1
|
Cortes-Ledesma C, Arias-Vivas E, Ruiz-Ocaña de Las Cuevas G, Santana-Cabrera E, Garcia-Ron A. Clinical Impact and Safety Profile of Intravenous Lacosamide Administration as Adjunctive Therapy for Neonatal Seizures. J Child Neurol 2025; 40:291-295. [PMID: 39539162 DOI: 10.1177/08830738241296177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The aim of this retrospective descriptive study was to evaluate the clinical impact and safety profile of lacosamide in neonates with symptomatic refractory seizures.Patients diagnosed with symptomatic refractory seizures who received lacosamide were included in the study. Follow-up assessments were conducted until 24 months of age, during which data on lacosamide dosage, duration of exposure, concurrent treatments, and potential side effects were collected. A total of eight patients were enrolled, with lacosamide administered as a third- or fourth-line treatment for symptomatic refractory seizures. Following loading dose, 62.5% of the patients achieved complete remission of seizure activity without recurrence. In the remaining cases, a reduction in seizure frequency was observed. No adverse effects attributable to lacosamide were reported.In conclusion, lacosamide may be effective in achieving seizure remission in newborns with symptomatic refractory seizures, and all patients demonstrate excellent tolerance. Brief exposure to lacosamide was sufficient, and no adverse effects were observed up to 24 months of age. However, randomized controlled trials are necessary to confirm these findings.
Collapse
Affiliation(s)
- C Cortes-Ledesma
- Division of Neonatology, Institute of Children and Adolescents, Hospital Clínico San Carlos, Madrid, Spain
| | - E Arias-Vivas
- Division of Pediatric Neurology, Institute of Children and Adolescents, Hospital Clínico San Carlos, Madrid, Spain
| | - G Ruiz-Ocaña de Las Cuevas
- Division of Pediatric Neurology, Institute of Children and Adolescents, Hospital Clínico San Carlos, Madrid, Spain
| | - E Santana-Cabrera
- Division of Pediatric Neurology, Institute of Children and Adolescents, Hospital Clínico San Carlos, Madrid, Spain
| | - A Garcia-Ron
- Division of Pediatric Neurology, Institute of Children and Adolescents, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
2
|
Hogan R, Mathieson SR, Luca A, Ventura S, Griffin S, Boylan GB, O'Toole JM. Scaling convolutional neural networks achieves expert level seizure detection in neonatal EEG. NPJ Digit Med 2025; 8:17. [PMID: 39779830 PMCID: PMC11711471 DOI: 10.1038/s41746-024-01416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Neonatal seizures require urgent treatment, but often go undetected without expert EEG monitoring. We have developed and validated a seizure detection model using retrospective EEG data from 332 neonates. A convolutional neural network was trained and tested on over 50,000 hours (n = 202) of annotated single-channel EEG containing 12,402 seizure events. This model was then validated on two independent multi-reviewer datasets (n = 51 and n = 79). Increasing data and model size improved performance: Matthews correlation coefficient (MCC) and Pearson's correlation (r) increased by up to 50% (15%) with data (model) scaling. The largest model (21m parameters) achieved state-of-the-art on an open-access dataset (MCC = 0.764, r = 0.824, and AUC = 0.982). This model also attained expert-level performance on both validation sets, a first in this field, with no significant difference in inter-rater agreement when the model replaces an expert (∣Δκ∣ < 0.094, p > 0.05).
