1
|
Cui Z, Shao Y, Zhang J, Wang Z. Dual-bioinspired Janus mesh membrane with controllable bubbles manipulation property for efficient water splitting and pure gas collection. J Colloid Interface Sci 2025; 682:629-642. [PMID: 39642549 DOI: 10.1016/j.jcis.2024.11.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Water splitting, as a promising clean energy source, has garnered significant attention owing to the escalating global energy crisis. However, prior research has largely focused on electrode materials rather than bubble manipulation, which plays a crucial role in the process. Although using the previously published "Releasing strategy" effectively eliminates micro-sized bubbles from the electrode material for efficient water splitting, the released tiny-sized bubbles pose challenges for controllable and pure collection. Herein, a new "Managing strategy", integrating the "Transporting strategy" for rapid directional bubble transport with the "Collecting strategy" for controllable bubble collection, aiming to develop smart integrated water-splitting devices for efficient continuous water splitting and pure gas collection. This advanced functional electrode, designed with a lotus leaf-inspired Janus wettability interface for timely directional bubble transport and a water-spider hair structure-inspired aerophilic surface for efficient bubble collection, enables pure, efficient, and continuous water splitting. It achieves this by releasing gas products of controllable larger sizes, collecting them at a faster rate, and reducing the probability of H2/O2 collisions. Beyond enabling water splitting, this approach is also applicable to other gas-involving applications.
Collapse
Affiliation(s)
- Zhanyuan Cui
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Yubing Shao
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Jinghan Zhang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Zhecun Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China.
| |
Collapse
|
2
|
Xu H, Chen W, Zhang Q, Song N, Ding M. Elucidating molecular characteristics of organic compounds during ozone micro-bubbles treatment based on GC × GC-QTOF-MS and non-targeted analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124196. [PMID: 39842359 DOI: 10.1016/j.jenvman.2025.124196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The ozone micro-bubbles (OCBs) technology is increasingly gaining traction as a promising alternative method for organic compounds removal in wastewater. Nevertheless, there is a scarcity of literature addressing the molecular-level transformation of organic compounds during OCBs treatment. In this work, the secondary effluent from a wastewater treatment plant was treated with ozone milli-bubbles (OLBs) and OCBs, and the fate of organic compounds at the molecular level was investigated using comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS). The findings revealed that, compared to OLBs, OCBs increased the total mass transfer coefficient by 1.46 times and the half-life of ozone by 4 times. Consequently, OCBs enhanced the removal rates of CODcr, NH4+-N, UV254, and TOC at the 30-min mark by 8.91%, 8.65%, 10.11%, and 2.15%, respectively. In the raw water, 710 organic compounds were detected, decreasing to 668 and 478 after treatment with OLBs and OCBs, respectively. Furthermore, the organic compounds with higher molecular weight and unsaturation degree were more prone to mineralization in the OCBs process. It was also identified that OCBs exhibited nearly 100% removal of amines, unsaturated hydrocarbons, aldehydes, phenols, and aromatic amides. It is noteworthy that, among the 15 identified emerging contaminants (ECs), the removal efficiency of OCBs (53.3%) was higher than that of OLBs (33.3%), with fewer by-products. More deeply, based on 30 common reactions, the primary reactions occurring in OLBs treatment were dealkylations, whereas the abundant hydroxyl radicals in OCBs treatment facilitated the oxidation reaction (+O). This study contributes to the exploration of the potential of OCBs technology in treating secondary effluent, providing invaluable insights for its rational application in practical scenarios.
