1
|
Salehi MM, Mohammadi M, Maleki A, Zare EN. Performance of magnetic nanocomposite based on xanthan gum-grafted-poly(acrylamide) crosslinked by borax for the effective elimination of amoxicillin from aquatic environments. CHEMOSPHERE 2024; 361:142548. [PMID: 38852637 DOI: 10.1016/j.chemosphere.2024.142548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
This study evaluated the effectiveness of using nanocomposite (NCs) of xanthan gum grafted polyacrylamide crosslinked Borax - iron oxide nanoparticle (XG-g-pAAm-CL-Borax-IONP) to remove the amoxicillin antibiotic (AMX) from an aquatic environment. To confirm the structural characteristics of the prepared XG-g-pAAm-CL-Borax-IONP NCs, unique characterization methods (XRD, FT-IR, FE-SEM, EDX, BET, TGA, Zeta, and VSM) were used. Adsorption experimental setups were performed with the influence of solution pH (4-9), the effect of adsorbent dose (0.003-0.02 g), the effect of contact time (5-45 min), and the effect of initial AMX concentration (50-400 mg/L) to achieve the most efficient adsorption conditions. Based on the Freundlich isotherm model, XG-g-pAAm-CL-Borax-IONP NCs provided the maximum AMX adsorption capacity of 1183.639 mg/g. This research on adsorption kinetics also established that the pseudo-second-order model (R2 = 0.991) is outstanding compatibility with the experimental results. AMX adsorption on the NCs may occur through intermolecular hydrogen bonding, diffusion, and trapping into the polymer network. Even after five cycles, these NCs still displayed the best performance. Based on these results, XG-g-pAAm-CL-Borax-IONP NCs may be a viable material for the purification of AMX from contaminated water.
Collapse
Affiliation(s)
- Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Mohammadi
- Department of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | | |
Collapse
|
2
|
Liang B, Zhu P, Gu J, Yuan W, Xiao B, Hu H, Rao M. Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives. Molecules 2024; 29:3543. [PMID: 39124948 PMCID: PMC11314527 DOI: 10.3390/molecules29153543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Mesoporous silica SBA-15 has emerged as a promising adsorbent and separation material due to its unique structural and physicochemical properties. To further enhance its performance, various surface modification strategies, including metal oxide and noble metal incorporation for improved catalytic activity and stability, organic functionalization with amino and thiol groups for enhanced adsorption capacity and selectivity, and inorganic-organic composite modification for synergistic effects, have been extensively explored. This review provides a comprehensive overview of the recent advances in the surface modification of SBA-15 for adsorption and separation applications. The synthesis methods, structural properties, and advantages of SBA-15 are discussed, followed by a detailed analysis of the different modification strategies and their structure-performance relationships. The adsorption and separation performance of functionalized SBA-15 materials in the removal of organic pollutants, heavy metal ions, gases, and biomolecules, as well as in chromatographic and solid-liquid separation, is critically evaluated. Despite the significant progress, challenges and opportunities for future research are identified, including the development of low-cost and sustainable synthesis routes, rational design of SBA-15-based materials with tailored properties, and integration into practical applications. This review aims to guide future research efforts in developing advanced SBA-15-based materials for sustainable environmental and industrial applications, with an emphasis on green and scalable modification strategies.
Collapse
Affiliation(s)
- Binjun Liang
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Pingxin Zhu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Jihan Gu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
- Chongyi Green Metallurgy New Energy Co., Ltd., Ganzhou 341300, China
| | - Weiquan Yuan
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Bin Xiao
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Haixiang Hu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Mingjun Rao
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Sodzidzi Z, Phiri Z, Nure JF, Msagati TAM, de Kock LA. Adsorption of Toxic Metals Using Hydrous Ferric Oxide Nanoparticles Embedded in Hybrid Ion-Exchange Resins. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1168. [PMID: 38473639 DOI: 10.3390/ma17051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Acid mine drainage (AMD) is a major environmental problem caused by the release of acidic, toxic, and sulfate-rich water from mining sites. This study aimed to develop novel adsorbents for the removal of chromium (Cr(VI)), cadmium (Cd(II)), and lead (Pb(II)) from simulated and actual AMD using hybrid ion-exchange resins embedded with hydrous ferric oxide (HFO). Two types of resins were synthesized: anionic exchange resin (HAIX-HFO) for Cr(VI) removal and cationic exchange resin (HCIX-HFO) for Cd(II) and Pb(II) removal. The resins were characterized using scanning electron microscopy and Raman spectroscopy, which confirmed the presence of HFO particles. Batch adsorption experiments were conducted under acidic and sulfate-enhanced conditions to evaluate the adsorption capacity and kinetics of the resins. It was found that both resins exhibited high adsorption efficiencies and fast adsorption rates for their respective metal ions. To explore the potential adsorption on actual AMD, HCIX-HFO demonstrated significant removal of some metal ions. The saturated HCIX-HFO resin was regenerated using NaCl, and a high amount of the adsorbed Cd(II) and Pb(II) was recovered. This study demonstrates that HFO-embedded hybrid ion-exchange resins are promising adsorbents for treating AMD contaminated with heavy metals.