Collapse
Affiliation(s)
| | - Sean R Mathieson
- CergenX Ltd, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | | | - Soraia Ventura
- CergenX Ltd, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | | | - Geraldine B Boylan
- CergenX Ltd, Dublin, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | | |
Collapse
|
3
|
Schmidt R, Welzel B, Merten A, Naundorf H, Löscher W. Temporal development of seizure threshold and spontaneous seizures after neonatal asphyxia and the effect of prophylactic treatment with midazolam in rats. Exp Neurol 2024; 383:115042. [PMID: 39505250 DOI: 10.1016/j.expneurol.2024.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Birth asphyxia (BA) and subsequent hypoxic-ischemic encephalopathy (HIE) is one of the most serious birth complications affecting full-term infants and can result in severe disabilities including mental retardation, cerebral palsy, and epilepsy. Animal models of BA and HIE are important to characterize the functional and behavioral correlates of injury, explore cellular and molecular mechanisms, and assess the potential of novel therapeutic strategies. Here we used a non-invasive, physiologically validated rat model of BA and acute neonatal seizures that mimics many features of BA and HIE in human infants to study (i) the temporal development of epilepsy with spontaneous recurrent seizures (SRS) in the weeks and months after the initial brain injury, (ii) alterations in seizure threshold and hippocampal EEG that may precede the onset of SRS, and (iii) the effect of prophylactic treatment with midazolam. For this purpose, a total of 89 rat pups underwent asphyxia or sham asphyxia at postnatal day 11 and were examined over 8-10.5 months. In vehicle-treated animals, the incidence of electroclinical SRS progressively increased from 0 % at 2.5 months to 50 % at 6.5 months, 75 % at 8.5 months, and > 80 % at 10.5 months after asphyxia. Unexpectedly, post-asphyxial rats did not differ from sham-exposed rats in seizure threshold or interictal epileptiform discharges in the EEG. Treatment with midazolam (1 mg/kg i.p.) after asphyxia, which suppressed acute symptomatic neonatal seizures in about 60 % of the rat pups, significantly reduced the incidence of SRS regardless of its effect on neonatal seizures. This antiepileptogenic effect of midazolam adds to the recently reported prophylactic effects of this drug on BA-induced neuroinflammation, brain damage, behavioral alterations, and cognitive impairment in the rat asphyxia model of HIE.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Annika Merten
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Hannah Naundorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Long D, Sutton C, Hale J. Efficacy of Levetiracetam vs Phenobarbital as First Line Therapy for the Treatment of Neonatal Seizures. J Pediatr Pharmacol Ther 2024; 29:482-486. [PMID: 39411420 PMCID: PMC11472408 DOI: 10.5863/1551-6776-29.5.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Seizures are one of the most common neurologic complications seen in a neonate. Historically, phenobarbital has been the agent of choice, but can lead to adverse neurologic outcomes, which has contributed to the use of other agents. Levetiracetam has proven great efficacy with an excellent safety profile in older patients, causing interest of its use in neonates. The objective of this study was to determine if levetiracetam would provide similar neonatal seizure resolution rates as phenobarbital. METHODS The study was a single-center, retrospective, cohort study from August 1, 2020 to August 31, 2022 investigating the efficacy and safety of using levetiracetam compared with phenobarbital as a first line treatment for neonatal seizures. The primary outcome was to assess overall seizure resolution after administration of levetiracetam or phenobarbital, without addition of a second antiseizure medication. RESULTS There were 87 patients included in the study. Fifteen neonates (27.78%) achieved seizure resolution with phenobarbital compared with 9 neonates (27.27%) who received levetiracetam first line (p = 0.959). Neonates who received phenobarbital had higher rates of adverse effects. Neonates who received a benzodiazepine prior to administration of levetiracetam had lower seizure resolution rates (p = 0.021). CONCLUSIONS These findings suggest there is no difference in using phenobarbital over levetiracetam to achieve complete seizure resolution in a neonate. Higher rates of adverse events were seen in the phenobarbital group. The use of a benzodiazepine prior to administration of levetiracetam may reduce the efficacy of levetiracetam.
Collapse
Affiliation(s)
- Destini Long
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN
| | - Courtney Sutton
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer Hale
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Rohaert C, Spoor JKH, Dremmen M, van Hengel-Jacobs AM, Smit LS, Knol R. Case Report: resolution of refractory seizures after neurosurgical intervention in newborns with cerebral extra-axial hemorrhages. Front Pediatr 2024; 12:1388454. [PMID: 39220155 PMCID: PMC11362048 DOI: 10.3389/fped.2024.1388454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Intracranial hemorrhage is a significant cause of neurological damage in newborns. Extra-axial hemorrhages with intraparenchymal extension can precipitate acute clinical deterioration. Seizures are one of the presenting symptoms, which can be refractory to treatment. These hemorrhages can result in considerable long-term morbidity and mortality. Aim The objective of this report was to present three cases of extra-axial hemorrhages in neonates, all exhibiting refractory seizures that resolved after neurosurgical intervention. In addition, a review of literature is provided. Methods Data collected included clinical history, laboratory findings, neuroimaging studies, type of neurosurgical intervention, and patient outcome. All infants presented with extra-axial hemorrhages along with clinical and radiological signs of increased intracranial pressure within the first 6 days of life. These manifestations included a decreased level of consciousness, hypertension, bradycardia, and cerebral midline shift on imaging. Refractory seizures were present in all cases. Urgent magnetic resonance imaging was performed followed by neurosurgical intervention (two needle aspirations, one cranial trepanation), leading to amelioration of clinical symptoms and complete resolution of seizures. Follow-up outcomes included normal psychomotor development in one infant, mild cerebral paresis in another, and delayed motor development in the third. None of the infants developed epilepsy. Conclusion This study underscores the critical importance of monitoring seizure activity, conducting urgent and appropriate imaging, and implementing targeted neurosurgical intervention, preferably through minimally invasive methods such as percutaneous needle aspiration. Clinicians should be aware of this clinical picture and respond promptly to mitigate neurological damage.
