1
|
Mohamed Noor MH, Ngadi N. Ecotoxicological risk assessment on coagulation-flocculation in water/wastewater treatment: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52631-52657. [PMID: 39177740 DOI: 10.1007/s11356-024-34700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
It is undeniable that removal efficiency is the main factor in coagulation-flocculation (C-F) process for wastewater treatment. However, as far as environmental safety is concerned, the ecotoxicological aspect of the C-F process needs to be examined further. In this study, a systematic review was performed based on publications related to the toxicity research in C-F technology for wastewater treatment. Through a series of screening steps, available toxicity studies were categorized into four themes, namely acute toxicity, phytotoxicity, cytotoxicity, and genotoxicity, which comprised 48 articles. A compilation of the methodologies executed for each theme was also outlined. The findings show that conventional metallic coagulants (e.g., alum, iron chloride, and iron sulfate) were less toxic when tested on test species such as Daphnia magna (water flea), Lattuca sativa (lettuce), and animal cells compared to synthetic polymers. Natural coagulants such as chitosan or Moringa oleifera were less toxic compared to metallic coagulants; however, inconsistent results were observed. Moreover, an advanced C-F (electrocoagulation) as well as integration between C-F and Fenton, adsorption, and photocatalytic does not significantly change the toxicological profile of the system. It was found that diverse coagulants and flocculants, species sensitivity, complexity in toxicity testing, and dynamic environmental conditions were some key challenges faced in this field. Finally, it was expected that advances in technology, interdisciplinary collaboration, and a growing awareness of environmental sustainability will drive efforts to develop more effective and eco-friendly coagulants and flocculants, improve toxicity testing methodologies, and enhance the overall efficiency and safety of water and wastewater treatment processes.
Collapse
Affiliation(s)
- Mohamed Hizam Mohamed Noor
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
2
|
David JJ, Stephen AMM, Kavitha S, Krishnan SK, Mariappan S, Sebastian SL, Palanichamy J, Kalivel P, Sathishkumar P. Investigating the efficiency of electrocoagulation using similar/dissimilar electrodes for the detoxification of Coralene Rubine dye: a cost effective approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:322. [PMID: 39012612 DOI: 10.1007/s10653-024-02096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Efficient treatment of textile dyeing wastewater can be achieved through electrocoagulation (EC) with minimal sludge production; however, the selection of the appropriate electrode is essential in lowering overall costs. Also, the reuse of the treated aqueous azo dye solution from this process has not been explored in detail. With these objectives, this study aims to treat synthetic azo dye solutions and achieve high colour removal efficiency (CRE%) using similar (Ti-Ti) and dissimilar (Ti-Cu) metal electrodes through EC with an attempt to reduce the cost. The aqueous Coralene Rubine GFL azo dye was used to examine the efficiency and cost of the EC process. X-Ray Photoelectron Spectroscopy was used to study the EC mechanism, while High Performance Liquid Chromatography was used to analyse the degradation of the dye and the formation of intermediate compounds. The concentration of metal ions in the treated dye solution was quantified using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), with Ti-Ti treated solution having 14.20 mg/L concentration of Ti and Ti-Cu treated solution having 0.078 mg/L of Ti and 0.001 mg/L of Cu, respectively. Colour removal efficiency of 99.49% was obtained for both electrode sets, with a lower operating time and voltage for dissimilar metal combination. Ecotoxicity studies showed negligible toxicity of Ti-Cu treated dye samples compared to untreated solutions. Survival rate, protein estimation, and catalase activity was used to validate the treatment method's efficacy. The study found that the dissimilar electrode material exhibited reduced toxicity due to the presence of heavy metals below the permissible limit.
Collapse
Affiliation(s)
- Jovitha Jane David
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Asath Murphy Maria Stephen
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Subbiah Kavitha
- Department of Biotechnology, Karunya Institute of Technology and Sciences,, Coimbatore, Tamil Nadu, 641114, India
| | - Suresh Kumar Krishnan
- Department of Biotechnology, Karunya Institute of Technology and Sciences,, Coimbatore, Tamil Nadu, 641114, India
| | - Santhiya Mariappan
- Department of Biotechnology, Karunya Institute of Technology and Sciences,, Coimbatore, Tamil Nadu, 641114, India
| | - Sahaya Leenus Sebastian
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
- Department of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Periyakulam, 625601, India
| | - Jegathambal Palanichamy
- Water Institute, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Parameswari Kalivel
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India.
