1
|
Mbisana M, Keroletswe N, Nareetsile F, Mogopodi D, Chibua I. Nanocellulose composites: synthesis, properties, and applications to wastewater treatment. CELLULOSE 2024; 31:10651-10678. [DOI: 10.1007/s10570-024-06268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 01/06/2025]
Abstract
AbstractThe growing worldwide environmental and water pollution challenges require the use of renewable biomass-based materials to purify water systems. The remarkable qualities of nanocellulose (NC) and its eco-friendliness make it a desirable material for this purpose. Hence, many investigations have been conducted on the optimization of NC-based materials for water purification. This review presents the first examination of the progress made in creating emerging NC composites using molecularly imprinted polymers (MIPs), metal organic frameworks (MOFs), and aluminosilicates. MIPs, MOFs, and aluminosilicates endow NC composites with stability, multifunctionality, and extended reusability. The applications of these composites to wastewater treatment, such as the removal of toxic heavy metals, dyes, pharmaceuticals, and microorganisms are discussed. Finally, the economic viability, challenges, and future perspectives of these emerging NC composites and their applications are discussed. The research gaps demonstrated in this review will enable the exploration of new areas of study on functionalised NC composites, leading to enhanced industrial applications. Moreover, the utilisation of NC composites with suitably modified components results in multifunctional adsorbents that have great potential for effectively eliminating many contaminants simultaneously.
Collapse
|
2
|
Harmandar K, Kaya EN, Tollu G, Sengul IF, Özdemir S, Atilla D. Synthesis, photo-physicochemical and biological properties of novel tetrahydropyrimidone-substituted metallo-phthalocyanines. Dalton Trans 2024; 53:16005-16017. [PMID: 39289954 DOI: 10.1039/d4dt02115k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, new peripherally substituted symmetric zinc and magnesium phthalocyanines (4 and 5) were successfully prepared by cyclotetramerization of the tetrahydropyrimidone (THPM)-linked phthalonitrile 3. The identity of the compounds were confirmed primarily through spectroscopic analysis including NMR, FT-IR, UV-Vis and MALDI-TOF mass spectroscopy. The photophysical and photochemical properties of the synthesized phthalocyanines (Pcs) were examined using UV-Vis absorption and fluorescence emission spectroscopy techniques. The quantum yields of singlet oxygen were found to be 0.50 and 0.33 for compounds 4 and 5 in DMSO, respectively. In addition to photo-physicochemical properties, the enhanced biological activities of compounds 4 and 5 were investigated using a range of biological assays, namely, antibiofilm, microbial cell viability, antioxidant, DNA cleavage, antimicrobial and photodynamic antimicrobial assays. The maximum DPPH inhibition of 4 and 5 was detected as 40.46% and 25.76% at 100 mg L-1, respectively. Fragmentation of the DNA molecule was observed at concentrations of 25 mg L-1, 50 mg L-1 and 100 mg L-1 for 4 and 5. Additionally, effective inhibition of microbial cell viability was observed with the targeted Pcs. The antibiofilm properties of these compounds were found to be concentration-dependent. The biofilm inhibition activities of 4 and 5 were found to be 96.01% and 92.04% for S. aureus, while they were 95.42% and 91.27%, for P. aeruginosa, respectively. The antimicrobial activities of 4 and 5 on different microorganisms were evaluated using the microdilution assay. In the case of photodynamic antimicrobial treatment, the newly synthesized Pcs showed more effective antimicrobial inhibition compared to the control. These findings suggest that compounds 4 and 5 can be used as promising photodynamic antimicrobial agents for the treatment of many diseases, particularly infectious diseases.