Collapse
Affiliation(s)
- Zizikazi Sodzidzi
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa
| | - Zebron Phiri
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa
| | - Jemal Fito Nure
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa
| | - Lueta-Ann de Kock
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa
| |
Collapse
|
4
|
Hassanzadeh-Afruzi F, Salehi MM, Ranjbar G, Esmailzadeh F, Hanifehnejad P, Azizi M, Eshrati Yeganeh F, Maleki A. Utilizing magnetic xanthan gum nanocatalyst for the synthesis of acridindion derivatives via functionalized macrocycle Thiacalix[4]arene. Sci Rep 2023; 13:22162. [PMID: 38092842 PMCID: PMC10719371 DOI: 10.1038/s41598-023-49632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
An effective method for synthesizing acridinedione derivatives using a xanthan gum (XG), Thiacalix[4]arene (TC4A), and iron oxide nanoparticles (IONP) have been employed to construct a stable composition, which is named Thiacalix[4]arene-Xanthan Gum@ Iron Oxide Nanoparticles (TC4A-XG@IONP). The process used to fabricate this nanocatalyst includes the in-situ magnetization of XG, its amine modification by APTES to get NH2-XG@IONP hydrogel, the synthesis of TC4A, its functionalization with epichlorohydrine, and eventually its covalent attachment onto the NH2-XG@IONP hydrogel. The structure of the TC4A-XG@IONP was characterized by different analytical methods including Fourier-transform infrared spectroscopy, X-Ray diffraction analysis (XRD), Energy Dispersive X-Ray, Thermal Gravimetry analysis, Brunauer-Emmett-Teller, Field Emission Scanning Electron Microscope and Vibration Sample Magnetomete. With magnetic saturation of 9.10 emu g-1 and ~ 73% char yields, the TC4As-XG@IONP catalytic system demonstrated superparamagnetic property and high thermal stability. The magnetic properties of the TC4A-XG@IONP nanocatalyst system imparted by IONP enable it to be conveniently isolated from the reaction mixture by using an external magnet. In the XRD pattern of the TC4As-XG@IONP nanocatalyst, characteristic peaks were observed. This nanocatalyst is used as an eco-friendly, heterogeneous, and green magnetic catalyst in the synthesis of acridinedione derivatives through the one-pot pseudo-four component reaction of dimedone, various aromatic aldehydes, and ammonium acetate or aniline/substituted aniline. A combination of 10 mg of catalyst (TC4A-XG@IONP), 2 mmol of dimedone, and 1 mmol of aldehyde at 80 °C in a ethanol at 25 mL round bottom flask, the greatest output of acridinedione was 92% in 20 min.This can be attributed to using TC4A-XG@IONP catalyst with several merits as follows: high porosity (pore volume 0.038 cm3 g-1 and Pore size 9.309 nm), large surface area (17.306 m2 g-1), three dimensional structures, and many catalytic sites to active the reactants. Additionally, the presented catalyst could be reused at least four times (92-71%) with little activity loss, suggesting its excellent stability in this multicomponent reaction. Nanocatalysts based on natural biopolymers in combination with magnetic nanoparticles and macrocycles may open up new horizons for researchers in the field.
Collapse
Affiliation(s)
- Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ghazaleh Ranjbar
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Peyman Hanifehnejad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mojtaba Azizi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Faten Eshrati Yeganeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
5
|
Nguyen NA, Nguyen DK, Dinh VP, Duong BN, Ton-That L, Hung NT, Ho TH. Effective adsorption of Pb(II) ion from aqueous solution onto ZSM-5 zeolite synthesized from Vietnamese bentonite clay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1530. [PMID: 38006447 DOI: 10.1007/s10661-023-12153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
ZSM-5 zeolite was successfully synthesized from bentonite clay sourced from Lam Dong Province, Vietnam, using the hydrothermal method at 170 °C for 18 h. The synthesized ZSM-5 (SiO2/Al2O3 ratio ~ 34) exhibited a single phase with high crystallinity (91.8%), and a clear and uniform shape. In a detailed examination of the synthesized material's Pb(II) adsorptive capacity, various factors were taken into account, including pH, interaction time, ionic strength, and the amount of adsorbent. Isotherms and kinetics were examined to elucidate the uptake behavior. Study results suggested that Pb(II) ion uptake by ZSM-5 was most appropriately described by the Sips isotherm and intraparticle diffusion kinetic models. The calculated maximum monolayer adsorption capacity according to the Langmuir isotherm model was 48.36 mg/g. Furthermore, the adsorption mechanisms of Pb(II) on ZSM-5 involving electrostatic interactions, ion exchange, and diffusion into pores were demonstrated using the analytical techniques before and after Pb(II) adsorption. These findings demonstrate that ZSM-5 synthesized from bentonite clay exhibits an excellent adsorption capacity for Pb(II), resulting in promising applications for treating drinking water or aqueous industrial waste containing Pb(II) ions.
Collapse
Affiliation(s)
- Ngoc-An Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Duy-Khoi Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.
