1
|
Vairamuthu M, Nidheesh PV, Tangappan Sarasvathy AS. Microplastic pollution unveiled: the consequences of small unregulated dumping in villages, spanning from soil to water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1161. [PMID: 39496973 DOI: 10.1007/s10661-024-13296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Microplastic contamination in soil ecosystems is a major environmental concern in the world. The current study aims to explore the extent of microplastic pollution in unregulated village dumpsites in India, focusing on the movement of these pollutants from soil to aquatic environments. Soil samples from eight distinct sites (A to H) in six villages were analyzed for various properties, including pH, bulk density, porosity, water retention capacity, hydraulic conductivity, and particle size distribution. The attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR) method was used to identify prevalent plastic types. The research classifies microplastics by their shape and color, identifying a wide range of particles such as sheets, fibers, foams, fragments, and films. The study also examines the presence and concentration of microplastics in both soil and sediment samples. It was found that PE and PP microplastics are significantly present across different size fractions. Sample A contains a variety of items in the 1-5 mm size range, mainly PE, while the 0.3-1 mm fraction is largely PP. Samples B to H are mostly composed of PE microplastics in different forms. Sample F is unique with a mix of PE, EPS, and a higher amount of red and blue foam particles in the 0.3-1 mm fraction. Microplastics were quantified using stereomicroscopy, revealing concentrations between 80 and 840 numbers per kilogram in soil and 20 to 60 numbers per kilogram in sediments. The findings emphasize the widespread nature of microplastic pollution across ecosystems and the importance of developing effective strategies for monitoring and mitigating their impact on environmental health and human well-being.
Collapse
Affiliation(s)
- Manivannan Vairamuthu
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Department of Civil Engineering, National Institute of Technology, Calicut, Kerala, India
| | | | | |
Collapse
|
2
|
Chao J, Yang X, Zhu Y, Shen J. Oxygen doping regulation of Co single atom catalysts for electro-Fenton degradation of tetracycline. J Colloid Interface Sci 2024; 673:434-443. [PMID: 38878377 DOI: 10.1016/j.jcis.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/26/2024]
Abstract
Electro-Fenton is an effective process for degrading hard-to-degrade organic pollutants, such as tetracycline (TC). However, the degradation efficiency of this process is limited by the activity and stability of the cathode catalyst. Herein, a temperature gradient pyrolysis strategy and oxidation treatment is proposed to modulate the coordination environment to prepare oxygen-doped cobalt monoatomic electrocatalysts (CoNOC). The CoNOC catalysts can achieve the selectivity of 93 % for H2O2 with an electron transfer number close to 2. In the H-cell, the prepared electrocatalysts can achieve more than 100 h of H2O2 production with good stability and the yield of 1.41 mol gcatalyst-1 h-1 with an average Faraday efficiency (FE) of more than 88 %. The calculations indicate that the epoxy groups play a crucial role in modulating the oxygen reduction pathway. The O doping and unique N coordination of Co single-atom active sites (CoN(Pd)3N(Po)1O1) can effectively weaken the O2/OOH* interaction, thereby promoting the production of H2O2. Finally, the electro-Fenton system could achieve a TC degradation rate of 94.9 % for 120 min with a mineralization efficiency of 87.8 % for 180 min, which provides a reliable option for antibiotic treatment. The significant involvement of OH in the electro-Fenton process was confirmed, and the plausible mineralization pathway for TC was proposed.
Collapse
Affiliation(s)
- Jiayu Chao
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoling Yang
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yihua Zhu
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jianhua Shen
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Li C, Qiu X, Wan H, Ma Z, Jin R, Zhao Y. Graphite-N reinforced sludge biochar electrode: A experimental and DFT theoretical analysis of efficient evolution and in-situ utilization of H 2O 2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124107. [PMID: 38729509 DOI: 10.1016/j.envpol.2024.124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Rational reuse of municipal sludge to produce electro-Fenton electrode can not only save resources, but also produce superior peroxide and degradation pollutants simultaneously. Herein, a novel electro-Fenton electrode derived from sludge biochar loaded on Ni foam (SBC@Ni) was constructed via high temperature pyrolysis and chemical coating for efficient H2O2 evolution and pollutant degradation. Systematic experiments and density functional theory calculations (DFT calculation) explained that the production of graphite C and graphite N during high-temperature pyrolysis of municipal sludge can greatly enhance the oxygen reduction reaction of SBC@Ni electrode and promote the evolution of H2O2. And the hybrid heterojunctions, such as FeP, also played a key role in electrocatalytic processes. Notably, the electrode still exhibited excellent performance after 1000 linear scans and 12 h of continuous current stimulation, which demonstrated the excellent stability of the electrode. Moreover, SBC@Ni electrode can not only effectively oxidize 4-chlorophenol through the electro-Fenton effect, but also fully mineralize organic matter, indicating promising environmental application. The free radical quenching experiment also revealed that the ·OH is the main active species for 4-CP degradation in SBC@Ni electro-Fenton system.