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
3
|
Moslehi MH, Eslami M, Ghadirian M, Nateq K, Ramavandi B, Nasseh N. Photocatalytic decomposition of metronidazole by zinc hexaferrite coated with bismuth oxyiodide magnetic nanocomposite: Advanced modelling and optimization with artificial neural network. CHEMOSPHERE 2024; 356:141770. [PMID: 38554866 DOI: 10.1016/j.chemosphere.2024.141770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The objective of the present study was to employ a green synthesis method to produce a sustainable ZnFe12O19/BiOI nanocomposite and evaluate its efficacy in the photocatalytic degradation of metronidazole (MNZ) from aqueous media. An artificial neural network (ANN) model was developed to predict the performance of the photocatalytic degradation process using experimental data. More importantly, sensitivity analysis was conducted to explore the relationship between MNZ degradation and various experimental parameters. The elimination of MNZ was assessed under different operational parameters, including pH, contaminant concentration, nanocomposite dosage, and retention time. The outcomes exhibited high a desirability performance of the ANN model with a coefficient correlation (R2) of 0.99. Under optimized circumstances, the MNZ elimination efficiency, as well as the reduction in chemical oxygen demand (COD) and total organic carbon (TOC), reached 92.71%, 70.23%, and 55.08%, respectively. The catalyst showed the ability to be regenerated 8 times with only a slight decrease in its photocatalytic activity. Furthermore, the experimental data obtained demonstrated a good agreement with the predictions of the ANN model. As a result, this study fabricated the ZnFe12O19/BiOI nanocomposite, which gave potential implication value in the effective decontamination of pharmaceutical compounds.
Collapse
Affiliation(s)
| | - Mostafa Eslami
- Mechanical Engineering Department, University of Tehran, Iran
| | | | - Kasra Nateq
- Department of Chemical Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negin Nasseh
- Department of Health Education and Promotion, School of Health, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Brião GDV, da Costa TB, Antonelli R, Costa JM. Electrochemical processes for the treatment of contaminant-rich wastewater: A comprehensive review. CHEMOSPHERE 2024; 355:141884. [PMID: 38575083 DOI: 10.1016/j.chemosphere.2024.141884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Global water demand and environmental concerns related to climate change require industries to develop high-efficiency wastewater treatment methods to remove pollutants. Likewise, toxic pollutants present in wastewater negatively affect the environment and human health, requiring effective treatment. Although conventional treatment processes remove carbon and nutrients, they are insufficient to remove pharmaceuticals, pesticides, and plasticizers. Electrochemical processes effectively remove pollutants from wastewater through the mineralization of non-biodegradable pollutants with consequent conversion into biodegradable compounds. Its advantages include easy operation, versatility, and short reaction time. In this way, this review initially provides a global water scenario with a view to the future. It comprises global demand, treatment methods, and pollution of water resources, addressing various contaminants such as heavy metals, nutrients, organic compounds, and emerging contaminants. Subsequently, the fundamentals of electrochemical treatments are presented as well as electrochemical treatments, highlighting the latest studies involving electrocoagulation, electroflocculation, electroflotation, capacitive deionization and its derivatives, eletrodeionization, and electrochemical advanced oxidation process. Finally, the challenges and perspectives were discussed. In this context, electrochemical processes have proven promising and effective for the treatment of water and wastewater, allowing safe reuse practices and purification with high contaminant removal.
