1
|
Bi J, Chen T, Xie Y, Shen R, Li B, Sun M, Guo X, Zhao Y. Bipolar membrane electrodialysis integrated with in-situ CO 2 absorption for simulated seawater concentrate utilization, carbon storage and production of sodium carbonate. J Environ Sci (China) 2024; 142:21-32. [PMID: 38527886 DOI: 10.1016/j.jes.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 03/27/2024]
Abstract
In the context of carbon capture, utilization, and storage, the high-value utilization of carbon storage presents a significant challenge. To address this challenge, this study employed the bipolar membrane electrodialysis integrated with carbon utilization technology to prepare Na2CO3 products using simulated seawater concentrate, achieving simultaneous saline wastewater utilization, carbon storage and high-value production of Na2CO3. The effects of various factors, including concentration of simulated seawater concentrate, current density, CO2 aeration rate, and circulating flow rate of alkali chamber, on the quality of Na2CO3 product, carbon sequestration rate, and energy consumption were investigated. Under the optimal condition, the CO32- concentration in the alkaline chamber reached a maximum of 0.817 mol/L with 98 mol% purity. The resulting carbon fixation rate was 70.50%, with energy consumption for carbon sequestration and product production of 5.7 kWhr/m3 CO2 and 1237.8 kWhr/ton Na2CO3, respectively. This coupling design provides a triple-win outcome promoting waste reduction and efficient utilization of resources.
Collapse
Affiliation(s)
- Jingtao Bi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China; Shandong Technology Innovation Center of Seawater and Brine Efficient Utilization, Weifang 262737, China
| | - Tianyi Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yue Xie
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Ruochen Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Bin Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Mengmeng Sun
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China; Shandong Technology Innovation Center of Seawater and Brine Efficient Utilization, Weifang 262737, China
| | - Xiaofu Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China; Shandong Technology Innovation Center of Seawater and Brine Efficient Utilization, Weifang 262737, China
| | - Yingying Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China; Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300130, China; Shandong Technology Innovation Center of Seawater and Brine Efficient Utilization, Weifang 262737, China.
| |
Collapse
|
2
|
Liu L, Wang Y, Liu Y, Wang J, Zheng C, Zuo W, Tian Y, Zhang J. Insight into key interactions between diverse factors and membrane fouling mitigation in anaerobic membrane bioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123750. [PMID: 38467364 DOI: 10.1016/j.envpol.2024.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have garnered considerable attention as a low-energy and low-carbon footprint treatment technology. With an increasing number of scholars focusing on AnMBR research, its outstanding performance in the field of water treatment has gradually become evident. However, the primary obstacle to the widespread application of AnMBR technology lies in membrane fouling, which leads to reduced membrane flux and increased energy demand. To ensure the efficient and long-term operation of AnMBRs, effective control of membrane fouling is imperative. Nevertheless, the interactions between various fouling factors are complex, making it challenging to predict the changes in membrane fouling. Therefore, a comprehensive analysis of the fouling factors in AnMBRs is necessary to establish a theoretical basis for subsequent membrane fouling control in AnMBR applications. This review aims to provide a thorough analysis of membrane fouling issues in AnMBR applications, particularly focusing on fouling factors and fouling control. By delving into the mechanisms behind membrane fouling in AnMBRs, this review offers valuable insights into mitigating membrane fouling, thus enhancing the lifespan of membrane components in AnMBRs and identifying potential directions for future AnMBR research.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yongxiao Liu
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinghui Wang
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Chengzhi Zheng
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment, National Engineering Research Center for Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
3
|
Si Z, Li Z, Zhuang X, Zhou D. Experimental investigation on the hybrid system of mechanical vapor recompression and hollow fiber vacuum membrane distillation applied for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119633. [PMID: 38039707 DOI: 10.1016/j.jenvman.2023.119633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
In order to achieve zero discharge and resource utilization of industrial high salt wastewater, a hybrid system of mechanical vapor recompression (MVR) and hollow fiber vacuum membrane distillation (HFVMD) was constructed, and several experiments of air tightness, single working condition and multiple working conditions were carried out with ammonium chloride solution as feed, then thermal economic performance were evaluated via a single factor analysis method. The obtained results showed that the system had excellent airtightness to ensure normal evaporation experiment, and high separation efficiency of 99.9% and lower evaporation energy consumption to achieve high efficient separation by combining the advantages of the hydrophobic membrane evaporation and latent heat recovery in view of MVR and HFVMD technologies. Furthermore, increasing feed temperature and feed flow rate increased evaporation rate and decreased evaporation energy consumption, while increasing feed concentration decreased evaporation rate and increased evaporation energy consumption. Finally, the single factor analysis indicated that total investment cost, annual operation cost and annual evaporation capacity were the main factors while environmental cost and equipment service life were the secondary factors which affected the specific evaporation cost. The above research provides theoretical and experimental bases for the development of the proposed system in the future.