Collapse
Affiliation(s)
- Chenxi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaojie Qiu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huilin Wan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zehao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruotong Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Yang Y, Ma K, Cui Y, Zhao K, Lu Y, Zhang W, Kuang P, Zou X. Novel cow dung-doped sludge biochar as an efficient ozone catalyst: Synergy between graphitic structure and defects induces free radical pathways. ENVIRONMENTAL RESEARCH 2024; 251:118747. [PMID: 38527717 DOI: 10.1016/j.envres.2024.118747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024]
Abstract
A composite material, cow dung-doped sludge biochar (Zn@SBC-CD), was synthesized by one-step pyrolysis using ZnCl2 as an activating agent and applied to a catalytic ozonation process (COP) for methylene blue (MB) removal. SEM, XRD, FTIR, XPS and BET analyses were performed to characterize the biochar (BC) catalysts. Zn@SBC-CD had high graphitization degree, abundant active sites and uniform distribution of Zn on its surface. Complete removal of MB was achieved within 10 min, with a removal rate much higher than that of ozone alone (32.4%), implying the excellent ozone activation performance of Zn@SBC-CD. The influence of experimental parameters on MB removal efficiency was examined. Under the optimum conditions in terms of ozone dose 0.04 mg/mL, catalyst dose 400 mg/L and pH 6.0, COD was completely removed after 20 min. Electron paramagnetic resonance (EPR) analysis revealed radical and non-radical pathways were involved in MB degradation. The Zn@SBC-CD/O3 system generated superoxide anion radicals (•O2-), which were the main active species for MB removal, through adsorption, transformation, and transfer, Furthermore, Zn@SBC-CD exhibited good reusability and stability in cycling experiments. This study provides a novel approach for the utilization of cow dung and sludge in synthesis of functional biocatalysts and application in organic wastewater treatment.
Collapse
Affiliation(s)
- Yuxuan Yang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, People's Republic of China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Kedong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, People's Republic of China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China.
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, People's Republic of China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China.
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Yuning Lu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, People's Republic of China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Wanjun Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, People's Republic of China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Peijing Kuang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, People's Republic of China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Xuejun Zou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, People's Republic of China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| |
Collapse
|
5
|
Yang Y, Kang Z, Wang J, Xu G, Yu Y. Enhanced removal efficiency of bensulfuron-methyl by a novel boron doping biochar-based Acinetobacter YH0317 at a lower temperature. BIORESOURCE TECHNOLOGY 2023; 386:129570. [PMID: 37506925 DOI: 10.1016/j.biortech.2023.129570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Biochar-based bacteria are regarded as an efficient strategy for remediating organic pollutants in aquatic environments. Herein, a strain named Acinetobacter YH0317 that could degrade bensulfuron-methyl (BSM) at a lower temperature (15 °C) was isolated from a paddy rice field with long-term BSM application. Then Acinetobacter YH0317 was loaded on unmodified biochar (BC) and boron doping biochar (BBC). Results showed that BBC-based YH0317 significantly enhanced the removal efficiency of BSM (71.8-99.1%) compared with BC-based YH0317 (41.9-44.0%) and YH0317 alone (18.1-20.7%) in 24 h. BBC promoted the growth of YH0317 and secretion of extracellular secretions by providing a carrier and shelter for YH0317. The electrochemical analysis suggested BBC improved the electron transfer rate, which ultimately facilitated the removal of BSM. Hydroponic experiments indicated that BBC-based YH0317 effectively improved the growth of soybean. This work reports a novel BBC-based Acinetobacter YH0317 that could effectively remediate BSM contamination in the water environment.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
6
|
Ahmed HR, Hama Aziz KH, Agha NNM, Mustafa FS, Hinder SJ. Iron-loaded carbon black prepared via chemical vapor deposition as an efficient peroxydisulfate activator for the removal of rhodamine B from water. RSC Adv 2023; 13:26252-26266. [PMID: 37670993 PMCID: PMC10475974 DOI: 10.1039/d3ra04566h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