Collapse
Affiliation(s)
- Hang Xu
- College of Environment, Hohai University, Nanjing, 210098, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China
| | - Weihang Chen
- College of Environment, Hohai University, Nanjing, 210098, PR China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China
| | - Qian Zhang
- College of Environment, Hohai University, Nanjing, 210098, PR China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China.
| | - Mingmei Ding
- College of Environment, Hohai University, Nanjing, 210098, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
3
|
Karkou E, Teo CJ, Savvakis N, Poinapen J, Arampatzis G. Industrial circular water use practices through the application of a conceptual water efficiency framework in the process industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122596. [PMID: 39321677 DOI: 10.1016/j.jenvman.2024.122596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/20/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Increased industrial water demand and resource depletion require the incorporation of sustainable and efficient water and wastewater management solutions in the industrial sector. Conventional and advanced treatment technologies, closed-water loops at different levels from an industrial process to collaborative networks among industries within the same or another sector and digital tools and services facilitate the materialization of circular water use practices. To this end, the scope of this paper is the application of the Conceptual Water Efficiency Framework (CWEF), which has been developed within the AquaSPICE project aspiring to enhance water circularity within industries in a holistic way. Four water-intensive process industries (two chemical industries, one oil refinery plant and one meat production plant) are examined, revealing its adaptability, versatility and flexibility according to the requirements of each use case. It is evident that the synergy of process, circular and digital innovations can promote sustainability, contribute to water conservation in the industry, elaborating a compact approach to be replicated from other industries.
Collapse
Affiliation(s)
- Efthalia Karkou
- School of Production Engineering and Management, Technical University of Crete, Chania, Greece.
| | - Chuan Jiet Teo
- KWR Water Research Institute, Groningenhaven 7, 3430 BB, Nieuwegein, Netherlands; Institute of Environmental Engineering, RWTH Aachen University, Mies-van-der-Rohe-Strasse 1, D-52074, Aachen, Germany
| | - Nikolaos Savvakis
- School of Production Engineering and Management, Technical University of Crete, Chania, Greece
| | - Johann Poinapen
- KWR Water Research Institute, Groningenhaven 7, 3430 BB, Nieuwegein, Netherlands
| | - George Arampatzis
- School of Production Engineering and Management, Technical University of Crete, Chania, Greece
| |
Collapse
|
4
|
Kato S, Kansha Y. Comprehensive review of industrial wastewater treatment techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51064-51097. [PMID: 39107648 PMCID: PMC11374848 DOI: 10.1007/s11356-024-34584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Water is an indispensable resource for human activity and the environment. Industrial activities generate vast quantities of wastewater that may be heavily polluted or contain toxic contaminants, posing environmental and public health challenges. Different industries generate wastewater with widely varying characteristics, such as the quantity generated, concentration, and pollutant type. It is essential to understand these characteristics to select available treatment techniques for implementation in wastewater treatment facilities to promote sustainable water usage. This review article provides an overview of wastewaters generated by various industries and commonly applied treatment techniques. The characteristics, advantages, and disadvantages of physical, chemical, and biological treatment methods are presented.
Collapse
Affiliation(s)
- Shoma Kato
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Yasuki Kansha
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
5
|
Taghizadeh Mohammadi MJ, Movahedirad S. A digital image analysis approach to understand the microscopic and macroscopic phenomena in dissolved air flotation. Sci Rep 2024; 14:14381. [PMID: 38909082 PMCID: PMC11193776 DOI: 10.1038/s41598-024-65325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/19/2024] [Indexed: 06/24/2024] Open
Abstract
Dissolved air flotation (DAF) is an effective method for separating suspended oil and solid particles from wastewater by utilizing small air bubbles. This study aims to investigate the impact of key factors, such as saturating pressure and water flow rate, on the separation of fine oil droplets from a water stream. The macroscopic flow patterns within the cell were analyzed using particle image velocimetry (PIV), while Digital Image Analysis (DIA) was employed to study microscopic phenomena, including oil droplet rising velocity and oil-bubble contact mechanisms. Our findings propose a safe operating window (specifically, water flow rate and saturation pressure) for the effective separation of oil droplets without any oil escaping into the clean water stream. It was found that the oil droplet rising velocity increases with the saturation pressure up to 200 kPa. However, a further increase in the pressure of the air saturating chamber leads to a decrease in oil droplet rising velocity. Additionally, we identified a peak in rising velocity at an oil droplet size of approximately 200 µm. Below this threshold, the rising velocity increases with droplet size, while for droplet sizes exceeding 200 µm, the rising velocity decreases with size. This behavior can be explained by the conflicting effects of droplet size increment according to the Stokes law for the rising velocity of oil droplets. As the droplet size increases, the average density of the bubbles/droplet aggregate rises, reducing the ∆ρ in the Stokes law and subsequently lowering the aggregate rising rate. However, as per the Stokes law, the oil droplet rising velocity increases proportionally to the square of its size.
