1
|
Naciri Y, Ghazzal MN, Paineau E. Nanosized tubular clay minerals as inorganic nanoreactors for energy and environmental applications: A review to fill current knowledge gaps. Adv Colloid Interface Sci 2024; 326:103139. [PMID: 38552380 DOI: 10.1016/j.cis.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Modern society pays further and further attention to environmental protection and the promotion of sustainable energy solutions. Heterogeneous photocatalysis is widely recognized as one of the most economically viable and ecologically sound technologies to combat environmental pollution and the global energy crisis. One challenge is finding a suitable photocatalytic material for an efficient process. Inorganic nanotubes have garnered attention as potential candidates due to their optoelectronic properties, which differ from their bulk equivalents. Among them, clay nanotubes (halloysite, imogolite, and chrysotile) are attracting renewed interest for photocatalysis applications thanks to their low production costs, their unique physical and chemical properties, and the possibility to functionalize or dope their structure to enhance charge-carriers separation into their structure. In this review, we provide new insights into the potential of these inorganic nanotubes in photocatalysis. We first discuss the structural and morphological features of clay nanotubes. Applications of photocatalysts based on clay nanotubes across a range of photocatalytic reactions, including the decomposition of organic pollutants, elimination of NOx, production of hydrogen, and disinfection of bacteria, are discussed. Finally, we highlight the obstacles and outline potential avenues for advancing the current photocatalytic system based on clay nanotubes. Our aim is that this review can offer researchers new opportunities to advance further research in the field of clay nanotubes-based photocatalysis with other vital applications in the future.
Collapse
Affiliation(s)
- Yassine Naciri
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France; Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France.
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
| |
Collapse
|
2
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Peng Q, Zhong W, Liu K, Zhang Y, Xing J, Tang X. Cobalt-aluminum spinel supported on modified γ-alumina for peroxymonosulfate activation: Si-Al ratio of support to optimize performance and reusability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118905. [PMID: 37678022 DOI: 10.1016/j.jenvman.2023.118905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/05/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
The development of cobalt-based supported catalysts with high PMS catalytic activity and stability by adjusting the composition of the support is highly desirable yet remains scarce. In the work, a series of catalysts (Co2AlO4/Al2O3-xSiO2) were prepared by impregnation and high-temperature calcination using Al2O3-xSiO2 with a low Si-Al ratio as the support. Measurement techniques such as XRD, XPS, UV-DRS, FTIR, BET, SEM and HRTEM were used to characterize textural and chemical properties (ratio of Co3+/Co2+, specific surface area, pore size, pore volume, etc.). The ratio of Co3+/Co2+ and pore volume of Co2AlO4/Al2O3-xSiO2 can be turned by controlling the ratio of Si to Al, which are closely related to the catalytic performance and reusability of the catalysts. The optimized catalyst (Co2AlO4/Al2O3-0.25SiO2) can completely degrade 10 mg/L p-nitrophenol (PNP) in 40 min in the pH range of 3-9 with excellent reusability. The effects of several reaction parameters (i.e., PMS dosage, Co2AlO4/Al2O3-0.25SiO2 dosage, reaction temperature, initial pH value, and inorganic ions) on PNP removal were comprehensively investigated. Sulfate radical (SO4•-) and singlet oxygen (1O2) are making a major contribution to the degradation of PNP. Moreover, a millimeter-scale catalyst (CoSiAl-0.25/Al2O3 pellet) was prepared by sol adsorption and high-temperature calcination method, which maintained high oxidation activity after treatment of 18 L wastewater (PNP of 10 mg/L) in a continuous flow process. The method is simple and easy to operate on a large scale, providing a new perspective on the design and preparation of cobalt-aluminum spinel catalysts for activated PMS.
Collapse
Affiliation(s)
- Qian Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Wanling Zhong
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Kun Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China.
| | - Yingjie Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Jiajie Xing
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China
| | - Xuekun Tang
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
4
|
Hao L, Zhang J, Liu J, Min Y, Chen C. Applications of Carbon-Based Materials in Activated Peroxymonosulfate for the Degradation of Organic Pollutants: A Review. CHEM REC 2023:e202300203. [PMID: 37639150 DOI: 10.1002/tcr.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Indexed: 08/29/2023]
Abstract
In recent years, water pollution has posed a serious threat to aquatic organisms and humans. Advanced oxidation processes (AOPs) based on activated peroxymonosulfate (PMS) show high oxidation, good selectivity, wide pH range and no secondary pollution in the removal of organic pollutants in water. Carbon-based materials are emerging green catalysts that can effectively activate persulfates to generate radical and non-radical active species to degrade organic pollutants. Compared with transition metal catalysts, carbon-based materials are widely used in SR-AOPs because of their low cost, non-toxicity, acid and alkali resistance, large specific surface area, and scalable surface charge, which can be used for selective control of specific water pollutants. This paper mainly presents several carbon-based materials used to activate PMS, including raw carbon materials and modified carbon materials (heteroatom-doped and metal-doped), analyzes and summarizes the mechanism of activating PMS by carbon-based catalysts, and discusses the influencing factors (temperature, pH, PMS concentration, catalyst concentration, inorganic anions, inorganic cations and dissolved oxygen) in the activation process. Finally, the future challenges and prospects of carbon-based materials in water pollution control are also presented.