- Nuclear Training Center, Vietnam Atomic Energy Institute, 140 Nguyen Tuan, Thanh Xuan, Ha Noi, 100000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Vietnam.
| | - Van-Phuc Dinh
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam.
| | - Bich-Ngoc Duong
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
- Nuclear Training Center, Vietnam Atomic Energy Institute, 140 Nguyen Tuan, Thanh Xuan, Ha Noi, 100000, Vietnam
| | - Loc Ton-That
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Vietnam
| | - Nguyen Trong Hung
- Graduate Institute for Technology of Radioactive and Rare Elements, 48-Lang Ha, Dong Da, Ha Noi, 100000, Vietnam
| | - Thien-Hoang Ho
- Dong Nai University, 9 Le Quy Don Street, Dong Nai, 810000, Vietnam
| |
Collapse
|
6
|
Mahmoudian MH, Azari A, Jahantigh A, Sarkhosh M, Yousefi M, Razavinasab SA, Afsharizadeh M, Mohammadi Shahraji F, Pour Pasandi A, Zeidabadi A, Ilaghinezhad Bardsiri T, Ghasemian M. Statistical modeling and optimization of dexamethasone adsorption from aqueous solution by Fe3O4@NH2-MIL88B nanorods: Isotherm, Kinetics, and Thermodynamic. ENVIRONMENTAL RESEARCH 2023; 236:116773. [PMID: 37543125 DOI: 10.1016/j.envres.2023.116773] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
The presence of pharmaceutical compounds in the environment poses a significant threat to human and aquatic animal health. Dexamethasone (DEX), a synthetic steroid hormone with endocrine-disrupting effects, is one such compound that needs to be effectively removed before discharging into the environment. This research presents a novel approach utilizing magnetically recyclable Fe3O4@NH2-MIL88B NRs as an efficient adsorbent for the treatment of DEX from aqueous solutions. The synthesized adsorbent was characterized by X-ray diffraction (XRD), scanning microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), diffuse reflectance spectra (DRS), and Fourier transform infrared spectroscopy (FTIR). Response surface methodology based on central composite design (RSM-CCD) was employed to optimize DEX removal efficiency by determining the optimal conditions, including pH, adsorbent dose, time, and DEX concentration. Under the optimized conditions (pH: 5.53, adsorbent dose: 0.185 g/L, time: 16.068 min, and DEX concentration: 33.491 mg/L), Fe3O4@NH2-MIL88B NRs revealed remarkable DEX adsorption efficiency of 91 ± 1.34% and adsorption capacity of 180.01 mg/g. The Langmuir isotherm and pseudo-second-order kinetic model were found to fit well with the experimental data, indicating a monolayer and chemical adsorption process. Thermodynamic analysis revealed that the adsorption process was spontaneous and endothermic. The study also investigated the inhibitory effect of background ions on DEX removal by Fe3O4@NH2-MIL88B NRs. Magnesium exhibited superior competitive ability with dexamethasone to occupy the active sites of the adsorbent compared to other background ions. The reuse of the adsorbent over ten consecutive cycles resulted in a 39.46% decrease in removal efficiency. The Fe3O4@NH2-MIL88B NRs are surrounded by abundant amounts of functional groups and π-electrons bands that can play a key role in the adsorption and separation of DEX from aqueous environments. The promising results obtained under real conditions highlight the potential of Fe3O4@NH2-MIL88B NRs as a practical and efficient adsorbent for the removal of DEX and other similar corticosteroids from aqueous solutions.
Collapse
Affiliation(s)
- Mohammad Hassan Mahmoudian
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Ali Azari
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Sirjan School of Medical Sciences, Sirjan, Iran.
| | - Anis Jahantigh
- Department of Environmental Health Engineering, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Fatemeh Mohammadi Shahraji
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | | | | | | | - Mohammad Ghasemian
- Tehran Sewerage Company, Operation Manager of West Tehran Wastewater Treatment Plant, Tehran, Iran
| |
Collapse
|
7
|
Popovici IC, Dobrinaș S, Soceanu A, Popescu V, Prodan G, Omer I. New Approaches for Pb(II) Removal from Aqueous Media Using Nanopowder Sodium Titanosilicate: Kinetics Study and Thermodynamic Behavior. Int J Mol Sci 2023; 24:13789. [PMID: 37762092 PMCID: PMC10530816 DOI: 10.3390/ijms241813789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Microporous sodium titanosilicate, Na2TiSiO5, has been successfully prepared using the sol-gel method. The structural and morphological characterization of synthesized product has been made via thermal analyses (TG-DTG), X-ray diffraction (XRD), and electron microscopy (SEM and TEM). Adsorption properties of the synthesized Na2TiSiO5 nanopowder for Pb(II) removal of aqueous media was investigated in different experimental conditions such as the contact time, the initial metal concentration, the pH, and the temperature. The Pb(II) adsorption on Na2TiSiO5 was discussed according to the kinetics and thermodynamics models. The adsorption kinetics of Pb(II) have been better described by the PS-order kinetic model which has the highest fitting correlation coefficients (R2: 0.996-0.999) out of all the other models. The adsorption results have been successfully fitted with the Langmuir and Redlich-Paterson models (R2: 0.9936-0.9996). The calculated thermodynamic parameters indicate that the Pb(II) adsorption is an endothermic process, with increased entropy, having a spontaneous reaction. The results have revealed a maximum adsorption capacity of 155.71 mg/g at 298 K and a very high adsorption rate at the beginning, more than 85% of the total amount of Pb(II) being removed within the first 120 min, depending on the initial concentration.