Collapse
Affiliation(s)
| | - Salman Movahedirad
- School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
6
|
Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, Ong HC. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. CHEMOSPHERE 2024; 353:141540. [PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Collapse
Affiliation(s)
- Manzoore Elahi M Soudagar
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand - 248002, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Tiong Sieh Kiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.
| | - Laxmikant Jathar
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Ramesh
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umesh Awasarmol
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
7
|
Zalloum IO, Jafari Sojahrood A, Paknahad AA, Kolios MC, Tsai SSH, Karshafian R. Controlled Tempering of Lipid Concentration and Microbubble Shrinkage as a Possible Mechanism for Fine-Tuning Microbubble Size and Shell Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17622-17631. [PMID: 38016673 DOI: 10.1021/acs.langmuir.3c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The acoustic response of microbubbles (MBs) depends on their resonance frequency, which is dependent on the MB size and shell properties. Monodisperse MBs with tunable shell properties are thus desirable for optimizing and controlling the MB behavior in acoustics applications. By utilizing a novel microfluidic method that uses lipid concentration to control MB shrinkage, we generated monodisperse MBs of four different initial diameters at three lipid concentrations (5.6, 10.0, and 16.0 mg/mL) in the aqueous phase. Following shrinkage, we measured the MB resonance frequency and determined its shell stiffness and viscosity. The study demonstrates that we can generate monodisperse MBs of specific sizes and tunable shell properties by controlling the MB initial diameter and aqueous phase lipid concentration. Our results indicate that the resonance frequency increases by 180-210% with increasing lipid concentration (from 5.6 to 16.0 mg/mL), while the bubble diameter is kept constant. Additionally, we find that the resonance frequency decreases by 260-300% with an increasing MB final diameter (from 5 to 12 μm), while the lipid concentration is held constant. For example, our results depict that the resonance frequency increases by ∼195% with increasing lipid concentration from 5.6 to 16.0 mg/mL, for ∼11 μm final diameter MBs. Additionally, we find that the resonance frequency decreases by ∼275% with increasing MB final diameter from 5 to 12 μm when we use a lipid concentration of 5.6 mg/mL. We also determine that MB shell viscosity and stiffness increase with increasing lipid concentration and MB final diameter, and the level of change depends on the degree of shrinkage experienced by the MB. Specifically, we find that by increasing the concentration of lipids from 5.6 to 16.0 mg/mL, the shell stiffness and viscosity of ∼11 μm final diameter MBs increase by ∼400 and ∼200%, respectively. This study demonstrates the feasibility of fine-tuning the MB acoustic response to ultrasound by tailoring the MB initial diameter and lipid concentration.
Collapse
Affiliation(s)
- Intesar O Zalloum
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Ali A Paknahad
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Ontario, Canada
| | - Raffi Karshafian
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| |
Collapse
|
8
|
Zhang J, Yan Y, Jia W, Yang W, Wang Q, Zhao S. Design and application of gel coagulation-spontaneous flotation integrated process in water treatment: "Clouds in water". WATER RESEARCH 2023; 243:120407. [PMID: 37516081 DOI: 10.1016/j.watres.2023.120407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The gel coagulation-spontaneous flotation (GCSF) process designed in this paper mainly rely on dissolved gas in water rather than auxiliary gas equipment to achieve spontaneous flotation. Compared with the traditional coagulation-dissolved air flotation method, GCSF has more stable flotation efficiency and shorter operation cycle under conventional hydraulic conditions. In this study, the GCSF scheme was applied for surface water treatment, and its operating efficiency, mechanism of action, and environmental implications were explored systematically. The results illustrate that the dosage ratio of sodium alginate (SA) to aluminum sulfate (AS) should be controlled in the range of approximately 1.5:1-2.5:1, and SA should be added 15∼120 s before AS during the coagulation process. Under these conditions, the adsorption cross-linking between SA and Al3+ promoted the generation of gel flocs and effectively encapsulated the dissolved gasses, thereby achieving a stable spontaneous flotation process and 80%-95% removal of pollutants. The purification efficiency of GCSF was positively correlated with pH 4-9, which was attributed to the enhanced hydrophobicity of the chains of organic polymer groups. The residual SA and aluminum concentration in effluent were lower than 1 and 0.05 mg/L, respectively, which guarantee the ecological security of GCSF application. In addition, the results of density functional theory calculations revealed that -OH and -AlO6 in cross-linked flocs could adsorb dissolved oxygen synergistically, while -OH combined with oxygen had a stronger binding energy and stable adsorption.