The excessive use of organic pollutants like organic dyes, which enter the water environment, has led to a significant environmental problem. Finding an efficient method to degrade these pollutants is urgent due to their detrimental effects on aquatic organisms and human health. Carbon-based catalysts are emerging as highly promising and efficient alternatives to metal catalysts in Fenton-like systems. They serve as persulfate activators, effectively eliminating recalcitrant organic pollutants from wastewater. In this study, iron-loaded carbon black (Fe-CB) was synthesized from tire waste using chemical vapor deposition (CVD). Fe-CB exhibited high efficiency as an activator of peroxydisulfate (PDS), facilitating the effective degradation and mineralization of rhodamine B (RhB) in water. A batch experiment and series characterization were conducted to study the morphology, composition, stability, and catalytic activity of Fe-CB in a Fenton-like system. The results showed that, at circumneutral pH, the degradation and mineralization efficiency of 20 mg L-1 RhB reached 92% and 48% respectively within 60 minutes. Fe-CB exhibited excellent reusability and low metal leaching over five cycles while maintaining almost the same efficiency. The degradation kinetics of RhB was found to follow a pseudo-first-order model. Scavenging tests revealed that the dominant role was played by sulfate (SO4-˙) and superoxide (O2-˙) radicals, whereas hydroxyl radicals (OH˙) and singlet oxygen (1O2) played a minor role in the degradation process. This study elucidates the detailed mechanism of PDS activation by Fe-CB, resulting in the generation of reactive oxygen species. It highlights the effectiveness of Fe-CB/PDS in a Fenton-like system for the treatment of water polluted with organic dye contaminants. The research provides valuable insights into the potential application of carbon black derived from tire waste for environmental remediation.
Collapse
Affiliation(s)
- Harez R Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development Sulaimaniyah Iraq
| | - Nian N M Agha
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Fryad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Steven John Hinder
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| |
Collapse
|
7
|
Fan Z, Feng T, Wu S, Wang S, Tan Y, Yu Q, Huang R, Zhang X. Chitin-derived biochar with nitrogen doping to activate persulfate for phenol degradation: Application potential and electron transfer pathway in system. CHEMOSPHERE 2023; 330:138641. [PMID: 37031837 DOI: 10.1016/j.chemosphere.2023.138641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
The fast and efficient removal of organic pollutants (e.g., phenolics) remains one of the focus problems in environment pollution. Thus, a chitin-derived biochar with nitrogen doping (N-BC) was successfully prepared at a lower calcination temperature of 600 °C, which is environmentally friendly and energy saving. The N-BC was analyzed by SEM, FTIR, BET, XRD, XPS and Raman spectroscopy to confirm that the doping of nitrogen element provided sufficient defect sites to promote the activation of persulfate (PDS). Quenching experiments and EPR results revealed the presence of •OH and •O2- contributed to phenol degradation in N-BC 600/PDS system. In addition, the linear sweep voltammogram experiments also demonstrated the existence of electron transfer pathway. The electrons were donated from phenol and shifted to PDS through N-BC. The graphitic N and carbon defects in N-BC served as the active sites of the reaction and involved absorption and transfer of electrons as the key character. Moreover, the removal rates of phenol and TOC reached 98.8% and 58.2% within 2 h, indicating that N-BC effectively activated the persulfate to degrade phenol. This study provides the theoretical support and potential applications for the activation of persulfate by nitrogen-doped biochar to degrade other phenolic compounds.
Collapse
Affiliation(s)
- Zhixuan Fan
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Tao Feng
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources. Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Si Wu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources. Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Shuai Wang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yi Tan
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Qinghong Yu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ranran Huang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xinyue Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
8
|
Liu L, Yu R, Zhao S, Cao X, Zhang X, Bai S. Heterogeneous Fenton system driven by iron-loaded sludge biochar for sulfamethoxazole-containing wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117576. [PMID: 36848803 DOI: 10.1016/j.jenvman.2023.117576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
In this study, the treatment performance of a heterogeneous Fenton system (Fe-BC + H2O2) driven by iron-loaded sludge biochar (Fe-BC) on wastewater containing sulfamethoxazole (SMX) was investigated using the CODcr removal efficiency (φ) as an indicator. The batch experimental results showed that the optimal operating conditions were as follow: initial pH 3, H2O2 concentration 20 mmol L-1, Fe-BC dose 1.2 g L-1, temperature 298 K. The corresponding φ was as high as 83.43%. The removal of CODcr was better described by BMG model and revised BMG (BMGL) model. According to the BMGL model, the φmax could be 98.37% (298 K). Moreover, the removal of CODcr was a diffusion-controlled process, while liquid film diffusion and intraparticle diffusion together determined its removal rate. The removal of CODcr should be a synergistic effect of adsorption and Fenton oxidation (real heterogeneous Fenton and homogeneous Fenton) and other pathways. Their contributions were 42.79%, 54.01% and 3.20%, respectively. For homogeneous Fenton, there seemed to be two simultaneous SMX degradation pathways: SMX→4-(pyrrolidine-11-sulfonyl)-aniline→N-(4-aminobenzenesulfonyl) acetamide/4-amino-N-ethyl benzene sulfonamides→4-amino-N-hydroxy benzene sulfonamides; SMX→N-ethyl-3-amino benzene sulfonamides→4-methanesulfonylaniline. In summary, Fe-BC had potential for practical application as a heterogeneous Fenton catalyst.
