1
|
Antounians L, Figueira RL, Kukreja B, Litvack ML, Zani-Ruttenstock E, Khalaj K, Montalva L, Doktor F, Obed M, Blundell M, Wu T, Chan C, Wagner R, Lacher M, Wilson MD, Post M, Kalish BT, Zani A. Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment. SCIENCE ADVANCES 2024; 10:eadn5405. [PMID: 39058789 PMCID: PMC11277482 DOI: 10.1126/sciadv.adn5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Bharti Kukreja
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Michael L. Litvack
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Taiyi Wu
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Richard Wagner
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5T 1P5, Canada
| | - Brian T. Kalish
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada
| |
Collapse
|
2
|
Jones K, Keiser AM, Miller JL, Atkinson MA. Bilateral renal agenesis: fetal intervention and outcomes. Pediatr Nephrol 2024:10.1007/s00467-024-06449-8. [PMID: 38997547 DOI: 10.1007/s00467-024-06449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Bilateral renal agenesis (BRA) is a fetal anomaly which leads to anhydramnios and resultant pulmonary hypoplasia. Historically, this anomaly was universally fatal early in the neonatal period due to the severity of the associated lung disease. Over the last 30 years, innovations in fetal therapies-specifically, serial amnioinfusions-have led to instances of infant pulmonary survival and initiation of postnatal dialysis, raising the possibility that early neonatal death may not be inevitable. Amnioinfusions are not without risk, and maternal complications can include prelabor rupture of membranes, preterm labor, infection, and bleeding. The data detailing neonatal outcomes are still limited and actively being collected. Two case series and one non-randomized clinical trial have supplied most of the known outcome data for infants with BRA after prenatal amnioinfusion. Although there are survivors reported in the literature, mortality remains high, with many deaths in infancy due to dialysis-associated sepsis. In addition, previously unknown morbidities have been documented in these infants, including neurologic injury. These challenges, in addition to the mechanical difficulties of providing dialysis to extremely small infants, can result in significant burdens for patients and their caregivers and moral distress for the health care team. The present review aims to explain the pathophysiology of BRA, detail the historical context and rationale for serial amnioinfusions to treat the pulmonary insufficiency associated with BRA, describe the available data regarding outcomes of infants born following prenatal amnioinfusions, discuss ethical issues surrounding this fetal intervention, and describe critical aspects of prenatal counseling for patients considering the intervention.
Collapse
Affiliation(s)
- Katherine Jones
- Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University, Tripler Army Medical Center, 1 Jarrett White Rd., Honolulu, HI, 96859, USA.
| | - Amaris M Keiser
- Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jena L Miller
- Center for Fetal Therapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith A Atkinson
- Division of Pediatric Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Giunta-Stibb H, Hackett B. Interstitial lung disease in the newborn. J Perinatol 2024:10.1038/s41372-024-02036-9. [PMID: 38956315 DOI: 10.1038/s41372-024-02036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Although relatively rare, interstitial lung diseases may present with respiratory distress in the newborn period. Most commonly these include developmental and growth disorders, disorders of surfactant synthesis and homeostasis, pulmonary interstitial glycogenosis, and neuroendocrine cell hyperplasia of infancy. Although the diagnosis of these disorders is sometimes made based on clinical presentation and imaging, due to the significant overlap between disorders and phenotypic variability, lung biopsy or, increasingly genetic testing is needed for diagnosis. These diseases may result in significant morbidity and mortality. Effective medical treatment options are in some cases limited and/or invasive. The genetic basis for some of these disorders has been identified, and with increased utilization of exome and whole genome sequencing even before lung biopsy, further insights into their genetic etiologies should become available.
Collapse
Affiliation(s)
- Hannah Giunta-Stibb
- Divisions of Neonatology and Pulmonology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| | - Brian Hackett
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
4
|
Zhang H, Keszler M. Mechanical ventilation in special populations. Semin Perinatol 2024; 48:151888. [PMID: 38555219 DOI: 10.1016/j.semperi.2024.151888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Optimal respiratory support can only be achieved if the ventilator strategy utilized for each individual patient at any given point in the evolution of their disease process is tailored to the underlying pathophysiology. The critically ill newborn infant requires individualized patient care when it comes to mechanical ventilation. This can only occur if the clinician has a good understanding of the different pathophysiologies of a variety of conditions that can lead to respiratory failure. In this chapter we describe the key pathophysiological features of bronchopulmonary dysplasia, meconium aspiration syndrome and lung hypoplasia syndromes with emphasis on congenital diaphragmatic hernia. We review available evidence to guide management an provide specific recommendations for pathophysiologically-based mechanical ventilation support.