Collapse
Affiliation(s)
- Jianguo Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yan Yan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
9
|
Dizayee KKH, Raheem AM, Judd SJ. The Cost Benefit of Refinery Effluent Pretreatment Upstream of Membrane Bioreactors. MEMBRANES 2023; 13:715. [PMID: 37623776 PMCID: PMC10456940 DOI: 10.3390/membranes13080715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The established classical method of treating oil refinery effluent is flotation followed by biological treatment. Membrane bioreactors (MBRs) offer more advanced treatment, producing a clarified and potentially reusable treated effluent, but demand robust pretreatment to remove oil and grease (O&G) down to consistent, reliably low levels. An analysis of a full-scale conventional oil refinery ETP (effluent treatment plant) based on flotation alone, coupled with projected performance, energy consumption and costs associated with a downstream MBR, have demonstrated satisfactory performance of flotation-based pretreatment. The flotation processes, comprising an API (American Petroleum Institute) separator followed by dissolved air flotation (DAF), provided ~90% removal of both total suspended solids (TSS) and O&G coupled with 75% COD (chemical oxygen demand) removal. The relative energy consumption and cost of the pretreatment, normalised against both the volume treated and COD removed, was considerably less for the API-DAF sequence compared to the MBR. The combined flotation specific energy consumption in kWh was found to be almost an order of magnitude lower than for the MBR (0.091 vs. 0.86 kWh per m3 effluent treated), and the total cost (in terms of the net present value) around one sixth that of the MBR. However, the nature of the respective waste streams generated and the end disposal of waste solids differ significantly between the pretreatment and MBR stages.
Collapse
Affiliation(s)
| | | | - Simon J. Judd
- Cranfield Water Science Institute, Cranfield University, Bedford MK43 0AL, UK
| |
Collapse
|
10
|
Ahmed MA, Amin S, Mohamed AA. Fouling in reverse osmosis membranes: monitoring, characterization, mitigation strategies and future directions. Heliyon 2023; 9:e14908. [PMID: 37064488 PMCID: PMC10102236 DOI: 10.1016/j.heliyon.2023.e14908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Water scarcity has been a global challenge for many countries over the past decades, and as a result, reverse osmosis (RO) has emerged as a promising and cost-effective tool for water desalination and wastewater remediation. Currently, RO accounts for >65% of the worldwide desalination capacity; however, membrane fouling is a major issue in RO processes. Fouling reduces the membrane's lifespan and permeability, while also increases the operating pressure and chemical cleaning frequency. Overall, fouling reduces the quality and quantity of desalinated water, and thus hinders the sustainable application of RO membranes by disturbing its efficacy and economic aspects. Fouling arises from various physicochemical interactions between water pollutants and membrane materials leading to foulants' accumulation onto the membrane surfaces and/or inside the membrane pores. The current review illustrates the main types of particulates, organic, inorganic and biological foulants, along with the major factors affecting its formation and development. Moreover, the currently used monitoring methods, characterization techniques and the potential mitigation strategies of membrane fouling are reviewed. Further, the still-faced challenges and the future research on RO membrane fouling are addressed.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sherif Amin
- Chemistry Department, Faculty of Science, Al Azhar University, Cairo, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
11
|