Collapse
Affiliation(s)
- Ionela Carazeanu Popovici
- Chemistry and Chemical Engineering Department, Ovidius University of Constanta, 900527 Constanta, Romania; (I.C.P.); (S.D.); (V.P.)
| | - Simona Dobrinaș
- Chemistry and Chemical Engineering Department, Ovidius University of Constanta, 900527 Constanta, Romania; (I.C.P.); (S.D.); (V.P.)
| | - Alina Soceanu
- Chemistry and Chemical Engineering Department, Ovidius University of Constanta, 900527 Constanta, Romania; (I.C.P.); (S.D.); (V.P.)
| | - Viorica Popescu
- Chemistry and Chemical Engineering Department, Ovidius University of Constanta, 900527 Constanta, Romania; (I.C.P.); (S.D.); (V.P.)
| | - Gabriel Prodan
- Electron Microscopy Laboratory, Department of Physics, Ovidius University of Constanta, 900527 Constanta, Romania;
| | - Ichinur Omer
- Civil Engineering Faculty, Ovidius University of Constanta, 900527 Constanta, Romania;
| |
Collapse
|
8
|
Ganjali F, Gorab MG, Moghim Aliabadi HA, Rahmati S, Cohan RA, Eivazzadeh-Keihan R, Maleki A, Ghafuri H, Mahdavi M. A novel nanocomposite containing zinc ferrite nanoparticles embedded in carboxymethylcellulose hydrogel plus carbon nitride nanosheets with multifunctional bioactivity. RSC Adv 2023; 13:21873-21881. [PMID: 37475756 PMCID: PMC10354627 DOI: 10.1039/d3ra02822d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
A novel and biologically active nanobiocomposite is synthesized based on carbon nitride nanosheet (g-C3N4) based carboxymethylcellulose hydrogels with embedded zinc ferrite nanoparticles. Physical-chemical aspects, morphological properties, and their multifunctional biological properties have been considered in the process of evaluation of the synthesized structure. The hydrogels' compressive strength and compressive modulus are 1.98 ± 0.03 MPa and 3.46 ± 0.05 MPa, respectively. Regarding the biological response, it is shown that the nanobiocomposite is non-toxic and biocompatible, and hemocompatible (with Hu02 cells). In addition, the developed material offers a suitable antibacterial activity for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | | | - Saman Rahmati
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran Tehran Iran
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran Tehran Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Beigi P, Ganjali F, Hassanzadeh-Afruzi F, Salehi MM, Maleki A. Enhancement of adsorption efficiency of crystal violet and chlorpyrifos onto pectin hydrogel@Fe 3O 4-bentonite as a versatile nanoadsorbent. Sci Rep 2023; 13:10764. [PMID: 37402768 DOI: 10.1038/s41598-023-38005-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The magnetic mesoporous hydrogel-based nanoadsornet was prepared by adding the ex situ prepared Fe3O4 magnetic nanoparticles (MNPs) and bentonite clay into the three-dimentional (3D) cross-linked pectin hydrogel substrate for the adsorption of organophosphorus chlorpyrifos (CPF) pesticide and crystal violet (CV) organic dye. Different analytical methods were utilized to confirm the structural features. Based on the obtained data, the zeta potential of the nanoadsorbent in deionized water with a pH of 7 was - 34.1 mV, and the surface area was measured to be 68.90 m2/g. The prepared hydrogel nanoadsorbent novelty owes to possessing a reactive functional group containing a heteroatom, a porous and cross-linked structure that aids convenient contaminants molecules diffusion and interactions between the nanoadsorbent and contaminants, viz., CPF and CV. The main driving forces in the adsorption by the Pectin hydrogel@Fe3O4-bentonite adsorbent are electrostatic and hydrogen-bond interactions, which resulted in a great adsorption capacity. To determine optimum adsorption conditions, effective factors on the adsorption capacity of the CV and CPF, including solution pH, adsorbent dosage, contact time, and initial concentration of pollutants, have been experimentally investigated. Thus, in optimum conditions, i.e., contact time (20 and 15 min), pH 7 and 8, adsorbent dosage (0.005 g), initial concentration (50 mg/L), T (298 K) for CPF and CV, respectively, the CPF and CV adsorption capacity were 833.333 mg/g and 909.091 mg/g. The prepared pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent presented high porosity, enhanced surface area, and numerous reactive sites and was prepared using inexpensive and available materials. Moreover, the Freundlich isotherm has described the adsorption procedure, and the pseudo-second-order model explained the adsorption kinetics. The prepared novel nanoadsorbent was magnetically isolated and reused for three successive adsorption-desorption runs without a specific reduction in the adsorption efficiency. Therefore, the pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent is a promising adsorption system for eliminating organophosphorus pesticides and organic dyes due to its remarkable adsorption capacity amounts.