Collapse
Affiliation(s)
- Hyayan Zhang
- Department of Neonatology, Perelman School of Medicine at the University of Pennsylvania, Newborn and Infant Chronic Lung Disease Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neonatology, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Martin Keszler
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Huang Q, Zhang Y, Jing X, Li F, Qin J, Li F, Li D, Li R, Liao C. Association of prenatal thoracic ultrasound abnormalities with copy number variants at a single Chinese tertiary center. Int J Gynaecol Obstet 2024; 164:770-777. [PMID: 37565521 DOI: 10.1002/ijgo.15040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To systematically evaluate the association of prenatal thoracic ultrasound abnormalities with copy number variants (CNVs). METHODS Chromosomal microarray (CMA) data and clinical characteristics from fetuses with thoracic ultrasound abnormalities were retrieved and analyzed. RESULTS Thoracic ultrasound findings were mainly isolated except for fetal pleural effusion (FPE) and pulmonary hypoplasia. The diagnostic yield of CMA for thoracic anomaly was 9.66%, and FPE (17/68, 25%), pulmonary hypoplasia (1/8, 12.5%), and congenital diaphragmatic hernia (CDH) (6/79, 7.59%) indicated relatively high pathogenic/likely pathogenic (P/LP) CNV findings. The detection rate for P/LP CNVs was obviously increased in non-isolated thoracic anomalies (27.91% vs. 1.96%, P < 0.0001), non-isolated FPE (37.78% vs. 0%, P = 0.0007) and non-isolated congenital pulmonary airway malformation (CPAM) (27.27% vs. 0%, P < 0.0001), and significantly different among thoracic anomalies. Additionally, the rate of termination of pregnancy in cases with non-isolated thoracic anomalies (58.49% vs. 12.34%, P < 0.0001) and P/LP CNVs (85.71% vs. 24.15%, P < 0.0001) was obviously increased. CONCLUSION The present study expanded phenotype spectrums for particular recurrent CNVs. FPE, CDH, and pulmonary hypoplasia indicated relatively high P/LP CNV findings among common thoracic ultrasound abnormalities, CPAM associated with other ultrasound abnormalities increased the incidence of diagnostic CNVs, while bronchopulmonary sequestration might not be associated with positive CNVs. The present data recommended CMA application for cases with prenatal thoracic ultrasound abnormalities, especially non-isolated FPE, non-isolated CPAM, CDH, and pulmonary hypoplasia.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongling Zhang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangyi Jing
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fucheng Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Qin
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fatao Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Kontopoulos E, Bulman M, Gordienko I, Rodriguez MJ, Gallardo M, Copado Y, Acevedo S, Quintero L, Quintero RA. Clinical assessment of the fetal right Quantitative Lung Index. J Matern Fetal Neonatal Med 2023; 36:2242555. [PMID: 37580087 DOI: 10.1080/14767058.2023.2242555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES We have previously described gestational-age-independent sonographic indices to assess fetal lung size in the right and left lungs: The Quantitative Lung Index for the right lung (QLI-R) and for the left lung (QLI-L), respectively. The purpose of this study was to evaluate the clinical cutoff point of the QLI-R to predict pulmonary hypoplasia and neonatal death. MATERIALS AND METHODS Retrospective assessment of the QLI-R in patients with left-sided congenital diaphragmatic hernia (CDH-L) and other fetal conditions at risk for fetal pulmonary hypoplasia. Cross-section and longitudinal assessment of the behavior of the QLI-R in untreated and treated patients. ROC curve analysis to determine the optimal cutoff point of the QLI-R in predicting neonatal death. RESULTS One hundred eighteen patients with CDH-L and other fetal conditions at risk for pulmonary hypoplasia had QLI-R measurements done. Seventeen patients were excluded for various reasons. Eleven patients with conditions other than CDH-L but at risk for pulmonary hypoplasia were used for intraclass coefficient measurements of the QLI-R. Ninety patients had CDH-L, of which 78 did not undergo antenatal intervention and in which the cutoff point for pulmonary hypoplasia and neonatal demise was assessed. Stent tracheal occlusion was performed in the remaining 12 patients with CDH-L, in which the behavior of the QLI after surgery was assessed. Analysis of the ICC showed an overall intra-rater reliability of 0.985 (Cronbach's Alpha-based). There was no correlation between gestational age and QLI-R (-0.73, Pearson correlation, p = .72). Twenty-six of the 78 patients (33%) with CDH-L managed expectantly had a neonatal demise. A QLI-R equal to or less than 0.45 was significantly predictive of neonatal demise (area under the curve 0.64, p = .046, sensitivity 77%). Nine of the 12 patients (75%) that underwent tracheal occlusion had neonatal survival. Of these, 10 had serial assessments of the QLI-R after surgery. An increase in the QLI-R of 0.11 was associated with a tendency for neonatal survival (p = .056). CONCLUSION Our study confirms that the QLI-R is a gestational-age-independent measurement of fetal lung size, with a high degree of reproducibility. In a population of expectantly managed CDH-L patients, a cutoff value of the QLI-R of 0.45 or lower is predictive of neonatal death from pulmonary hypoplasia. The QLI-R can be used to monitor fetal lung growth after tracheal occlusion, and an increase in the QLI-R is suggestive of neonatal survival. Further prospective studies are needed to confirm these findings and to explore the use of the QLI in other populations at risk for pulmonary hypoplasia and consequent neonatal demise.
Collapse
Affiliation(s)
- Eftichia Kontopoulos
- The USFetus Research Consortium, Miami, FL, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Florida International University, Miami, FL, USA
- The Fetal Institute Miami, Miami, FL, USA
| | | | - Irina Gordienko
- Institute of Paediatrics, Obstetrics and Gynecology, Department of Maternal-Fetal Medicine, Kiev, Ukraine
| | - Maria Jose Rodriguez
- Instituto Nacional de Perinatología, División de Medicina Materno-Fetal, Ciudad de México, México
| | - Manuel Gallardo
- Instituto Nacional de Perinatología, División de Medicina Materno-Fetal, Ciudad de México, México
| | - Yazmin Copado
- Instituto Nacional de Perinatología, División de Medicina Materno-Fetal, Ciudad de México, México
| | - Sandra Acevedo
- Instituto Nacional de Perinatología, División de Medicina Materno-Fetal, Ciudad de México, México
| | | | - Ruben A Quintero
- The USFetus Research Consortium, Miami, FL, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Florida International University, Miami, FL, USA
- The Fetal Institute Miami, Miami, FL, USA
| |
Collapse
|
7
|
Wang W, Shi W, Wang Y, Yang Y, Li P, Zeng Z, Hu W, Chen Y, Tang D, Dai Y. Systematic proteomics profiling of lysine crotonylation of the lung at Pseudoglandular and Canalicular phases in human fetus. Proteome Sci 2023; 21:22. [PMID: 38041078 PMCID: PMC10691156 DOI: 10.1186/s12953-023-00215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/28/2023] [Indexed: 12/03/2023] Open
Abstract
Lung tissue is an important organ of the fetus, and genomic research on its development has improved our understanding of the biology of this tissue. However, the proteomic research of developing fetal lung tissue is still very scarce. We conducted comprehensive analysis of two developmental stages of fetal lung tissue of proteomics. It showed the developmental characteristics of lung tissue, such as the down-regulation of metabolism-related protein expression, the up-regulation of cell cycle-related proteins, and the regulation in proteins and pathways related to lung development. In addition, we also discovered some key core proteins related to lung development, and provided some key crotonylation modification sites that regulation during lung tissue development. Our comprehensive analysis of lung proteomics can provide a more comprehensive understanding of the developmental status of lung tissue, and provide a certain reference for future research and epigenetics of lung tissue.