Collapse
Affiliation(s)
- Kevser Harmandar
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Esra Nur Kaya
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Gülşah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, TR-33343 Mersin, Turkey
| | - Ibrahim F Sengul
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Devrim Atilla
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
3
|
Yabalak E, Özdemir S, Al-Nuaimy MNM, Tollu G. From cornfield to catalyst support: Eco-friendly synthesis of Cu/CuO nanoparticles, immobilization on the waste corn husk fibers, photocatalytic exploration and bioactivity evaluation. CHEMOSPHERE 2024; 365:143328. [PMID: 39271076 DOI: 10.1016/j.chemosphere.2024.143328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
This study presents an innovative approach to eco-friendly synthesis and utilization of copper nanoparticles (CuNPs) for photocatalytic applications, employing waste corn husk fibers as sustainable catalyst support. The synthesis of CuNPs was achieved through a green synthesis method utilizing myrtle extract. Subsequently, the remarkable photocatalytic activity of the CuNPs explored (76% removal efficiency of Crystal Violet), showcased their potential in environmental remediation applications. Furthermore, the immobilization of CuNPs onto waste corn husk fibers was investigated, aiming to develop a novel composite material with enhanced catalytic performance. A distinctive approach was introduced by immobilizing CuNPs onto fibers derived from corn husks, and waste biomass material, leading to a significant enhancement in photocatalytic efficiency, surpassing 95.1%. Furthermore, bioactivity evaluation studies revealed the significant antioxidant, antidiabetic, DNA fragmentation, cell viability, antibiofilm and antimicrobial properties of CuNPs. The antioxidant ability was determined at 100 mg/L as 87.12%. The most powerful antimicrobial activity of CuNP was found as a MIC value of 8 mg/L against E. faecalis. The cell viability inhibition of CuNP was 90.05% at 20 mg/L. CuNP exhibited biofilm inhibition activity at different concentrations. The antibiofilm ability was investigated against Staphylococcus aureus compared to Pseudomonas aureginosa. While the DNA cleavage activity of CuNP observed double-strand breaks at 50 and 100 mg, complete fragmentation occurred at 200 mg concentrations. The bioactivity of the synthesized CuNPs shed light on their potential biomedical applications. The synthesized CuNPs are characterized using various analytical techniques to elucidate their structural and morphological properties. Fourier-transform infrared (FTIR) analysis provided insights into the chemical composition and surface properties of the synthesized materials. EDS analysis confirmed their successful integration into waste corn husk fibers. Overall, this interdisciplinary study highlights the potential of CuNPs immobilized on waste corn husk fibers for addressing environmental pollution, advancing sustainable technologies and paving the way for the development of efficient catalysts with diverse functionalities.
Collapse
Affiliation(s)
- Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey
| | | | - Gulsah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey
| |
Collapse
|
4
|
Li F, Xie W, Ding X, Xu K, Fu X. Phytochemical and pharmacological properties of the genus Tamarix: a comprehensive review. Arch Pharm Res 2024; 47:410-441. [PMID: 38750332 DOI: 10.1007/s12272-024-01498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024]
Abstract
The genus Tamarix in the Tamaricaceae family consists of more than 100 species of halophyte plants worldwide that are mainly used to improve saline-alkali land and for coastal windbreaks, sand fixation, and afforestation in arid areas. A considerable number of species in this genus are also used as traditional medicines to treat various human diseases, especially in Asian and African countries. This review presents a comprehensive summary of 655 naturally occurring compounds derived from the genus Tamarix, categorized into flavonoids (18.0%), phenols (13.9%), tannins (9.3%), terpenoids (10.5%), essential oils (31.0%), and others (17.3%). The investigation revealed that the crude extracts and phytochemicals of this genus exhibited significant therapeutic potential, including anti-inflammatory, anti-Alzheimer, anticancer, antidiabetic, antibacterial, and antifungal activities. Six species of Tamarix have anticancer effects by causing cancer cell death, inducing autophagy, and stopping cell division. Seven species from the same genus have the potential for treating diabetes by inhibiting α-glycosidase activity, suppressing human islet amyloid polypeptide, regulating blood glucose levels, and modulating autophagy or inflammation. The focus on antibacterial and antidiabetic effects is due to the presence of volatile oil and flavonoid components. Extensive research has been conducted on the biological activity of 30 constituents, including 15 flavonoids, 5 phenols, 3 terpenoids, 1 tannin, and 6 others. Therefore, future research should thoroughly study the mechanisms of action of these and similar compounds. This is the most comprehensive review of the phytochemistry and pharmacological properties of Tamarix species, with a critical assessment of the current state of knowledge.