Collapse
Affiliation(s)
- Zetian Si
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.
| | - Zhuohao Li
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Xiao Zhuang
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Di Zhou
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
4
|
Aouni A, Tounakti R, Ahmed BA, Hafiane A. Hybrid electrochemical/membrane couplings processes for enhancing seawater pretreatment and desalination. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10979. [PMID: 38264925 DOI: 10.1002/wer.10979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
This research focuses on boosting seawater pretreatment and desalination through electrocoagulation (EC)/ultrafiltration (UF) and electrocoagulation (EC)/nanofiltration (NF) processes. We first optimized the key parameters of the EC process using aluminum (Al) and iron (Fe) electrodes. Experimental results show EC process is efficient under optimal conditions. Second, membrane filtration using UF (ES10B), NF(UTC60) and NF(200) as post-processing steps to the EC process were experimented with. EC(Al)/NF(UTC60) combination resulted in the highest removal rate of organic matter (COD 98%, TOC 95%, fluorescence [humic and fulvic acids] 68%), optical density (OD600nm 75%, turbidity 70%, conductivity 64%). In terms of major ions removal, up to 55% was achieved as NF decreases conductivity, salinity, and hardness. EC(Al)/NF(UTC60) seawater permeate demonstrated the best results in terms of lowest flux decline (J/Jo = 0.9) and fouling, which was realized by resistance in series and recovery factor rate (%). Additionally, NF(UTC60) fouling reversibility led to a longer lifetime and higher recovery factor (93%). PRACTITIONER POINTS: Pretreatment by hybrid processes was experimented with to enhance the saline water treatment. Organic matter (COD 98%, TOC 95%, fluorescence [humic and fulvic acids] 68%) and turbidity were successfully removed. Salinity and hardness (conductivity 64%) were highly reduced by NF. Flux decline, retention rate, and membrane fouling were studied.
Collapse
Affiliation(s)
- Anissa Aouni
- Laboratory of Water, Membranes and Environmental Biotechnology, CERTE, Soliman, Tunisia
| | - Rim Tounakti
- Laboratory of Water, Membranes and Environmental Biotechnology, CERTE, Soliman, Tunisia
| | - Badiaa Ait Ahmed
- Department of Computer Science Engineering, SIGL-Lab, ENSATe, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amor Hafiane
- Laboratory of Water, Membranes and Environmental Biotechnology, CERTE, Soliman, Tunisia
| |
Collapse
|
5
|
Wang X, Li P, Ye Y, Xu C, Liu Y, Li E, Xia Q, Hou L, Yu S. Modification of the distribution of humic acid complexations by introducing microbubbles to membrane distillation process for effective membrane fouling alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119171. [PMID: 37832287 DOI: 10.1016/j.jenvman.2023.119171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Membrane fouling caused by inorganic ions and natural organic matters (NOMs) has been a severe issue in membrane distillation. Microbubble aeration (MB) is a promising technology to control membrane fouling. In this study, MB aeration was introduced to alleviate humic acid (HA) composited fouling during the treatment of simulative reverse osmosis concentrate (ROC) by vacuum membrane distillation (VMD). The objective of this work was to explore the HA fouling inhibiting effect by MB aeration and discuss its mechanism from the interfacial point of view. The results showed that VMD was effective for treating ROC, followed by a severe membrane fouling aggravated with the addition of 100 mg/L HA in feed solution, resulting in 45.7% decline of membrane flux. Analysis using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and zeta potential distribution of charged particles proved the coexistence of HA and inorganic cations (especially Ca2+), resulting in more serious membrane fouling. The introduction of MB aeration exhibited excellent alleviating effect on HA-inorganic salt fouling, with the normalized flux increased from 19.7% to 37.0%. The interfacial properties of MBs played an important role, which altered the zeta potential distributions of charged particles in HA solution, indicating that MBs adhere the HA complexations. Furthermore, this mitigating effect was limited at high inorganic cations concentration. Overall, MBs could change the potential characteristics of HA complexes, which also be used for other similar membrane fouling alleviation.