Collapse
Affiliation(s)
- Wei Wang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern, University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Yinglan Wang
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern, University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Yane Yang
- Shenzhen Far East Women & Children Hospital, Shenzhen, 518000, Guangdong, China
| | - Ping Li
- Shenzhen Far East Women & Children Hospital, Shenzhen, 518000, Guangdong, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Wenlong Hu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Yumei Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| |
Collapse
|
8
|
Shorey-Kendrick LE, Crosland BA, Spindel ER, McEvoy CT, Wilmarth PA, Reddy AP, Zientek KD, Roberts VHJ, D'Mello RJ, Ryan KS, Olyaei AF, Hagen OL, Drake MG, McCarty OJT, Scottoline BP, Lo JO. The amniotic fluid proteome changes across gestation in humans and rhesus macaques. Sci Rep 2023; 13:17039. [PMID: 37814009 PMCID: PMC10562452 DOI: 10.1038/s41598-023-44125-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Amniotic fluid is a complex biological medium that offers protection to the fetus and plays a key role in normal fetal nutrition, organogenesis, and potentially fetal programming. Amniotic fluid is also critically involved in longitudinally shaping the in utero milieu during pregnancy. Yet, the molecular mechanism(s) of action by which amniotic fluid regulates fetal development is ill-defined partly due to an incomplete understanding of the evolving composition of the amniotic fluid proteome. Prior research consisting of cross-sectional studies suggests that the amniotic fluid proteome changes as pregnancy advances, yet longitudinal alterations have not been confirmed because repeated sampling is prohibitive in humans. We therefore performed serial amniocenteses at early, mid, and late gestational time-points within the same pregnancies in a rhesus macaque model. Longitudinally-collected rhesus amniotic fluid samples were paired with gestational-age matched cross-sectional human samples. Utilizing LC-MS/MS isobaric labeling quantitative proteomics, we demonstrate considerable cross-species similarity between the amniotic fluid proteomes and large scale gestational-age associated changes in protein content throughout pregnancy. This is the first study to compare human and rhesus amniotic fluid proteomic profiles across gestation and establishes a reference amniotic fluid proteome. The non-human primate model holds promise as a translational platform for amniotic fluid studies.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - B Adam Crosland
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Cindy T McEvoy
- Division of Neonatology. Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resources, Oregon Health & Science University, Portland, OR, USA
| | - Ashok P Reddy
- Proteomics Shared Resources, Oregon Health & Science University, Portland, OR, USA
| | - Keith D Zientek
- Proteomics Shared Resources, Oregon Health & Science University, Portland, OR, USA
| | - Victoria H J Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Rahul J D'Mello
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kimberly S Ryan
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Amy F Olyaei
- Division of Neonatology. Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Olivia L Hagen
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Brian P Scottoline
- Division of Neonatology. Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jamie O Lo
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
9
|
Lu L, Hu S, Wang G, Jin R, Guan R, Cui F, Qu Z, Liu D. Congenital pulmonary hypoplasia combined with congenital cardiac disease and ectopic kidney: a case report. ASIAN BIOMED 2023; 17:244-248. [PMID: 37899760 PMCID: PMC10602632 DOI: 10.2478/abm-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Background Congenital pulmonary hypoplasia (CPH) is a rare pulmonary disease featured by incomplete development of pulmonary tissues. Its diagnosis is still a challenge as patients are usually misdiagnosed as atelectasis. Case presentation A female neonate was admitted to our hospital due to post-birth jaundice for 12 hrs. Physical examination showed accelerated breathing. There was no respiratory sound in the left lung. Chest film indicated decline of lucency in the left lung. Chest CT scan indicated absence of left lung and primary bronchus of the left lung. The boundary between left mediastinum was not clearly displayed. Three-dimensional CT scan indicated absence of left lung and left principal bronchus. Cardiac ultrasonography confirmed congenital heart disease. She showed ectopic kidney. Finally, she was diagnosed with CPH concurrent with congenital heart disease and ectopic kidney. Conclusions On 17-month follow-up visit, the patient is still survived, but she presents with obstruction in ventilation function.
Collapse
Affiliation(s)
- Ling Lu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Sujuan Hu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Gaoyan Wang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Rong Jin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Renzheng Guan
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Fengjing Cui
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Zhenghai Qu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| | - Dongyun Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao266003, China
| |
Collapse
|
10
|
Song S, Wang J, Wang L, Hou C, Wu Q. The upper airway parameters: the potential diagnostic clues for congenital intrathoracic lesions. BMC Pregnancy Childbirth 2023; 23:373. [PMID: 37221500 DOI: 10.1186/s12884-023-05599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND The diagnosis of congenital intrathoracic lesions still has limitations. The airway development was influenced by intrathoracic factors. Whether the diagnostic value of the upper airway parameters in congenital intrathoracic lesions has not been confirmed. OBJECTIVES We aimed to compare fetal upper airway parameters between normal fetuses and fetuses with intrathoracic lesions, and we tried to verify its diagnostic value in intrathoracic lesions. METHODS This was an observational case-control study. In the control group, 77 women were screened at 20-24 weeks' gestational age, 23 were screened at 24-28 weeks' gestational age, and 27 were screened at 28-34 weeks' gestational age. In the case group, 41 cases were enrolled (6 cases of intrathoracic bronchopulmonary sequestration, 22 of congenital pulmonary airway malformations, and 13 of congenital diaphragmatic hernia). Fetal upper airway parameters (tracheal width, the narrowest lumen width, and width of the subglottic cavity and laryngeal vestibule) were measured using ultrasound equipment. The correlations between fetal upper airway parameters and gestational age, and the differences in fetal upper airway parameters between cases and controls, were analyzed. The standardized airway paraments were acquired, and their potential diagnostic value for congenital intrathoracic lesions were analyzed. RESULTS The fetal upper airway parameters of both groups were positively correlated with the gestational age: The control group, tracheal width (R2 = 0.569, p < 0.001), narrowest lumen width (R2 = 0.429, p < 0.001), subglottic cavity width (R2 = 0.551, p < 0.001), laryngeal vestibule width (R2 = 0.349, p < 0.001). The case group (tracheal width R2 = 0.474, p < 0.001) narrowest lumen width (R2 = 0.425, p < 0.001), subglottic cavity width (R2 = 0.623, p < 0.001), laryngeal vestibule width (R2 = 0.347, p < 0.001). Fetal upper airway parameters of the cases group were smaller than those of the controls group. The tracheal width in fetuses with congenital diaphragmatic hernia was the smallest among the other case groups studied. The standardized tracheal width has the best diagnostic value for congenital intrathoracic lesions in the standardized airway paraments (the area under the ROC curve was 0.894), and has a high diagnostic value for congenital pulmonary airway malformations and congenital diaphragmatic hernia (the area under the ROC curve was 0.911 and 0.992, respectively). CONCLUSION Fetal upper airway parameters differ between normal fetuses and fetuses with intrathoracic lesions, and might offer potential diagnostic clues for congenital intrathoracic lesions.