Collapse
Affiliation(s)
- C. Rohaert
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - J. K. H. Spoor
- Department of Neurosurgery, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - M. Dremmen
- Division of Pediatric Radiology, Department of Radiology and Nuclear Medicine, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | | | - L. S. Smit
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
- Division of Neurology, Department of Pediatric Neurology, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| | - R. Knol
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus MC—Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
6
|
Zhang R, Cui X, Zhang Y, Ma H, Gao J, Zhang Y, Shu J, Cai C, Liu Y. Whole-exome sequencing as the first-tier test for patients in neonatal intensive care unit: a Chinese single-center study. BMC Pediatr 2024; 24:351. [PMID: 38778310 PMCID: PMC11110365 DOI: 10.1186/s12887-024-04820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Genetic disorders significantly affect patients in neonatal intensive care units, where establishing a diagnosis can be challenging through routine tests and supplementary examinations. Whole-exome sequencing offers a molecular-based approach for diagnosing genetic disorders. This study aimed to assess the importance of whole-exome sequencing for neonates in intensive care through a retrospective observational study within a Chinese cohort. METHODS We gathered data from neonatal patients at Tianjin Children's Hospital between January 2018 and April 2021. These patients presented with acute illnesses and were suspected of having genetic disorders, which were investigated using whole-exome sequencing. Our retrospective analysis covered clinical data, genetic findings, and the correlation between phenotypes and genetic variations. RESULTS The study included 121 neonates. Disorders affected multiple organs or systems, predominantly the metabolic, neurological, and endocrine systems. The detection rate for whole-exome sequencing was 52.9% (64 out of 121 patients), identifying 84 pathogenic or likely pathogenic genetic variants in 64 neonates. These included 13 copy number variations and 71 single-nucleotide variants. The most frequent inheritance pattern was autosomal recessive (57.8%, 37 out of 64), followed by autosomal dominant (29.7%, 19 out of 64). In total, 40 diseases were identified through whole-exome sequencing. CONCLUSION This study underscores the value and clinical utility of whole-exome sequencing as a primary diagnostic tool for neonates in intensive care units with suspected genetic disorders. Whole-exome sequencing not only aids in diagnosis but also offers significant benefits to patients and their families by providing clarity in uncertain diagnostic situations.
Collapse
Affiliation(s)
- Ruiping Zhang
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China
| | - Xiaoyu Cui
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China
| | - Yan Zhang
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China
- Graduate College, Tianjin Medical University, Heping District, Tianjin, China
| | - Huiqing Ma
- Graduate College, Tianjin Medical University, Heping District, Tianjin, China
| | - Jing Gao
- Graduate College, Tianjin Medical University, Heping District, Tianjin, China
| | - Ying Zhang
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Beichen District, Tianjin, China.
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Beichen District, Tianjin, China.
| | - Yang Liu
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China.
- The Pediatric Clinical College in Tianjin Medical University, Heping District, Tianjin, China.
| |
Collapse
|
7
|
Spagnoli C, Pisani F. Acute symptomatic seizures in newborns: a narrative review. ACTA EPILEPTOLOGICA 2024; 6:5. [PMID: 40217308 PMCID: PMC11960334 DOI: 10.1186/s42494-024-00151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/05/2025] Open
Abstract
Acute symptomatic seizures are the main sign of neurological dysfunction in newborns. This is linked to the unique characteristics of the neonatal brain, making it hyperexcitable compared to older ages, and to the common occurrence of some forms of acquired brain injury, namely hypoxic-ischemic encephalopathy. In this narrative review we will provide an overview of neonatal seizures definition, their main underlying etiologies, diagnostic work-up and differential diagnoses, and will discuss about therapeutic options and prognostic outlook. The latest publications from the ILAE Task Force on Neonatal Seizures will be presented and discussed. Of note, they highlight the current lack of robust evidence in this field of clinical neurology. We will also report on specificities pertaining to low-and-middle income countries in terms of incidence, main etiologies and diagnosis. The possibilities offered by telemedicine and automated seizures detection will also be summarized in order to provide a framework for future directions in seizures diagnosis and management with a global perspective. Many challenges and opportunities for improving identification, monitoring and treatment of acute symptomatic seizures in newborns exist. All current caveats potentially represent different lines of research with the aim to provide better care and reach a deeper understanding of this important topic of neonatal neurology.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology Unit, Pediatric Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, 42123, Italy.
