC) membranes with polyamide (PA) selective layers suffer the problems of fouling and chlorine intolerance. Due to the abundant hydrophilic hydroxyl groups and ester bonds free from chlorine attack, the TFC membranes composed of polyester (PE) or polyester-amide (PEA) selective layers have been proven to possess enhanced anti-fouling properties and superior chlorine resistance. In this review, the research progress of PE and PEA nanofiltration membranes is systematically summarized according to the variety of hydroxyl-containing monomers for membrane fabrication by the interfacial polymerization (IP) reaction. The synthesis strategies as well as the mechanisms for tailoring properties and performance of PE and PEA membranes are analyzed, and the membrane application advantages are demonstrated. Moreover, current challenges and future perspectives of the development of PE and PEA nanofiltration membranes are proposed. This review can offer guidance for designing high-performance PE and PEA membranes, thereby further promoting the efficacy of nanofiltration.
Collapse
Affiliation(s)
- Ziyan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| |
Collapse
|
8
|
Triethanolamine-based zwitterionic polyester thin-film composite nanofiltration membranes with excellent fouling-resistance for efficient dye and antibiotic separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Jørgensen MK, Deemter D, Städe LW, Sørensen LG, Madsen LN, Oller I, Malato S, Nielsen TT, Boffa V. High performance ultra- and nanofiltration removal of micropollutants by cyclodextrin complexation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Zwitterionic liquid hydrogel sustained-release strategy for high-performance nanofiltration membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Zhao A, Zhang M, Bao Y, Zhao L, Liu G, Jiang Y, Zhang P, Cao X. Loose nanofiltration membrane constructed via interfacial polymerization using porous organic cage RCC3 for dye/salt separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Facile and Novel Fabrication of High-Performance Loose Nanofiltration Membranes for Textile Wastewater Recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Wang Y, Bao C, Li D, Chen J, Xu X, Wen S, Guan Z, Zhang Q, Ding Y, Xin Y, Zou Y. Antifouling and chlorine-resistant cyclodextrin loose nanofiltration membrane for high-efficiency fractionation of dyes and salts. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Cyclomatrix polyphosphazene organic solvent nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Chen Q, Qi Z, Feng Y, Liu H, Wang Z, Zhang L, Wang W. Insight into fast catalytic degradation of neutral reactive red 195 solution by FePC glassy alloy: Fe release and OH generation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Antifouling streptomycin-based nanofiltration membrane with high permselectivity for dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Fang SY, Gong JL, Tang L, Cao WC, Li J, Tan ZK, Wang YW, Wang WB. Loosely Sandwich-Structured Membranes Decorated with UiO-66-NH 2 for Efficient Antibiotic Separation and Organic Solvent Resistance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38990-39003. [PMID: 35976131 DOI: 10.1021/acsami.2c12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thin-film nanocomposite (TFN) membranes with efficient molecular separation and organic solvent resistance are active in demand in wastewater treatment and resource reclamation, meeting the goal of emission peaks and carbon neutrality. In this work, a simple and rational design strategy has been employed to construct a sandwich-structured membrane for removing fluoroquinolone antibiotics and recycling organic solvents. The sandwich-structured membrane is composed of a porous substrate, a hydrophilic tannic acid-polyethyleneimine (TA-PEI) interlayer, and a polyamide (PA) selective layer decorated with metal-organic framework (PA-MOF). Results manifest that the hydrophilic TA-PEI interlayer played a bridging and gutter effect to achieve effective control in amide storage, amine diffusion, and nanomaterial downward leakage at the immiscible interface. The PA-MOF selective layer has been changed to a loosely crumpled surface, endowing functionalities on the sandwich-structured membrane that included limited pores, strengthened electronegativity, and stronger hydrophilicity. Thus, an enhanced water flux of 87.23 ± 7.43 LMH was achieved by the TFN-2 membrane (0.04 mg·mL-1 UiO-66-NH2), which is more than five times that of the thin-film composite membrane (17.46 ± 3.88 LMH). The rejection against norfloxacin, ciprofloxacin, and levofloxacin is 92.94 ± 1.60%, 94.62 ± 1.29%, and 96.92 ± 1.05%, respectively, effectively breaking through the "trade-off" effect between membrane permeability and rejection efficiency. Further antifouling results showed that the sandwich-structured membrane had lower flux decay ratios (3.36∼7.07%) and higher flux recovery ratios (93.40∼98.40%), as well as superior long-term stability after 30 days of filtration. Moreover, organic solvent resistance testing confirms that the sandwich-structured membrane maintained stable solvent flux and better recovery rates in ethanol, acetone, isopropanol, and N,N-dimethylformamide. Detailed nanofiltration mechanism studies revealed that these outstanding performances are based on the joint effect of the TA-PEI interlayer and PA-MOF selective layer, proposing a new perspective to break through the bottleneck of nanofiltration application in a complex environment.
Collapse
Affiliation(s)
- Si-Yuan Fang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ji-Lai Gong
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410019, China
- Shenzhen Institute, Hunan University, Shenzhen 518000, China
| | - Lin Tang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wei-Cheng Cao
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Shenzhen Institute, Hunan University, Shenzhen 518000, China
| | - Juan Li
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zi-Kang Tan
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yu-Wen Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wen-Bo Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Wu ZJ, Li HX, Li PP, Xu ZL, Zhan ZM, Wu YZ. Thin-Film Composite Nanofiltration Membrane Modified by Fulvic Acid to Enhance Permeability and Antifouling Performance. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhao-Jun Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hua-Xiang Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ping-Ping Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu-Zhe Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Ndlovu LN, Malatjie KI, Chabalala MB, Mishra AK, Mishra SB, Nxumalo EN. Beta cyclodextrin modified polyvinylidene fluoride adsorptive mixed matrix membranes for removal of Congo red. J Appl Polym Sci 2022. [DOI: 10.1002/app.52302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lloyd N. Ndlovu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Kgolofelo I. Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Mandla B. Chabalala
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| | - Ajay K. Mishra
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Shivani B. Mishra
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
| | - Edward N. Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa, Florida Campus Johannesburg South Africa
| |
Collapse
|
20
|
Feng X, Peng D, Zhu J, Wang Y, Zhang Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
In situ formation of porous organic polymer-based thin polyester membranes for loose nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|