Collapse
Affiliation(s)
- Shijing Song
- Department Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang District, 100026, Beijing, P. R. China
- Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Jingjing Wang
- Department Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang District, 100026, Beijing, P. R. China
- Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Li Wang
- Department Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang District, 100026, Beijing, P. R. China
- Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Chenxiao Hou
- Department Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang District, 100026, Beijing, P. R. China
- Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Qingqing Wu
- Department Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang District, 100026, Beijing, P. R. China.
- Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China.
| |
Collapse
|
11
|
Rose AT, Keene S. Changing populations being treated with ECMO in the neonatal period - who are the others? Semin Fetal Neonatal Med 2022; 27:101402. [PMID: 36414493 DOI: 10.1016/j.siny.2022.101402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracorporeal life support via extracorporeal membrane oxygenation (ECMO) has served the sickest of neonates for almost 50 years. Naturally, the characteristics of neonates receiving ECMO have changed. Advances in care have averted the need for ECMO for some, while complex cases with uncertain outcomes, previously not eligible for ECMO, are now considered. Characterizing the disease states and outcomes for neonates on ECMO is challenging as many infants do not fall into classic categories, i.e. meconium aspiration syndrome (MAS), respiratory distress syndrome (RDS), or congenital diaphragmatic hernia (CDH). Since 2017, over one third of neonatal respiratory ECMO runs reported to the Extracorporeal Life Support Organization Registry are grouped as Other, a catch-all that encompasses those with a diagnosis not included in the classic categories. This review summarizes the historical neonatal ECMO population, reviews advances in therapy and technology impacting neonatal care, and addresses the unknowns in the ever-growing category of Other.
Collapse
Affiliation(s)
- Allison T Rose
- Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, NE, Atlanta, GA, 30322, USA.
| | - Sarah Keene
- Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Khalaj K, Figueira RL, Antounians L, Gandhi S, Wales M, Montalva L, Biouss G, Zani A. Treatment with Amniotic Fluid Stem Cell Extracellular Vesicles Promotes Fetal Lung Branching and Cell Differentiation at Canalicular and Saccular Stages in Experimental Pulmonary Hypoplasia Secondary to Congenital Diaphragmatic Hernia. Stem Cells Transl Med 2022; 11:1089-1102. [PMID: 36103370 PMCID: PMC9585953 DOI: 10.1093/stcltm/szac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by impaired branching morphogenesis and differentiation. We have previously demonstrated that administration of extracellular vesicles derived from rat amniotic fluid stem cells (AFSC-EVs) rescues development of hypoplastic lungs at the pseudoglandular and alveolar stages in rodent models of CDH. Herein, we tested whether AFSC-EVs exert their regenerative effects at the canalicular and saccular stages, as these are translationally relevant for clinical intervention. To induce fetal pulmonary hypoplasia, we gavaged rat dams with nitrofen at embryonic day 9.5 and demonstrated that nitrofen-exposed lungs had impaired branching morphogenesis, dysregulated signaling pathways relevant to lung development (FGF10/FGFR2, ROBO/SLIT, Ephrin, Neuropilin 1, β-catenin) and impaired epithelial and mesenchymal cell marker expression at both stages. AFSC-EVs administered to nitrofen-exposed lung explants rescued airspace density and increased the expression levels of key factors responsible for branching morphogenesis. Moreover, AFSC-EVs rescued the expression of alveolar type 1 and 2 cell markers at both canalicular and saccular stages and restored markers of club, ciliated epithelial, and pulmonary neuroendocrine cells at the saccular stage. AFSC-EV-treated lungs also had restored markers of lipofibroblasts and PDGFRA+ cells to control levels at both stages. EV tracking showed uptake of AFSC-EV RNA cargo throughout the fetal lung and an mRNA-miRNA network analysis identified that several miRNAs responsible for regulating lung development processes were contained in the AFSC-EV cargo. These findings suggest that AFSC-EV-based therapies hold potential for restoring fetal lung growth and maturation in babies with pulmonary hypoplasia secondary to CDH.