Collapse
Affiliation(s)
- Fangjie Li
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China
| | - Wenli Xie
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China
| | - Xianrui Ding
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China
| | - Kuo Xu
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China.
- Chun'an First People's Hospital, Hangzhou, 311700, China.
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, 266114, China.
| |
Collapse
|
5
|
Yu J, Shang Q, Zhang M, Hu L, Jia P, Zhou Y. Tung oil-based waterborne UV-curable coatings via cellulose nanofibril stabilized Pickering emulsions for self-healing and anticorrosion application. Int J Biol Macromol 2024; 256:128114. [PMID: 37979750 DOI: 10.1016/j.ijbiomac.2023.128114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In this study, waterborne UV-curable coatings with self-healing properties based on transesterification were prepared using renewable biomass resources for anti-corrosion application. Tung oil (TO)-based oligomer (TMHT) was synthesized through Diels-Alder reaction of TO with maleic anhydride, subsequent ring opening reaction with hydroxyethyl acrylate (HEA), and final neutralize reaction with triethylamine. A series of waterborne UV-curable coatings were prepared from cellulose nanofibrils (CNF) stabilized TMHT-based Pickering emulsions after drying and UV light-curing processes. It is suggested that CNF significantly improved the storage stability of Pickering emulsions. The obtained waterborne UV-curable coatings with CNF of 1-3 wt% exhibited remarking coating and mechanical performance (pencil hardness up to 5 H, adhesion up to 2 grade, flexibility of 2 mm, tensile strength up to 11.6 MPa, etc.), great transmittance (82.3 %-80.8 %) and great corrosion resistance (|Z|0.01Hz up to 5.4 × 106 Ω·cm2). Because of the presence of the dynamic ester bonds in TMHT, the coatings exhibited excellent self-healing performance (78.05 %-56.34 %) at 150 °C without catalyst and external force. More importantly, the |Z|0.01Hz of the self-healing coating was higher than that of the scratched coating, indicating that the self-healing performance could extend the service life of the coating in corrosion resistant application.
Collapse
Affiliation(s)
- Jinni Yu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China
| | - Qianqian Shang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China.
| | - Meng Zhang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China.
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, 159 Longpan Road, Nanjing 210037, Jiangsu Province, China
| |
Collapse
|
6
|
Yildirim R, Eskikaya O, Keskinler B, Karagunduz A, Dizge N, Balakrishnan D. Fabric dyeing wastewater treatment and salt recovery using a pilot scale system consisted of graphite electrodes based on electrooxidation and nanofiltration. ENVIRONMENTAL RESEARCH 2023; 234:116283. [PMID: 37286123 DOI: 10.1016/j.envres.2023.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/23/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
In this study, color removal, suspended solids removal, and salt recovery were investigated from different fabric dyeing wastewaters using a pilot scale treatment system. A pilot scale system was installed in the wastewater outlet area of five different textile companies. Experiments were planned for pollutant removal and salt recovery from wastewater. First, the wastewater was treated by electrooxidation (EO) using graphite electrodes. After a reaction time of 1 h, the wastewater was passed throughout the granular activated carbon (AC) coloumn. The pre-treated wastewater was passed through the membrane (NF) system to recover the salt in the wastewater. Finally, the recovered salt water was used for fabric dyeing. In the pilot scale treatment system (EO + AC + NF), 100% of suspended solids (SS) and an average of 99.37% of color were removed from fabric dyeing wastewaters. At the same time, a high amount of salt water was recovered and reused. Optimum conditions were determined as 4 V current, 1000 A power, wastewater's own pH values and 60 min of reaction time. The energy and operating cost for treatment of 1 m3 of wastewater were determined as 40.0 kWh/m3 and 2.2 US$/m3, respectively. In addition to the prevention of environmental pollution by the treatment of wastewater using the pilot-scale treatment system, the reuse of the recovered water will contribute to the protection of our valuable water resources. In addition, using the NF membrane process after the EO system, it will be possible to recover salt from wastewater with high salt content such as textile wastewater.