Krzan M, Chattopadhyay P, Orvalho S, Zednikova M. Effects of N-Alkanol Adsorption on Bubble Acceleration and Local Velocities in Solutions of the Homologous Series from Ethanol to N-Decanol. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2125. [PMID: 36903239 PMCID: PMC10004471 DOI: 10.3390/ma16052125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The influence of n-alkanol (C2-C10) water solutions on bubble motion was studied in a wide range of concentrations. Initial bubble acceleration, as well as local, maximal and terminal velocities during motion were studied as a function of motion time. Generally, two types of velocity profiles were observed. For low surface-active alkanols (C2-C4), bubble acceleration and terminal velocities diminished with the increase in solution concentration and adsorption coverage. No maximum velocities were distinguished. The situation is much more complicated for higher surface-active alkanols (C5-C10). In low and medium solution concentrations, bubbles detached from the capillary with acceleration comparable to gravitational acceleration, and profiles of the local velocities showed maxima. The terminal velocity of bubbles decreased with increasing adsorption coverage. The heights and widths of the maximum diminished with increasing solution concentration. Much lower initial acceleration values and no maxima presence were observed in the case of the highest n-alkanol concentrations (C5-C10). Nevertheless, in these solutions, the observed terminal velocities were significantly higher than in the case of bubbles moving in solutions of lower concentration (C2-C4). The observed differences were explained by different states of the adsorption layer in the studied solutions, leading to varying degrees of immobilization of the bubble interface, which generates other hydrodynamic conditions of bubble motion.
Collapse
Affiliation(s)
- Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | | | - Sandra Orvalho
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 1, 165 00 Prague, Czech Republic
| | - Maria Zednikova
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 1, 165 00 Prague, Czech Republic
| |
Collapse
|
12
|
Zhang R, Mo Y, Gao Y, Zhou Z, Hou X, Ren X, Wang J, Chu X, Lu Y. Constructing a Hierarchical Hydrophilic Crosslink Network on the Surface of a Polyvinylidene Fluoride Membrane for Efficient Oil/Water Emulsion Separation. MEMBRANES 2023; 13:255. [PMID: 36984642 PMCID: PMC10053406 DOI: 10.3390/membranes13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Oil/water mixtures from industrial and domestic wastewater adversely affect the environment and human beings. In this context, the development of a facile and improved separation method is crucial. Herein, dopamine was used as a bioadhesive to bind tea polyphenol (TP) onto the surface of a polyvinylidene fluoride (PVDF) membrane to form the first hydrophilic polymer network. Sodium periodate (NaIO4) is considered an oxidising agent for triggering self-polymerisation and can be used to introduce hydrophilic groups via surface manipulation to form the second hydrophilic network. In contrast to the individual polydopamine (PDA) and TP/NaIO4 composite coatings for a hydrophobic PVDF microfiltration membrane, a combination of PDA, TP, and NaIO4 has achieved the most facile treatment process for transforming the hydrophobic membrane into the hydrophilic state. The hierarchical superhydrophilic network structure with a simultaneous underwater superoleophobic membrane exhibited excellent performance in separating various oil-in-water emulsions, with a high water flux (1530 L.m-2 h-1.bar) and improved rejection (98%). The water contact angle of the modified membrane was 0° in 1 s. Moreover, the steady polyphenol coating was applied onto the surface, which endowed the membrane with an adequate antifouling and recovery capability and a robust durability against immersion in an acid, alkali, or salt solution. This facile scale-up method depends on in situ plant-inspired chemistry and has remarkable potential for practical applications.