Collapse
Affiliation(s)
- Giani de Vargas Brião
- Center of Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São Carlense Ave, 400, São Carlos 13566-590, SP, Brazil
| | | | - Raissa Antonelli
- Department of Chemical Engineering, University of São Paulo, Prof. Luciano Gualberto Ave, tr. 3, 380, São Paulo 05508-010, SP, Brazil
| | - Josiel Martins Costa
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
5
|
Yakamercan E, Bhatt P, Aygun A, Adesope AW, Simsek H. Comprehensive understanding of electrochemical treatment systems combined with biological processes for wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121680. [PMID: 37149253 DOI: 10.1016/j.envpol.2023.121680] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Ahmet Aygun
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Adedolapo W Adesope
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
6
|
Medel A, González MC, Treviño-Reséndez J, Meas Y, Bedolla-Valdez ZI, Lara-Jacobo LR, Alonso-Núñez G, Méndez E. Synergistic role of active chlorine species and hydroxyl radicals during disinfection and mineralization of carwash wastewater. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Gu X, Li J, Feng X, Qu W, Wang W, Wang J. Efficient removal of norfloxacin from water using batch airlift-electrocoagulation reactor: optimization and mechanisms analysis. RSC Adv 2023; 13:8944-8954. [PMID: 36936850 PMCID: PMC10021078 DOI: 10.1039/d3ra00471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
In this study, we developed an airlift-electrocoagulation (AL-EC) reactor to remove norfloxacin (NOR) from water. Six parameters influencing NOR removal were investigated, and the possible removal mechanism was proposed based on flocs characterization and intermediates analysis. The performances for treating different antibiotics and removing NOR from 3 types of water were also evaluated. The best NOR removal efficiency was obtained with the iron anode and aluminum cathode combination, a current density of 2 mA cm-2, an initial pH of 7, a treatment time of 32 minutes and an air flow rate of 200 mL min-1, the supporting electrolyte type was NaCl, and the initial NOR concentration was 10 mg L-1. Flocs adsorption and electrochemical oxidation were the main ways to remove NOR from water. The average removal efficiency of the AL-EC reactor exceeded 60% of the different antibiotic concentrations in artificial and real water. The highest NOR removal rate reached 93.48% with an operating cost of 0.153 USD m-3. The present work offers a strategy for NOR removal from water with high efficiency and low cost, showing a huge potential for the application of the AL-EC in antibiotic contaminated water treatment.
Collapse
Affiliation(s)
- Xuege Gu
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China
| | - Xueting Feng
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China
| | - Jiankang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 PR China
| |
Collapse
|
8
|
Ren H, Bi Y, Liu F, Zhang C, Wei N, Fan L, Zhou R. Removal of ofloxacin from wastewater by chloride electrolyte electro-oxidation: Analysis of the role of active chlorine and operating costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157963. [PMID: 35952871 DOI: 10.1016/j.scitotenv.2022.157963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Electro-oxidation (EO) has received increasing attention as an efficient and green method for removing pollutants from wastewater. Chloride anions (Cl-), which commonly exist in wastewater, can act as an electrolyte for the EO process. However, the role of reactive chlorine species (RCS) generated near electrodes is often underestimated. In this study, we generated hydroxyl radicals (OH) and RCS in a boron-doped diamond (BDD) electrode system and investigated its degradation mechanism for ofloxacin (OFX) removal. The findings suggested that OFX degradation was dominated by OH existing near the anode in solution, with RCS playing a supporting role. Based on the produced intermediates, we proposed an OFX decomposition pathway. The biological toxicities of the intermediates were evaluated through the ECOSAR and T.E.S.T. procedure. Nearly half of the intermediates are less toxic than the parent compound. After optimizing the operating parameters by the response surface methodology, 20 mg/L OFX was almost completely degraded after 10 min of reaction in 1.45 g/L NaCl with a current density (j) of 18 mA/cm2, and the total organic carbon was decreased by 30.55 %. The energy consumption and current efficiency were 0.648 kW·h/gTOC and 8.65 %, respectively. Comparing the operating costs of the proposed and other EO methods, our method emerged as a viable new treatment scheme for similar polluted wastewaters. This study aims to comprehensively understand the potential application value of BDD electrodes in the treatment of Cl- containing organic wastewater.
Collapse
Affiliation(s)
- Hejun Ren
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Yuhang Bi
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Fangyuan Liu
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China.
| | - Nan Wei
- Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Lujian Fan
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resource and Environment, Jilin University, Changchun 130021, China
| | - Rui Zhou
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resource and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|