Collapse
Affiliation(s)
- Rabia Yildirim
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Ozan Eskikaya
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Bulent Keskinler
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 44440, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
7
|
Kucukosman R, Isik Z, Ocakoglu K, Dizge N, Özdemir S, Yalçın MS, Sharma P, Balakrishnan D. Boron-based magnesium diboride nanosheets preparation and tested for antimicrobial properties for PES membrane. CHEMOSPHERE 2023; 339:139340. [PMID: 37379977 DOI: 10.1016/j.chemosphere.2023.139340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Antimicrobial resistance to antibiotics for current bacterial infection treatments is a medical problem. 2D nanoparticles, which can be used as both antibiotic carriers and direct antibacterial agents due to their large surface areas and direct contact with the cell membrane, are important alternatives in solving this problem. This study focuses on the effects of a new generation borophene derivative obtained from MgB2 particles on the antimicrobial activity of polyethersulfone membranes. MgB2 nanosheets were created by mechanically separating magnesium diboride (MgB2) particles into layers. The samples were microstructurally characterized using SEM, HR-TEM, and XRD methods. MgB2 nanosheets were screened for various biological activities such as antioxidant, DNA nuclease, antimicrobial, microbial cell viability inhibition, and antibiofilm activities. The antioxidant activity of nanosheets was 75.24 ± 4.15% at 200 mg/L. Plasmid DNA was entirely degraded at 125 and 250 mg/L nanosheet concentrations. MgB2 nanosheets exhibited a potential antimicrobial effect against tested strains. The cell viability inhibitory effect of the MgB2 nanosheets was 99.7 ± 5.78%, 99.89 ± 6.02%, and 100 ± 5.84% at 12.5 mg/L, 25 mg/L, and 50 mg/L, respectively. The antibiofilm activity of MgB2 nanosheets against S. aureus and P. aeruginosa was observed to be satisfactory. Furthermore, a polyethersulfone (PES) membrane was prepared by blending MgB2 nanosheets from 0.5 wt to 2.0 wt %. Pristine PES membrane also has shown the lowest steady-state fluxes at 30.1 ± 2.1 and 56.6 L/m2h for BSA and E. coli, respectively. With the increase of MgB2 nanosheets amount from 0.5 to 2.0 wt%, steady-state fluxes increased from 32.3 ± 2.5 to 42.0 ± 1.0 and from 15.6 ± 0.7 to 24.1 ± 0.8 L/m2h, respectively for BSA and E. coli. E. coli elimination performance of PES membrane coated with MgB2 nanosheets at different rates and the membrane filtration procedure was obtained from 96% to 100%. The results depicted that BSA and E. coli rejection efficiencies of MgB2 nanosheets blended PES membranes increased when compared to pristine PES membranes.
Collapse
Affiliation(s)
- Ridvan Kucukosman
- Department of Engineering Fundamental Sciences, Tarsus University, Faculty of Engineering, Tarsus, 33400, Turkey
| | - Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Tarsus University, Faculty of Engineering, Tarsus, 33400, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Sadin Özdemir
- Technical Science Vocational School, Mersin University, Mersin, 33343, Turkey
| | - M Serkan Yalçın
- Technical Science Vocational School, Mersin University, Mersin, 33343, Turkey
| | - Prabhakar Sharma
- Department of Mechanical Engineering, Delhi Skill and Entrepreneurship University, New Delhi, India
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia.