Collapse
Affiliation(s)
- Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Sree Gandhi
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Matthew Wales
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
- Department of Surgery, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
13
|
Mahmood B. Persistent pulmonary hypertension of newborn. Semin Pediatr Surg 2022; 31:151202. [PMID: 36038220 DOI: 10.1016/j.sempedsurg.2022.151202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Burhan Mahmood
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Song S, Wang J, Han J, Xuan Y, Zhi W, Wu Q. A case report of serpentine-like syndrome and review of literature. BMC Pregnancy Childbirth 2022; 22:181. [PMID: 35246044 PMCID: PMC8895532 DOI: 10.1186/s12884-022-04477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Serpentine-like syndrome (SLS) is a rare foetal abnormality, characterized by brachioesophagus, secondary intrathoracic stomach and vertebral deformity. Herein, we report a case of SLS diagnosed based on imaging, genetic examination and autopsy findings. CASE PRESENTATION From the 19th to 23rd weeks of gestation, the foetus presented with brachioesophagus, secondary intrathoracic stomach, intrathoracic spleen with poly-spleen malformation, spinal deformity and diaphragm dysplasia, and some abdominal organs were partly located in the thoracic cavity. After extensive counselling, the couple opted to terminate the pregnancy. Whole genome sequencing and autopsy were performed. Then, the foetus was diagnosed with SLS. DISCUSSION AND CONCLUSIONS SLS is characterized by multiorgan deformities and is associated with poor prognosis. Multiorgan deformities can be detected on prenatal sonography using three-dimensional ultrasound technology.
Collapse
Affiliation(s)
- Shijing Song
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang district, Beijing, 100026, P. R. China.,Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Jingjing Wang
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang district, Beijing, 100026, P. R. China.,Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Jijing Han
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang district, Beijing, 100026, P. R. China.,Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Yinghua Xuan
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang district, Beijing, 100026, P. R. China.,Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Wenxue Zhi
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang district, Beijing, 100026, P. R. China.,Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Qingqing Wu
- Ultrasound Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, No.251 Yaojiayuan Road, Chaoyang district, Beijing, 100026, P. R. China. .,Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China.
| |
Collapse
|
15
|
Lin C, Zheng X, Lin S, Zhang Y, Wu J, Li Y. Mechanotransduction Regulates the Interplays Between Alveolar Epithelial and Vascular Endothelial Cells in Lung. Front Physiol 2022; 13:818394. [PMID: 35250619 PMCID: PMC8895143 DOI: 10.3389/fphys.2022.818394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Mechanical stress plays a critical role among development, functional maturation, and pathogenesis of pulmonary tissues, especially for the alveolar epithelial cells and vascular endothelial cells located in the microenvironment established with vascular network and bronchial-alveolar network. Alveolar epithelial cells are mainly loaded by cyclic strain and air pressure tension. While vascular endothelial cells are exposed to shear stress and cyclic strain. Currently, the emerging evidences demonstrated that non-physiological mechanical forces would lead to several pulmonary diseases, including pulmonary hypertension, fibrosis, and ventilation induced lung injury. Furthermore, a series of intracellular signaling had been identified to be involved in mechanotransduction and participated in regulating the physiological homeostasis and pathophysiological process. Besides, the communications between alveolar epithelium and vascular endothelium under non-physiological stress contribute to the remodeling of the pulmonary micro-environment in collaboration, including hypoxia induced injuries, endothelial permeability impairment, extracellular matrix stiffness elevation, metabolic alternation, and inflammation activation. In this review, we aim to summarize the current understandings of mechanotransduction on the relation between mechanical forces acting on the lung and biological response in mechanical overloading related diseases. We also would like to emphasize the interplays between alveolar epithelium and vascular endothelium, providing new insights into pulmonary diseases pathogenesis, and potential targets for therapy.
Collapse
Affiliation(s)
- Chuyang Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Gonçalves AN, Correia-Pinto J, Nogueira-Silva C. Distinct Epithelial Cell Profiles in Normal Versus Induced-Congenital Diaphragmatic Hernia Fetal Lungs. Front Pediatr 2022; 10:836591. [PMID: 35601428 PMCID: PMC9120630 DOI: 10.3389/fped.2022.836591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recent studies identified a great diversity of cell types in precise number and position to create the architectural features of the lung that ventilation and respiration at birth depend on. With damaged respiratory function at birth, congenital diaphragmatic hernia (CDH) is one of the more severe causes of fetal lung hypoplasia with unspecified cellular dynamics. OBJECTIVES To characterize the epithelial cell tissue in hypoplastic lungs, a careful analysis regarding pulmonary morphology and epithelial cell profile was conducted from pseudoglandular-to-saccular phases in normal versus nitrofen-induced CDH rat lungs. DESIGN Our analysis comprises three experimental groups, control, nitrofen (NF) and CDH, in which the relative expression levels (western blot) by group and developmental stage were analyzed in whole lung. Spatiotemporal distribution (immunohistochemistry) was revealed by pulmonary structure during normal and hypoplastic fetal lung development. Surfactant protein-C (SP-C), calcitonin gene-related peptide (CGRP), clara cell secretory protein (CCSP), and forkhead box J1 (FOXJ1) were the used molecular markers for alveolar epithelial cell type 2 (AEC2), pulmonary neuroendocrine, clara, and ciliated cell profiles, respectively. RESULTS Generally, we identified an aberrant expression of SP-C, CGRP, CCSP, and FOXJ1 in nitrofen-exposed lungs. For instance, the overexpression of FOXJ1 and CGRP in primordia of bronchiole defined the pseudoglandular stage in CDH lungs, whereas the increased expression of CGRP in bronchi; FOXJ1 and CGRP in terminal bronchiole; and SP-C in BADJ classified the canalicular and saccular stages in hypoplastic lungs. We also described higher expression levels in NF than CDH or control groups for both FOXJ1 in bronchi, terminal bronchiole and BADJ at canalicular stage, and SP-C in bronchi and terminal bronchiole at canalicular and saccular stages. Finally, we report an unexpected expression of FOXJ1 in BADJ at canalicular and saccular stages, whereas the multi cilia observed in bronchi were notably absent at embryonic day 21.5 in induced-CDH lungs. CONCLUSION The recognized alterations in the epithelial cell profile contribute to a better understanding of neonatal respiratory insufficiency in induced-CDH lungs and indicate a problem in the epithelial cell differentiation in hypoplastic lungs.