Collapse
Affiliation(s)
- Paria Beigi
- Department of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
10
|
Nyamato GS. Perspectives and prospects of chelation extraction of heavy metals from wastewater: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:47-61. [PMID: 37452533 PMCID: wst_2023_182 DOI: 10.2166/wst.2023.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Heavy metals' contamination of water resources is a global environmental issue due to their detrimental effects on human health. To safeguard humans and the environment, toxic heavy metals must be removed from contaminated water because they cannot be broken down. Diverse technologies are employed to reduce the levels of heavy metals in wastewater. However, these technologies suffer from being either costly or ineffective, particularly when the effluent has extremely low residual amounts. This review outlines the main accomplishments and promising future directions for solvent extraction as one of the potential methods of extracting heavy metals from water, utilizing literature reports. In addition to reviewing some of the commercial chelating reagents now in use, this article also discusses some of the obnoxious effects on human health that are associated with exposure to heavy metals.
Collapse
Affiliation(s)
- George Simba Nyamato
- Department of Physical Sciences, University of Embu, P.O. Box 6-60100, Embu, Kenya E-mail:
| |
Collapse
|
11
|
Zare I, Taheri-Ledari R, Esmailzadeh F, Salehi MM, Mohammadi A, Maleki A, Mostafavi E. DNA hydrogels and nanogels for diagnostics, therapeutics, and theragnostics of various cancers. NANOSCALE 2023. [PMID: 37337663 DOI: 10.1039/d3nr00425b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
As an efficient class of hydrogel-based therapeutic drug delivery systems, deoxyribonucleic acid (DNA) hydrogels (particularly DNA nanogels) have attracted massive attention in the last five years. The main contributor to this is the programmability of these 3-dimensional (3D) scaffolds that creates fundamental effects, especially in treating cancer diseases. Like other active biological ingredients (ABIs), DNA hydrogels can be functionalized with other active agents that play a role in targeting drug delivery and modifying the half-life of the therapeutic cargoes in the body's internal environment. Considering the brilliant advantages of DNA hydrogels, in this survey, we intend to submit an informative collection of feasible methods for the design and preparation of DNA hydrogels and nanogels, and the responsivity of the immune system to these therapeutic cargoes. Moreover, the interactions of DNA hydrogels with cancer biomarkers are discussed in this account. Theragnostic DNA nanogels as an advanced species for both detection and therapeutic purposes are also briefly reviewed.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Khaleghi N, Forouzandeh-Malati M, Ganjali F, Rashvandi Z, Zarei-Shokat S, Taheri-Ledari R, Maleki A. Silver-assisted reduction of nitroarenes by an Ag-embedded curcumin/melamine-functionalized magnetic nanocatalyst. Sci Rep 2023; 13:5225. [PMID: 36997564 PMCID: PMC10063568 DOI: 10.1038/s41598-023-32560-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
In the current study, we introduce a hybrid magnetic nanocomposite comprised of curcumin (Cur), iron oxide magnetic nanoparticles (Fe3O4 MNPs), melamine linker (Mel), and silver nanoparticles (Ag NPs). Initially, a facile in situ route is administrated for preparing the Fe3O4@Cur/Mel-Ag effectual magnetic catalytic system. In addition, the advanced catalytic performance of the nanocomposite to reduce the nitrobenzene (NB) derivatives as hazardous chemical substances were assessed. Nevertheless, a high reaction yield of 98% has been achieved in short reaction times 10 min. Moreover, the Fe3O4@Cur/Mel-Ag magnetic nanocomposite was conveniently collected by an external magnet and recycled 5 times without a noticeable diminish in catalytic performance. Therefore, the prepared magnetic nanocomposite is a privileged substance for NB derivatives reduction since it achieved notable catalytic activity.