Collapse
Affiliation(s)
- Ruixian Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yuanbin Mo
- Institute of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
| | - Yanfei Gao
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Zeguang Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xueyi Hou
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiuxiu Ren
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Junzhong Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiaokun Chu
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yanyue Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
13
|
Zhang P, He Z, Luo X, Jia Z, He L. Optimization of graphene oxide modified mesh for separation of O/W emulsions. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Tegladza ID, Lin G, Liu C, Gu X. Control of crystal nucleation, size and morphology using micro−/nanobubbles as green additives – a review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Zhao M, Liu Y, Zhang J, Jiang H, Chen R. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Abada B, Joag S, Sharma R, Chellam S. Hypersaline produced water clarification by dissolved air flotation and sedimentation with ultrashort residence times. WATER RESEARCH 2022; 226:119241. [PMID: 36279612 DOI: 10.1016/j.watres.2022.119241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Treatment and reuse of some produced waters is made difficult due to their hypersalinity, high concentrations of myriad other dissolved and suspended components, specialized technology requirements (modularity, portability, and short residence times), and lack of existing information on their processing. In this work, produced water containing ∼100,000 mg/L total dissolved solids from the Permian Basin was coagulated with aluminum chlorohydrate (ACH) and flocculated with an anionic high molecular weight organic polymer prior to dissolved air flotation (DAF) and sedimentation to reduce turbidity to < 4 NTU and iron < 0.8 mg/L (>95% removal in both cases) with a total coagulation-flocculation-sedimentation/flotation residence time of only 5 min. Two advantages of DAF over sedimentation were noted: (i) DAF required only half the dosage of the pre-hydrolyzed ACH coagulant to remove ∼90% of turbidity and iron even without the organic polymeric flocculant and (ii) DAF even operated successfully without ACH coagulation (i.e., using only the organic polymeric flocculant) evidencing its lower chemical dosing needs. Further, DAF attained all water quality and operational goals at a recycle ratio of only 12% demonstrating that it outperformed sedimentation to generate clean brine at relatively reduced excess energies necessary for air saturation. Higher DAF recycle ratios reduced turbidity and iron removal possibly due to floc breakage. Colloids were effectively destabilized by double layer compression (due to high water salinity), charge neutralization (via adsorption of Al13 polycations), and enmeshment (precipitation of amorphous aluminum). They were flocculated via interparticle bridging (by the anionic organic polymeric flocculant) to create large, compact flocs facilitating ultrashort flotation/sedimentation times. Direct evidence for these individual coagulation and flocculation mechanisms were obtained using electrophoretic mobility measurements, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, optical microscopy, computational image and video analysis, and scanning electron microscopy - energy dispersive X-ray spectroscopy.
Collapse
Affiliation(s)
- Bilal Abada
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Sanket Joag
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Ramesh Sharma
- Facilities Engineering, Global Production, ConocoPhillips, Houston, TX 77079, USA
| | - Shankararaman Chellam
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA.
| |
Collapse
|
17
|
Takabe Y, Uchida R, Yoneda A. Enhanced electrochemical precipitation of phosphorus in wastewater by the addition of drifting Corbicula shells. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2749-2763. [PMID: 36450684 DOI: 10.2166/wst.2022.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phosphorus (P) is a finite and essential resource, and its linear movement from mines to waste streams may result in shortages. This has encouraged efforts to recover P from sewage systems for reuse. This study developed a new electrochemical P precipitation system for the subnatant of the sludge flotation thickening process, in which drifting Corbicula shells are added to provide a supply of calcium ions (Ca2+) to promote P precipitation. However, adding Corbicula shells to coexisting suspended solids (SS) and coagulant resulted in adsorption of the shells in the neutralized and hydrophobized floc clusters, which limited their electrochemical dissolution. Adding Corbicula shells after SS removal by flotation with electrochemically generated gases resulted in their successful electrochemical dissolution, which enhanced phosphate-P removal. Increasing the amount of Corbicula shells enhanced the phosphate-P removal to a point, after which further addition simply increased Ca2+. The consumption of H+ generated near the anode for the dissolution of Corbicula shells increased the pH of the bulk solution, which enabled P precipitation not only onto the cathode but also in the bulk solution. Analysis of chemical composition in the generated particles suggests that they can be used as a slow P-release fertilizer and soil conditioner.
Collapse
Affiliation(s)
- Yugo Takabe
- Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan E-mail:
| | - Rika Uchida
- Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan E-mail:
| | - Arisa Yoneda
- Department of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 6808552, Japan E-mail:
| |
Collapse
|
18
|
Yang Y, Guo Z, Li Y, Qing Y, Dansawad P, Wu H, Liang J, Li W. Electrospun rough PVDF nanofibrous membranes via introducing fluorinated SiO2 for efficient oil-water emulsions coalescence separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Liu L, Xie J, Liu X, Qu H, Zhao F, Duan R. Investigations of bubble size distribution on swirl effervescent atomizer flotation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|