Collapse
Affiliation(s)
- Ana N Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal
| |
Collapse
|
17
|
Blitz MJ, Ghorayeb SR, Solmonovich R, Glykos S, Jauhari A, Rochelson B, Bracero LA. Fetal Lung Echo Texture in Pregnancies at Risk for Pulmonary Hypoplasia. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:805-810. [PMID: 32865280 DOI: 10.1002/jum.15454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Pulmonary hypoplasia is associated with severe respiratory distress immediately after birth and frequently leads to neonatal death. In this study, we compared the fetal lung echo texture in pregnancies at high and low risk for pulmonary hypoplasia. Ultrasonic tissue heterogeneity was determined by a dynamic range calculation. This quantification uses a dithering technique based on the Floyd-Steinberg algorithm, in which the pixels are transformed into a binary map. Pregnancies at high risk for pulmonary hypoplasia showed decreased fetal lung heterogeneity on ultrasound imaging. This image-processing technique may allow improved risk stratification, patient counseling, and treatment approaches for pulmonary hypoplasia.
Collapse
Affiliation(s)
- Matthew J Blitz
- Division of Maternal-Fetal Medicine, Southside Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Bay Shore, New York, USA
| | - Sleiman R Ghorayeb
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, New York, USA
- Departments of Radiology and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Rachel Solmonovich
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Stella Glykos
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, New York, USA
| | - Arushi Jauhari
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Burton Rochelson
- Division of Maternal-Fetal Medicine, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Luis A Bracero
- Division of Maternal-Fetal Medicine, Southside Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Bay Shore, New York, USA
| |
Collapse
|
18
|
Koh JY, Jung E, Goo HW, Kim SC, Kim DY, Namgoong JM, Lee BS, Kim KS, Kim EAR. Functional and structural evaluation in the lungs of children with repaired congenital diaphragmatic hernia. BMC Pediatr 2021; 21:120. [PMID: 33706730 PMCID: PMC7947149 DOI: 10.1186/s12887-021-02586-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the long-term functional and structural pulmonary development in children with repaired congenital diaphragmatic hernia (CDH) and to identify the associated perinatal-neonatal risk factors. Methods Children with repaired CDH through corrective surgery who were born at gestational age ≥ 35 weeks were included in this analysis. Those who were followed for at least 5 years were subjected to spirometry and chest computed tomography for evaluation of their functional and structural growth. Main bronchus diameters and lung volumes (total, left/right) were measured. According to total lung volume (TLV) relative to body surface area, children were grouped into TLV ≥ 50 group and TLV < 50 group and the associations with perinatal-neonatal factors were analyzed. Results Of the 28 children (mean age, 6.2 ± 0.2 years) with left-sided CDH, 7 (25%) had abnormal pulmonary function, of whom 6 (87%) showed restrictive patterns. All pulmonary functions except FEF25–75% were worse than those in matched healthy control group. Worse pulmonary function was significantly associated with small head and abdominal circumferences at birth. The mean TLV was 1339.1 ± 363.9 mL and LLV/TLV was 47.9 ± 2.5 mL. Children with abnormal pulmonary function were more likely to have smaller lung volumes. In multivariate analysis, abdominal circumference at birth was significantly associated with abnormal lung volume. Conclusions A quarter of children with repaired CDH showed abnormal pulmonary function. Small abdominal circumference at birth was associated with abnormal pulmonary function and lower TLV. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02586-3.
Collapse
Affiliation(s)
- June-Young Koh
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Euiseok Jung
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong-Chul Kim
- Departments of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Yeon Kim
- Departments of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Man Namgoong
- Departments of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong Sop Lee
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ki-Soo Kim
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ellen Ai-Rhan Kim
- Departments of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Lear BA, Lear CA, Davidson JO, Sae-Jiw J, Lloyd JM, Gunn AJ, Bennet L. Tertiary cystic white matter injury as a potential phenomenon after hypoxia-ischaemia in preterm f sheep. Brain Commun 2021; 3:fcab024. [PMID: 33937767 PMCID: PMC8072523 DOI: 10.1093/braincomms/fcab024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
White matter injury, including both diffuse and cystic elements, remains highly associated with neurodevelopmental disability and cerebral palsy in preterm infants, yet its pathogenesis and evolution are still poorly understood and there is no established treatment. We examined the long-term evolution of white matter injury in chronically instrumented preterm fetal sheep (0.7 gestation) after 25 min of complete umbilical cord occlusion or sham occlusion. Fetal brains were processed for histology after 3 days (n = 9, sham n = 9), 7 days (n = 8, sham n = 8), 14 days (n = 9, sham n = 8) and 21 days (n = 9, sham n = 9) of recovery. At 3 and 7 days recovery, umbilical cord occlusion was associated with diffuse white matter injury, with loss of total and mature oligodendrocytes and reduced myelination in both the parietal and temporal lobes. At 14 days after umbilical cord occlusion, extensive microglial and astrocytic activation were observed in the temporal lobe. At 21 days recovery a spectrum of severe white matter degeneration was observed, including white matter atrophy, ventriculomegaly and overt cystic white matter lesions. The most severe injury was observed in the temporal lobe after 21 days recovery, including the majority of cystic lesions, persistent oligodendrocyte maturational arrest and impaired myelination. The spatial distribution of delayed white matter degeneration at 21 days recovery was closely related to the location of dense microglial aggregates at earlier time-points, implicating a role for exuberant inflammation originating from microglial aggregates in the pathogenesis of cystic white matter injury. The delayed appearance of cystic injury is consistent with continuing tertiary evolution of necrotic cell death. This slow evolution raises the tantalizing possibility that there may a relatively long therapeutic window to mitigate the development of cystic white matter injury. Delayed anti-inflammatory treatments may therefore represent a promising strategy to reduce neurodevelopmental disability in the preterm infants.