Collapse
Affiliation(s)
- Nima Khaleghi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zahra Rashvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
13
|
A novel magnetic loading porous liquid absorbent for removal of Cu(II) and Pb(II) from the aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
14
|
Hassanzadeh-Afruzi F, Esmailzadeh F, Heidari G, Maleki A, Nazarzadeh Zare E. Arabic Gum-Grafted-Hydrolyzed Polyacrylonitrile@ZnFe 2O 4 as a Magnetic Adsorbent for Remediation of Levofloxacin Antibiotic from Aqueous Solutions. ACS OMEGA 2023; 8:6337-6348. [PMID: 36844579 PMCID: PMC9947993 DOI: 10.1021/acsomega.2c06555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
The Arabic gum-grafted-hydrolyzed polyacrylonitrile/ZnFe2O4 (AG-g-HPAN@ZnFe2O4) as organic/inorganic adsorbent was obtained in three steps using grafted PAN onto Arabic gum in the presence of ZnFe2O4 magnetic nanoparticles and then hydrolysis by alkaline solution. Fourier transform infrared (FT-IR), energy-dispersive X-ray analysis (EDX), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and the Brunauer-Emmett-Teller (BET) analysis analyses were used to characterize the chemical, morphological, thermal, magnetic, and textural properties of the hydrogel nanocomposite. The obtained result demonstrated that the AG-g-HPAN@ZnFe2O4 adsorbent showed acceptable thermal stability with 58% char yields and superparamagnetic property with magnetic saturation (Ms) of 24 emu g-1. The XRD pattern showed that the semicrystalline structure with the presence of ZnFe2O4 has distinct peaks which displayed that the addition of zinc ferrite nanospheres to amorphous AG-g-HPAN increased its crystallinity. The AG-g-HPAN@ZnFe2O4 surface morphology exhibits uniform dispersion of zinc ferrite nanospheres throughout the smooth surface of the hydrogel matrix, and its BET surface area was measured at 6.86 m2/g, which was higher than that of AG-g-HPAN as a result of zinc ferrite nanosphere incorporation. The adsorption effectiveness of AG-g-HPAN@ZnFe2O4 for eliminating a quinolone antibiotic (levofloxacin) from aqueous solutions was investigated. The effectiveness of adsorption was assessed under several experimental conditions, including solution pH (2-10), adsorbent dose (0.0015-0.02 g) contact duration (10-60 min), and initial concentration (50-500 mg/L). The maximum adsorption capacity (Q max) of the produced adsorbent for levofloxacin was found to be 1428.57 mg/g (at 298 k), and the experimental adsorption data were well explained by the Freundlich isotherm model. The pseudo-second-order model satisfactorily described the adsorption kinetic data. The levofloxacin was mostly adsorbed onto the AG-g-HPAN@ZnFe2O4 adsorbent via electrostatic contact and hydrogen bonding. Adsorption-desorption studies demonstrated that the adsorbent could be efficiently recovered and reused after four consecutive runs with no significant loss in adsorption performance.
Collapse
Affiliation(s)
- Fereshte Hassanzadeh-Afruzi
- Catalysts
and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Farhad Esmailzadeh
- Catalysts
and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Golnaz Heidari
- Catalysts
and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts
and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | |
Collapse
|
15
|
Devi MK, Yaashikaa PR, Kumar PS, Manikandan S, Oviyapriya M, Varshika V, Rangasamy G. Recent advances in carbon-based nanomaterials for the treatment of toxic inorganic pollutants in wastewater. NEW J CHEM 2023. [DOI: 10.1039/d3nj00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastewater contains inorganic pollutants, generated by industrial and domestic sources, such as heavy metals, antibiotics, and chemical pesticides, and these pollutants cause many environmental problems.
Collapse
|
16
|
Hassanzadeh-Afruzi F, Amiri-Khamakani Z, Saeidirad M, Salehi MM, Taheri-Ledari R, Maleki A. Facile synthesis of pyrazolopyridine pharmaceuticals under mild conditions using an algin-functionalized silica-based magnetic nanocatalyst (Alg@SBA-15/Fe 3O 4) †. RSC Adv 2023; 13:10367-10378. [PMID: 37020883 PMCID: PMC10068431 DOI: 10.1039/d2ra07228a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Pyrazolopyridines are common scaffolds in various bioactive compounds, which have several therapeutic effects and unique pharmacological properties. In this study, we fabricated a novel environmentally friendly silica-based nanocomposite as a multifunctional catalytic system for the synthesis of pyrazolopyridine derivatives. This novel heterogeneous nanocomposite named Alg@SBA-15/Fe3O4 (Alg stands for alginic acid), was prepared in several steps. In this regard, SBA-15 was synthesized by the hydrothermal method. Next, it was magnetized by Fe3O4 nanoparticles via an in situ co-precipitation process. Then, SBA-15/Fe3O4 particles were functionalized with 3-minopropyltriethoxysilane (APTES). Afterward, Alg@SBA-15/Fe3O4 was obtained by a nucleophilic substitution reaction between SBA-15/Fe3O4–NH2 and an as-synthesized methyl-esterified alginic. Different analyses such as Fourier-transform infrared (FTIR), energy-dispersive X-ray (EDX) spectroscopy, field-emission scanning-electron microscopy (FESEM), vibrating-sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and BET (Brunauer–Emmett–Teller) have been used to confirm the structure of the fabricated catalyst. The magnetic properties of the Alg@SBA-15/Fe3O4 catalytic system imparted by Fe3O4 MNPs enable it to be conveniently isolated from the reaction mixture by using an external magnet. According to the obtained results, the prepared nanocatalyst has high thermal stability and it lost approximately 26% of its weight up to 800 °C. Interestingly, a small amount of prepared nanocatalyst (0.02 g) has shown excellent catalytic performance in the synthesis of pyrazolopyridine derivatives (90–97%) in a short reaction time (20–30 min) at room temperature which can be attributed to its porous structure and large surface area, and the presence of many acidic and basic functional groups. In general, it can be argued that the Alg@SBA-15/Fe3O4 nanocomposite deserves more attention due to its non-toxicity, ease of preparation, good recyclability, and its high catalytic efficiency. Pyrazolopyridines are common scaffolds in various bioactive compounds, which have several therapeutic effects and unique pharmacological properties.![]()