| |
Collapse
|
8
|
Albayrak S, Farajzadeh N, Yasemin Yenilmez H, Özdemir S, Gonca S, Altuntaş Bayır Z. Fluorinated Phthalocyanine/Silver Nanoconjugates for Multifunctional Biological Applications. Chem Biodivers 2023:e202300389. [PMID: 37366243 DOI: 10.1002/cbdv.202300389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In this study, a new phthalonitrile derivative namely 4-[(2,4-difluorophenyl)ethynyl]phthalonitrile (1) and its metal phthalocyanines (2 and 3) were synthesized. The resultant compounds were conjugated to silver nanoparticles and characterized using transmission electron microscopy (TEM) images. The biological properties of compounds (1-3), their nanoconjugates (4-6), and silver nanoparticles (7) were examined for the first time in this study. The antioxidant activities of biological candidates (1-7) were studied by applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The highest antioxidant activity was obtained 97.47 % for 200 mg/L manganese phthalocyanine-silver nanoconjugates (6). The antimicrobial and antimicrobial photodynamic therapy (APDT) activities of biological candidates (1-7) were examined using a micro-dilution assay. The highest MIC value was obtained 8 mg/L for nanoconjugate 6 against E. hirae. The studied compounds and their silver nanoconjugates exhibited high APDT activities against all the studied microorganisms. The most effective APDT activities were obtained 4 mg/L for nanoconjugates (5 and 6) against L. pneumophila and E. hirae, respectively. All the studied biological candidates displayed high cell viability inhibition activities against E. coli cell growth. The biofilm inhibition activities of the tested biological candidates were also investigated against S. aureus and P. Aeruginosa. Biological candidates (1-6) can be considered efficient metal nanoparticle-based materials for multi-disciplinary biological applications.
Collapse
Affiliation(s)
- Sedef Albayrak
- Chemistry, Istanbul Technical University, Maslak, TR-34469, Istanbul, Türkiye
| | - Nazli Farajzadeh
- Chemistry, Istanbul Technical University, Maslak, TR-34469, Istanbul, Türkiye
| | - H Yasemin Yenilmez
- Chemistry, Istanbul Technical University, Maslak, TR-34469, Istanbul, Türkiye
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, University of Mersin, Yenisehir, TR-33343, Mersin, Türkiye
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Yenisehir, TR-33343, Mersin, Türkiye
| | | |
Collapse
|
9
|
Razzak A, Khiari R, Moussaoui Y, Belgacem MN. Cellulose Nanofibers from Schinus molle: Preparation and Characterization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196738. [PMID: 36235273 PMCID: PMC9572333 DOI: 10.3390/molecules27196738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Schinus molle (SM) was investigated as a primary source of cellulose with the aim of discovering resources to generate cellulose nanofibers (CNF). The SM was put through a soda pulping process to purify the cellulose, and then, the fiber was treated with an enzymatic treatment. Then, a twin-screw extruder and/or masuko were utilized to help with fiber delamination during the nanofibrillation process. After the enzymatic treatment, the twin-screw extruder and masuko treatment give a yield of 49.6 and 50.2%, respectively. The optical and atomic force microscopy, morfi, and polymerization degrees of prepared cellulosic materials were established. The pulp fibers, collected following each treatment stage, demonstrated that fiber characteristics such as length and crystallinity varied according to the used treatment (mechanical or enzymatic treatment). Obviously, the enzymic treatment resulted in shorter fibers and an increased degree of polymerization. However, the CNF obtained after enzymatic and extrusion treatment was achieved, and it gave 19 nm as the arithmetic width and a Young's modulus of 8.63 GPa.
Collapse
Affiliation(s)
- Abir Razzak
- Laboratory for the Application of Materials to the Environment, Water, and Energy (LR21ES15), Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Facultyof Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Ramzi Khiari
- Laboratory of Environmental Chemistry and Clean Process (LCE2P-LR21ES04), Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
- Department of Textile, Higher Institute of Technological Studies (ISET) of Ksar-Hellal, Ksar-Hellal 5070, Tunisia
- University of Grenoble Alpes, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Younes Moussaoui
- Facultyof Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
- Correspondence:
| | | |
Collapse
|