Collapse
Affiliation(s)
- Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Jialin Sae-Jiw
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Johanna M Lloyd
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
20
|
Gonçalves AN, Correia-Pinto J, Nogueira-Silva C. ROBO2 signaling in lung development regulates SOX2/SOX9 balance, branching morphogenesis and is dysregulated in nitrofen-induced congenital diaphragmatic hernia. Respir Res 2020; 21:302. [PMID: 33208157 PMCID: PMC7672875 DOI: 10.1186/s12931-020-01568-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
Background Characterized by abnormal lung growth or maturation, congenital diaphragmatic hernia (CDH) affects 1:3000 live births. Cellular studies report proximal (SOX2+) and distal (SOX9+) progenitor cells as key modulators of branching morphogenesis and epithelial differentiation, whereas transcriptome studies demonstrate ROBO/SLIT as potential therapeutic targets for diaphragm defect repair in CDH. In this study, we tested the hypothesis that (a) experimental-CDH could changes the expression profile of ROBO1, ROBO2, SOX2 and SOX9; and (b) ROBO1 or ROBO2 receptors are regulators of branching morphogenesis and SOX2/SOX9 balance. Methods The expression profile for receptors and epithelial progenitor markers were assessed by Western blot and immunohistochemistry in a nitrofen-induced CDH rat model. Immunohistochemistry signals by pulmonary structure were also quantified from embryonic-to-saccular stages in normal and hypoplastic lungs. Ex vivo lung explant cultures were harvested at E13.5, cultures during 4 days and treated with increasing doses of recombinant rat ROBO1 or human ROBO2 Fc Chimera proteins for ROBO1 and ROBO2 inhibition, respectively. The lung explants were analyzed morphometrically and ROBO1, ROBO2, SOX2, SOX9, BMP4, and β-Catenin were quantified by Western blot. Results Experimental-CDH induces distinct expression profiles by pulmonary structure and developmental stage for both receptors (ROBO1 and ROBO2) and epithelial progenitor markers (SOX2 and SOX9) that provide evidence of the impairment of proximodistal patterning in experimental-CDH. Ex vivo functional studies showed unchanged branching morphogenesis after ROBO1 inhibition; increased fetal lung growth after ROBO2 inhibition in a mechanism-dependent on SOX2 depletion and overexpression of SOX9, non-phospho β-Catenin, and BMP4. Conclusions These studies provided evidence of receptors and epithelial progenitor cells which are severely affected by CDH-induction from embryonic-to-saccular stages and established the ROBO2 inhibition as promoter of branching morphogenesis through SOX2/SOX9 balance.
Collapse
Affiliation(s)
- Ana N Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Gualtar, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
21
|
Kim MS, Choi YJ, Lee S, Kim WS, Suh DI, Kim MJ. Natural courses and prognostic factors of pulmonary underdevelopment except for congenital diaphragmatic hernia. ALLERGY ASTHMA & RESPIRATORY DISEASE 2020. [DOI: 10.4168/aard.2020.8.4.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Min Soo Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Jung Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Sun Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Min Jung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Abstract
Importance Bilateral renal agenesis is a rare congenital anomaly associated with poor prognosis. Objective The aims of this article are to review and summarize evidence on prenatal diagnosis and outcomes of bilateral renal agenesis. Evidence Acquisition A search was undertaken using PubMed and ClinicalTrials.gov databases from January 1, 1998, to September 1, 2018. Search terms include "prenatal diagnosis" OR "outcomes" AND "bilateral renal agenesis." Search was limited to English language. Results Fetal ultrasonography is the primary imaging modality for prenatal diagnosis of fetal urogenital tract abnormalities. However, ultrasonography is limited by several factors; it is operator dependent and associated with small field of view, has limited soft-tissue acoustic contrast, and is also influenced by patient habitus and fetal position. Color Doppler ultrasonography can be used as an adjunct to exclude bilateral renal agenesis by visualizing renal arteries. In the literature, prenatal magnetic resonance imaging has been reported to be equal to or superior to prenatal ultrasonography. Bilateral renal agenesis with oligohydramnios/anhydramnios is associated with a poor prognosis; perinatal death occurs secondary to pulmonary hypoplasia in the majority of cases. Conclusions Ultrasonography in combination with color Doppler ultrasonography permits the fetal urinary tract to be assessed in the first and early second trimester of gestation. The magnetic resonance imaging can be used as a complementary adjunctive modality in equivocal or inconclusive ultrasonographic findings.
Collapse
|
23
|
Owen LS, Manley BJ, Davis PG. Delivery room emergencies: Respiratory emergencies in the DR. Semin Fetal Neonatal Med 2019; 24:101039. [PMID: 31645310 DOI: 10.1016/j.siny.2019.101039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of newborns transition to extra uterine life without support. However, respiratory emergencies in the delivery room are a common occurrence. Whilst some situations are predictable e.g. the anticipated birth of an extremely preterm infant, others are less so. In this chapter we address the most frequent scenarios that result in delivery room respiratory emergencies and discuss the latest recommendations for their management. We outline the need for a trained resuscitation team and appropriate equipment to provide respiratory support at every birth. We address the basic care that all infants should receive, the detailed application of non-invasive ventilation and the use of advanced airway techniques. We discuss the unique challenges presented by extreme prematurity including umbilical cord management, use of supplemental oxygen, initial modes of respiratory support and surfactant delivery. We will explore optimal techniques in the management of infants with lung hypoplasia, pneumothorax and meconium aspiration.