Collapse
Affiliation(s)
- Liangyun Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junkai Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jia Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuting Min
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chunguang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
5
|
Zhang T, Wu S, Li N, Chen G, Hou L. Applications of vacancy defect engineering in persulfate activation: Performance and internal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130971. [PMID: 36805443 DOI: 10.1016/j.jhazmat.2023.130971] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The vacancy defects in heterogeneous catalysts have received extensive attention for persulfate (PS) activation. Vacancy defects can tune the electronic structure of metal oxides and generate unsaturated coordination sites. Meanwhile, the adsorption energy of reactants on catalyst surface is optimized. Thereby, the reaction energy barrier between catalysts and PS decreases, which could promote catalytic activation and accelerate pollutants degradation. Nowadays, oxygen vacancy (OV), nitrogen vacancy (NV), sulfur vacancy (SV), selenium vacancy (SeV) and titanium vacancy (TiV) have been widely studied with great potential for water remediation. So far, no review was reported regarding the vacancy activated persulfate systems. This paper summarized the types, preparation, mechanism and applications of vacancy in PS systems systematically. In addition, we put forward possible development of vacancy engineering in PS activation systems. It is expected that this review will contribute to the controllable synthesis and applications of vacancies in catalysts for PS activation and contaminants removal.
Collapse
Affiliation(s)
- Ting Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shuang Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; 96911 Unit, Beijing 100011, China.
| |
Collapse
|
6
|
Zhong W, Peng Q, Liu K, Zhang Y, Xing J. Al3+ doped CuFe2O4 efficiently activates peroxymonosulfate for long-term and stable degradation of tetracycline: synergistic and regulatory role of Al3+. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Zhang Y, Peng Q, Zhong W, Xing J, Liu K. Novel MnCo2O4.5@manganese sand for efficient degradation of tetracycline through activating peroxymonosulfate: facile synthesis, adaptable performance and long-term effectiveness. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Peng Q, Tang X, Liu K, Zhong W, Zhang Y, Xing J. Synthesis of silica nanofibers-supported BiOCl/TiO2 heterojunction composites with enhanced visible-light photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhou M, Liu K, Peng Q, Jiang K, Tang X, Zhang Y, Xing J. Long-acting CoAl 2O 4 spinel catalyst developed on activated alumina pellets by facile synthesis to activate peroxymonosulfate: Controllable cobalt leaching and environmental adaptability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114702. [PMID: 35184008 DOI: 10.1016/j.jenvman.2022.114702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A novel composite catalyst prepared by fixing cobalt aluminate (CoAl2O4) spinel on formed alumina carrier by impregnation-calcination route is reported, which can be used to efficiently activate peroxymonosulfate (PMS) to degrade p-nitrophenol (PNP). The internal laws of phase composition and preparation conditions are explored in detail, and the results show that the introduction of additional aluminum ions in the preparation process changes the coordination environment and the electronic state of cobalt ions, which leads to the transformation of spinel/inverted spinel in the composition, and further affects the activity and stability of the catalyst. The selected CoAl-Aaps-600 catalyst has high CoAl2O4 content, showing good cycle performance and low cobalt leaching, and has great catalytic degradation performance at different temperatures and a wide pH range. Most notably, a fixed bed reactor packed with 20 g of CoAl-Aaps-600 exhibits excellent capacity to continuously treat 60 L of PNP solution with acceptable PNP removal ratio and low cobalt leaching content. Sulfate radical and singlet oxygen are identified as the main reactive oxygen species produced in CoAl-Aaps-600/PMS system, and the reaction mechanism is reasonably inferred. This work provides a potential application material and process for the treatment of continuous organic wastewater.
Collapse
Affiliation(s)
- Muyang Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Kun Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China.
| | - Qian Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Kun Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Xuekun Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Yingjie Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| | - Jiajie Xing
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha, 410083, China
| |
Collapse
|