Collapse
Affiliation(s)
- Xitong Wang
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
| | - Pan Li
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yubing Ye
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, China
| | - Chen'ao Xu
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
| | - Yanling Liu
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Enchao Li
- Baowu Water Technology Co., Ltd Researsh Institute, China
| | - Qing Xia
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Li'an Hou
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; Xi'an High-Tech Institute, Xi'an, 710025, China
| | - Shuili Yu
- School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
6
|
Ratnasari A. Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism-A review. Bioengineered 2023; 14:2252234. [PMID: 37712708 PMCID: PMC10506444 DOI: 10.1080/21655979.2023.2252234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023] Open
Abstract
Membrane technology can play a suitable role in removing pharmaceutical active compounds since it requires low energy and simple operation. Even though membrane technology has progressed for wastewater applications nowadays, modifying membranes to achieve the strong desired membrane performance is still needed. Thus, this study overviews a comprehensive insight into the application of modified polymer membranes to remove pharmaceutical active compounds from wastewater. Biotoxicity of pharmaceutical active compounds is first prescribed to gain deep insight into how membranes can remove pharmaceutical active compounds from wastewater. Then, the behavior of the diffusion mechanism can be concisely determined using mass transfer factor model that represented by β and B with value up to 2.004 g h mg-1 and 1.833 mg g-1 for organic compounds including pharmaceutical active compounds. The model refers to the adsorption of solute to attach onto acceptor sites of the membrane surface, external mass transport of solute materials from the bulk liquid to the membrane surface, and internal mass transfer to diffuse a solute toward acceptor sites of the membrane surface with evidenced up to 0.999. Different pharmaceutical compounds have different solubility and relates to the membrane hydrophilicity properties and mechanisms. Ultimately, challenges and future recommendations have been presented to view the future need to enhance membrane performance regarding fouling mitigation and recovering compounds. Afterwards, the discussion of this study is projected to play a critical role in advance of better-quality membrane technologies for removing pharmaceutical active compounds from wastewater in an eco-friendly strategy and without damaging the ecosystem.
Collapse
Affiliation(s)
- Anisa Ratnasari
- Department of Environmental Engineering, Faculty of Civil Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
| |
Collapse
|
7
|
Zhang W, Yu S, Ning R, Li P, Ji X, Xu Y. Treatment of high-salinity brine containing dissolved organic matters by vacuum membrane distillation: A fouling mitigation approach via microbubble aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118142. [PMID: 37182485 DOI: 10.1016/j.jenvman.2023.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a laboratory-scale vacuum membrane distillation (VMD) system coupled with microbubble aeration (MBA) was developed for the treatment of high-salinity brine containing organic matters. Herein, at the beginning, feedwater only containing model organics such as humic acid (HA), bovine serum albumin (BSA) and sodium alginate (SA) was utilized to investigate the organic-fouling behavior, results indicated that the permeate flux was not affected by a thin and loose contaminated layer deposited on the membrane surface. Furthermore, dissolved organics in the feed brine inhibited the occurrence of membrane wetting due to the existence of a compact and protective crystals/organic-fouling layer, which can prevent the intrusion of scaling ions into membrane substrates. Besides, organics in the feedwater have a high tendency to adsorb on the membrane surface based on molecular dynamics simulations, thus, forming an organic-fouling layer prior to inorganic scaling. Finally, the effect of MBA on fouling alleviation was evaluated in VMD system, nearly 50% of salt precipitation from fouled membrane was effectively removed with the introduction of MBA, which can be ascribed to a combination of mechanisms, including surface shear forces and electrostatic attractions induced by microbubbles, meanwhile, about 2.2% of the total energy was only consumed, when using MBA. Together, these results demonstrated that MBA was a promising approach to alleviate membrane fouling in VMD.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Rongsheng Ning
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Pan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Xingli Ji
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
8
|
Preparation Janus membrane via polytetrafluoroethylene membrane modification for enhanced performance of vacuum membrane distillation desalination. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
9
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
10
|
Chen X, Goh K. Quantifying the coupled monovalent and divalent ions sorption in dense ion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Numerical simulation and experimental analysis of ice crystal growth and freezing-centrifugal desalination for seawater with different compositions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Ammonia recovery from anaerobic digestion effluent by aeration-assisted membrane contactor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|