Collapse
Affiliation(s)
- Louise S Owen
- Newborn Research Centre and Neonatal Services, The Royal Women's Hospital, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Brett J Manley
- Newborn Research Centre and Neonatal Services, The Royal Women's Hospital, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Peter G Davis
- Newborn Research Centre and Neonatal Services, The Royal Women's Hospital, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
McGillick EV, Davies IM, Hooper SB, Kerr LT, Thio M, DeKoninck P, Yamaoka S, Hodges R, Rodgers KA, Zahra VA, Moxham AM, Kashyap AJ, Crossley KJ. Effect of lung hypoplasia on the cardiorespiratory transition in newborn lambs. J Appl Physiol (1985) 2019; 127:568-578. [PMID: 31194603 DOI: 10.1152/japplphysiol.00760.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Newborns with lung hypoplasia (LH) commonly have limited respiratory function and often require ventilatory assistance after birth. We aimed to characterize the cardiorespiratory transition and respiratory function in newborn lambs with LH. LH was induced by draining fetal lung liquid in utero [110-133 days (d), term = 147d, n = 6]. At ~133d gestation, LH and Control lambs (n = 6) were instrumented and ventilated for 3 h to monitor blood-gas status, oxygenation, ventilator requirements, and hemodynamics during the transition from fetal to newborn life. Lambs with LH had significantly reduced relative wet and dry lung weights indicating hypoplastic lungs compared with Control lambs. LH lambs experienced persistent hypercapnia and acidosis during the ventilation period, had lower lung compliance, and had higher alveolar-arterial differences in oxygen and oxygenation index compared with Control lambs. As a result, LH lambs required greater respiratory support and more supplemental oxygen. Following delivery, LH lambs experienced periods of significantly lower pulmonary artery blood flow and higher carotid artery blood flow in association with the lower oxygenation levels. The detrimental effects of LH can be attributed to a reduction in lung size and poorer gas exchange capabilities. This study has provided greater understanding of the effect of LH itself on the physiology underpinning the transition from fetal to newborn life. Advances in this area is the key to identifying improved or novel management strategies for babies with LH starting in the delivery room, to favorably alter the fetal-to-newborn transition toward improved outcomes and reduced lifelong morbidity.NEW & NOTEWORTHY Current clinical management of newborns with lung hypoplasia (LH) is largely based on expert opinion rather than scientific evidence. We have generated physiological evidence for detrimental effects of LH on hemodynamics and respiratory function in newborn lambs, which mimics the morbidity observed in LH newborns clinically. The unfavorable consequences of LH can be attributed to a reduction in lung size and poorer gas exchange capabilities.
Collapse
Affiliation(s)
- Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Indya M Davies
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Lauren T Kerr
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Marta Thio
- Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia.,PIPER-Neonatal Retrieval Services Victoria, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Philip DeKoninck
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Shigeo Yamaoka
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Ryan Hodges
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Karyn A Rodgers
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Alison M Moxham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Aidan J Kashyap
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Kelly J Crossley
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Kettle R, Subhedar NV. Nitric Oxide in Pulmonary Hypoplasia: Results from the European iNO Registry. Neonatology 2019; 116:341-346. [PMID: 31581153 DOI: 10.1159/000501800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aim of this work was to describe treatment response and outcome data for preterm infants with pulmonary hypoplasia treated with inhaled nitric oxide (iNO). We hypothesised that an acute oxygenation response to iNO would be associated with survival. DESIGN A retrospective observational study design was used to identify cases of pulmonary hypoplasia in preterm infants <34 weeks' gestation reported to the European iNO Registry. Demographic and clinical data were collected including oxygenation and echocardiographic parameters. The primary outcome was acute oxygenation response defined as a reduction in fractional inspired oxygen of >0.15. Outcome data included chronic lung disease (CLD) and death. RESULTS Seventy-two infants with pulmonary hypoplasia were treated with iNO during a 10-year period (2007-2016). In total, 30/69 (43%) of the infants showed a significant improvement in oxygenation and were categorised as "responders." Thirty-one treated infants died, and 19 survivors developed CLD. Although there were no differences in demographics and baseline cardiorespiratory parameters between responders and non-responders, an acute response was significantly associated with survival. Neither pulmonary hypertension nor PPHN (persistent pulmonary hypertension of the newborn) physiology predicted the acute response to iNO or survival. CONCLUSION Although the acute oxygenation response to iNO therapy in pulmonary hypoplasia is comparable to other respiratory disorders in preterm infants, mortality in this group remains very high. An acute response is associated with survival and suggests that a short therapeutic trial of iNO therapy is warranted in this population. This study underscores the value of registries in evaluating therapies for rare neonatal disorders, although their limitations must be recognised.
Collapse
Affiliation(s)
- Rebecca Kettle
- Neonatal Intensive Care Unit, Liverpool Women's Hospital, Liverpool, United Kingdom
| | - Nimish V Subhedar
- Neonatal Intensive Care Unit, Liverpool Women's Hospital, Liverpool, United Kingdom,
| | | |
Collapse
|
26
|
Esaki M, Maseki Y, Tezuka A, Furuhashi M. Continuous amnioinfusion in women with PPROM at periviable gestational ages. J Matern Fetal Neonatal Med 2018; 33:1151-1156. [PMID: 30149736 DOI: 10.1080/14767058.2018.1517307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: To elucidate the efficacy of continuous amnioinfusion on perinatal outcome in women with preterm premature rupture of membranes (PPROM) at periviable gestational ages.Methods: A database was reviewed to identify women with singleton pregnancies who were admitted to the Japanese Red Cross Nagoya Daiichi Hospital due to PPROM before 26 + 0-week gestation between July 2009 and July 2017.Results: A total of 81 women met the criteria for inclusion in this study including 70 and 11 women with and without amnioinfusion, respectively. The latency period between PPROM and delivery was significantly longer in women who underwent amnioinfusion compared with women without amnioinfusion (median: 13 versus 4 days, p < .001). In the survival analysis, the number of women who remained undelivered was significantly higher in the amnioinfusion group than in the non-amnioinfusion group for each gestational age after PPROM (p < .001). Cox's proportional hazards analysis with stepwise backward selection showed that both white blood cell counts on admission and amnioinfusion finally remained as variables that affected the time interval between PPROM and delivery [hazard ratio (95% confidence interval): 1.12 (1.06-1.18) and 0.34 (0.12-0.98), respectively].Conclusions: Continuous amnioinfusion in women with PPROM at periviable gestational ages resulted in significant prolongation of pregnancy and may help improve neonatal outcomes.
Collapse
Affiliation(s)
- Masatoshi Esaki
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Yoshiaki Maseki
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Atsuko Tezuka
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | | |
Collapse
|