Collapse
Affiliation(s)
- Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Ronghao Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shixiong Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Hunan CRRC Environmental Engineer Co., Ltd., Changsha, 410021, China
| | - Xingfeng Cao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
9
|
Xu L, Li L, Lu W, Gu Y, Zhuang H, He Q, Zhu L. The modified properties of sludge-based biochar with ferric sulfate and its effectiveness in promoting carbon release from particulate organic matter in rural household wastewater. ENVIRONMENTAL RESEARCH 2023; 231:116109. [PMID: 37178751 DOI: 10.1016/j.envres.2023.116109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
The scarcity of carbon sources presents a significant challenge for the bio-treatment of rural domestic wastewater (RDW). This paper presented an innovative approach to address this issue by investigating the supplementary carbon source through in-situ degradation of particulate organic matter (POM) facilitated by ferric sulfate modified sludge-based biochar (SBC). To prepare SBC, five different contents of ferric sulfate (0%, 10%, 20%, 25%, and 33.3%) were added to sewage sludge. The results revealed that the pore and surface of SBC were enhanced, providing active sites and functional groups to accelerate the biodegradation of protein and polysaccharide. During the 8-day hydrolysis period, the concentration of soluble chemical oxidation demand (SCOD) increased and peaked (1087-1156 mg L-1) on the fourth day. The C/N ratio increased from 3.50 (control) to 5.39 (25% ferric sulfate). POM was degraded the five dominant phyla, which were Actinobacteriota, Firmicutes, Synergistota, Proteobacteria, and Bacteroidetes. Although the relative abundance of dominant phyla changed, the metabolic pathway remained unchanged. The leachate of SBC (<20% ferric sulfate) was beneficial for microbes, but an excessive amount of ferric sulfate (33.3% ferric sulfate) could have inhibition effects on bacteria. In conclusion, ferric sulfate modified SBC holds the potential for the carbon degradation of POM in RDW, and further improvements should be made in future studies.
Collapse
Affiliation(s)
- Linji Xu
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Lin Li
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Wei Lu
- Sanfeng Industry of Chongqing Iron and Steal Group Co., Ltd., Chongqing, 401258, China
| | - Yilu Gu
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Qiang He
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Lei Zhu
- Jiangsu Yihuan Group Co., Ltd., Yixing, Jiangsu, 214206, China.
| |
Collapse
|
10
|
Yang Y, Kang Z, Xu G, Yu Y. Enhanced adsorption performance of bensulfuron methyl with B doping biochar: Mechanism and density functional theory calculations. BIORESOURCE TECHNOLOGY 2023; 372:128657. [PMID: 36690217 DOI: 10.1016/j.biortech.2023.128657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
It is an urgent task to develop suitable adsorbents for the control of herbicide-bensulfuron methyl (BSM) in the paddy rice fields at cold regions. Herein, B doping biochar was synthesized via one-step method. Results showed that the adsorption capacity for BSM on 1.0BBC was significantly superior to BC at 15 °C. Besides, low temperature resistance, wide pH adaptability, stable adsorption performance and reusability test suggested that 1.0BBC have potential practical application. The mechanisms of BSM removal by 1.0BBC were mainly attributed to pore filling and π-π electron donor-acceptor (EDA) interaction. Theoretical calculations revealed that BCO2 could enhance the adsorption capacity by π-π EDA between BSM and adsorbent. Meanwhile, hydroponic experiment demonstrated that the toxicity to soybean after adsorption of BSM by 1.0BBC was within the safe range. This study proves that 1.0BBC is an easy-to-prepare adsorbent with promising application in BSM removal in the rice paddy fields at lower temperature.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|