Collapse
Affiliation(s)
- Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Zeinab Amiri-Khamakani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and TechnologyTehran 16846-13114Iran+98-21-73021584+98-21-73228313
| |
Collapse
|
17
|
Magnetic chitosan-silk fibroin hydrogel/graphene oxide nanobiocomposite for biological and hyperthermia applications. Carbohydr Polym 2023; 300:120246. [DOI: 10.1016/j.carbpol.2022.120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
18
|
A Novel Aptamer-Imprinted Polymer-Based Electrochemical Biosensor for the Detection of Lead in Aquatic Products. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010196. [PMID: 36615388 PMCID: PMC9822230 DOI: 10.3390/molecules28010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Lead contamination in aquatic products is one of the main hazard factors. The aptasensor is a promising detection method for lead ion (Pb(II)) because of its selectivity, but it is easily affected by pH. The combination of ion-imprinted polymers(IIP) with aptamers may improve their stability in different pH conditions. This paper developed a novel electrochemical biosensor for Pb(II) detection by using aptamer-imprinted polymer as a recognition element. The glassy carbon electrode was modified with gold nanoparticles and aptamers. After the aptamer was induced by Pb(II) to form a G-quadruplex conformation, a chitosan-graphene oxide was electrodeposited and cross-linked with glutaraldehyde to form an imprint layer, improving the stability of the biosensor. Under the optimal experimental conditions, the current signal change (∆I) showed a linear correlation of the content of Pb(II) in the range of 0.1-2.0 μg/mL with a detection limit of 0.0796 μg/mL (S/N = 3). The biosensor also exhibited high selectivity for the determination of Pb(II) in the presence of other interfering metal ion. At the same time, the stability of the imprinted layer made the sensor applicable to the detection environment with a pH of 6.4-8.0. Moreover, the sensor was successfully applied to the detection of Pb(II) in mantis shrimp.
Collapse
|
19
|
Zhang W, Taheri-Ledari R, Ganjali F, Mirmohammadi SS, Qazi FS, Saeidirad M, KashtiAray A, Zarei-Shokat S, Tian Y, Maleki A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC Adv 2022; 13:80-114. [PMID: 36605676 PMCID: PMC9764328 DOI: 10.1039/d2ra06888e] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In the field of targeted drug delivery, the effects of size and morphology of drug nanocarriers are of great importance and need to be discussed in depth. To be concise, among all the various shapes of nanocarriers, rods and tubes with a narrow cross-section are the most preferred shapes for the penetration of a cell membrane. In this regard, several studies have focused on methods to produce nanorods and nanotubes with controlled optimized size and aspect ratio (AR). Additionally, a non-spherical orientation could affect the cellular uptake process while a tangent angle of less than 45° is better at penetrating the membrane, and Ω = 90° is beneficial. Moreover, these nanocarriers show different behaviors when confronting diverse cells whose fields should be investigated in future studies. In this survey, a comprehensive classification based on carrier shape is first submitted. Then, the most commonly used methods for control over the size and shape of the carriers are reviewed. Finally, influential factors on the cellular uptake and internalization processes and related analytical methods for evaluating this process are discussed.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P. R. China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Amir KashtiAray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ye Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No. 14, 3rd Section of South Renmin Road Chengdu 610041 P. R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| |
Collapse
|
20
|
Forouzandeh-Malati M, Ganjali F, Zamiri E, Zarei-Shokat S, Jalali F, Padervand M, Taheri-Ledari R, Maleki A. Efficient Photodegradation of Eriochrome Black-T by a Trimetallic Magnetic Self-Synthesized Nanophotocatalyst Based on Zn/Au/Fe-Embedded Poly(vinyl alcohol). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13728-13743. [PMID: 36318162 DOI: 10.1021/acs.langmuir.2c01822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study presents a novel photocatalytic system for photocatalytic degradation of Eriochrome black-T (EBT) dye via green light-emitting diode (LED) light exposure. This photocatalyst is comprised of nanoscale components, i.e., poly(vinyl alcohol) (PVA), magnetic iron oxide nanoparticles (Fe3O4 NPs), gold NPs (Au NPs), and zinc oxide nanorods (ZnO NRs), rendering an active high surface area. The most highlighted property from the structural facet is the superparamagnetic behavior of Fe3O4 NPs, which provides a facile collection of magnetic photocatalyst NPs from the reaction flask and is successfully recycled eight times without considerable reduction in catalytic behavior. Briefly, the photocatalytic degradation at its highest efficiency reached 51.4% (10 ppm dye solution, 5.0 mL) and 64.75% (8 ppm dye solution, 5.0 mL) utilizing 10 mg of the designed photocatalyst (formulated as Fe3O4@PVA-Au/ZnO), a magnetic photocatalytic system under green LED light (7 W, 526 nm) exposure for 60 min. Besides, the photocatalytic degradation mechanism of the EBT dye by the as-prepared photocatalyst was proposed. Based on the obtained results, the presented photocatalytic method was recommended for scaling up and large-scale exploitation for the purification of the water resources.
Collapse
Affiliation(s)
- Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Elnaz Zamiri
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh55181-83111, Iran
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Mohsen Padervand
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh55181-83111, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| |
Collapse
|
21
|
Thiacalix[4]arene-functionalized magnetic xanthan gum (TC4As-XG@FeO) as a hydrogel adsorbent for removal of dye and pesticide. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Taheri-Ledari R, Ahghari MR, Ansari F, Forouzandeh-Malati M, Mirmohammadi SS, Zarei-Shokat S, Ramezanpour S, Zhang W, Tian Y, Maleki A. Synergies in antimicrobial treatment by a levofloxacin-loaded halloysite and gold nanoparticles with a conjugation to a cell-penetrating peptide. NANOSCALE ADVANCES 2022; 4:4418-4433. [PMID: 36321152 PMCID: PMC9552876 DOI: 10.1039/d2na00431c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Herein, a novel designed antimicrobial therapeutic drug delivery system is presented, in which halloysite nanotubes (HNTs) encapsulate a determined dosage of levofloxacin (lvx). Moreover, gold nanoparticles (AuNPs) have been embedded into the structure for plasmonic heating under irradiation of the green LED light (7 W, 526 nm). It was revealed that the plasmonic heating of the AuNPs leads to a controlled trend in the lvx release process. Also, a synergistic effect on the antimicrobial activity of the prepared therapeutic system has been observed through photothermal heating of the structure. To enhance the cell adhesion, a cell-penetrating peptide sequence (CPP) is conjugated to the surfaces. This CPP has led to quick co-localization of the prepared nano-cargo (denoted as lvx@HNT/Au-CPP) with the bacterial living cells and further attachment (confirmed by confocal microscopy). Concisely, the structure of the designed nano-cargo has been investigated by various methods, and the in vitro cellular experiments (zone of inhibition and colony-counting) have disclosed that the antimicrobial activity of the lvx is significantly enhanced through incorporation into the HNT/Au-CPP delivery system (drug content: 16 wt%), in comparison with the individual lvx with the same dosage. Hence, it can be stated that the bacterial resistance against antibiotics and the toxic effects of the chemical medications are reduced through the application of the presented strategy.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Fatemeh Ansari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology P.O. Box 15875-4416 Tehran Iran
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P.R. China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No.14, 3rd section of South Renmin Road Chengdu 610041 P.R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
23
|
Taheri-Ledari R, Qazi FS, Saeidirad M, Maleki A. A diselenobis-functionalized magnetic catalyst based on iron oxide/silica nanoparticles suggested for amidation reactions. Sci Rep 2022; 12:14865. [PMID: 36050366 PMCID: PMC9436994 DOI: 10.1038/s41598-022-19030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, a new heterogeneous magnetic catalytic system based on selenium-functionalized iron oxide nanoparticles is presented and suggested for facilitating amide/peptide bonds formation. The prepared nanocatalyst, entitled as "Fe3O4/SiO2-DSBA" (DSBA stands for 2,2'-diselanediylbis benzamide), has been precisely characterized for identifying its physicochemical properties. As the most brilliant point, the catalytic performance of the designed system can be mentioned, where only a small amount of Fe3O4/SiO2-DSBA (0.25 mol%) has resulted in 89% reaction yield, under a mild condition. Also, given high importance of green chemistry, convenient catalyst particles separation from the reaction medium through its paramagnetic property (ca. 30 emu·g-1) should be noticed. This particular property provided a substantial opportunity to recover the catalyst particles and successfully reuse them for at least three successive times. Moreover, due to showing other excellences, such as economic benefits and nontoxicity, the presented catalytic system is recommended to be scaled up and exploited in the industrial applications.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
24
|
Natural and Synthetic Polymers Modified with Acid Blue 113 for Removal of Cr3+, Zn2+ and Mn2+. Polymers (Basel) 2022; 14:polym14112139. [PMID: 35683813 PMCID: PMC9182600 DOI: 10.3390/polym14112139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
This research had two stages of development: during the first stage, the purpose of the research was to evaluate the adsorption properties of the natural polymer represented by shredded maize stalk (MS) and by Amberlite XAD7HP (XAD7HP) acrylic resin for removal of toxic diazo Acid Blue 113 (AB 113) dye from aqueous solutions. The AB 113 concentration was evaluated spectrometrically at 565 nm. In the second stage, the stability of MS loaded with AB 113 (MS-AB 113) and of XAD7HP loaded with AB 113 (XAD7HP-AB 113) in acidic medium suggests that impregnated materials can be used for selective removal of metal ions (Cr3+, Zn2+ and Mn2+). The metal ions using atomic absorption spectroscopy method (AAS) were determined. The use of MS-AB 113 ensures a high selectivity of divalent ions while the XAD7HP-AB 113 had excellent affinity for Cr3+ in the presence of Zn2+ and Mn2+. As a consequence, two advanced polymers, i.e., MS-AB 113 and XAD7HP-AB 113 that provide huge capacity for removal of Zn2+, Mn2+ and Cr3+ from acid polluted wastewater were obtained.
Collapse
|