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, Rome, 00185, Italy
- Azienda Ospedaliero Universitaria Policlinico Umberto I, Rome, 00185, Italy
| |
Collapse
|
8
|
Löscher W. On hidden factors and design-associated errors that may lead to data misinterpretation: An example from preclinical research on the potential seasonality of neonatal seizures. Epilepsia 2024; 65:287-292. [PMID: 38037258 DOI: 10.1111/epi.17840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Unintentional misinterpretation of research in published biomedical reports that is not based on statistical flaws is often underrecognized, despite its possible impact on science, clinical practice, and public health. Important causes of such misinterpretation of scientific data, resulting in either false positive or false negative conclusions, include design-associated errors and hidden (or latent) variables that are not easily recognized during data analysis. Furthermore, cognitive biases, such as the inclination to seek patterns in data whether they exist or not, may lead to misinterpretation of data. Here, we give an example of these problems from hypothesis-driven research on the potential seasonality of neonatal seizures in a rat model of birth asphyxia. This commentary aims to raise awareness among the general scientific audience about the issues related to the presence of unintentional misinterpretation in published reports.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Falsaperla R, Collotta AD, Sortino V, Marino SD, Marino S, Pisani F, Ruggieri M. The Use of Midazolam as an Antiseizure Medication in Neonatal Seizures: Single Center Experience and Literature Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1285-1294. [PMID: 37291779 DOI: 10.2174/1871527322666230608105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Existing therapeutic alternatives for neonatal crises have expanded in recent decades, but no consensus has been reached on protocols based on neonatal seizures. In particular, little is known about the use of midazolam in newborns. AIM The aim of our study is to evaluate the response to midazolam, the appearance of side effects, and their impact on therapeutic decisions. METHODS This is a STROBE-conformed retrospective observational study of 10 patients with neonatal seizures unresponsive to common antiseizure drugs, admitted to San Marco University Hospital's neonatal intensive care (Catania, Italy) from September 2015 to October 2022. In our database search, 36 newborns were treated with midazolam, but only ten children met the selection criteria for this study. RESULTS Response was assessed both clinically and electrographic. Only 4 patients at the end of the treatment showed a complete electroclinical response; they were full-term infants with a postnatal age greater than 7 days. Non-responders and partial responders are all premature (4/10) or full-term neonates who started therapy in the first days of life (< 7th day) (2/10). CONCLUSION Neonatal seizures in preterm show a lower response rate to midazolam than seizures in full-term infants, with poorer prognosis. Liver and renal function and central nervous system development are incomplete in premature infants and the first days of life. In this study, we show that midazolam, a short-acting benzodiazepine, appears to be most effective in full-term infants and after 7 days of life.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Ausilia Desiree Collotta
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Vincenzo Sortino
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Silvia Marino
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", San Marco Hospital, University of Catania, Catania, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Martino Ruggieri
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, AOU Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| |
Collapse
|
10
|
Cappellari AM, Palumbo S, Margiotta S. Questions and Controversies in Neonatal Seizures. CHILDREN (BASEL, SWITZERLAND) 2023; 11:40. [PMID: 38255354 PMCID: PMC10814600 DOI: 10.3390/children11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Neonatal seizures are relatively common, but their diagnosis and management remain challenging. We reviewed the scientific literature on neonatal seizures from July 1973 to November 2023. Several parameters were considered, including pathophysiology, diagnostic criteria, electroencephalographic findings and treatment. Recent classification system of seizures and epilepsies in the newborn, as well as treatment recommendations of neonatal seizures, have been proposed. Nonetheless, the approach to neonatal seizures varies among clinicians and centres, including detection, investigation, treatment and follow-up of patients. There are still many issues on the diagnosis and treatment of neonatal seizures, including the meaning or relevance of some electroencephalographic findings, the precise estimation of the seizure burden, the limited efficacy and side effects risk of antiseizure medications, and the best measures to establish the outcome.
Collapse
Affiliation(s)
- Alberto M. Cappellari
- Department of Neuroscience and Mental Health, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milano, Italy
| | - Sarah Palumbo
- Postgraduate School of Paediatrics, Department of Pediatrics, University of Milan, 20122 Milano, Italy; (S.P.); (S.M.)
| | - Stefania Margiotta
- Postgraduate School of Paediatrics, Department of Pediatrics, University of Milan, 20122 Milano, Italy; (S.P.); (S.M.)
| |
Collapse
|
11
|
Li Y, Scheffler A, Barkovich AJ, Chang T, Chu CJ, Massey SL, Abend NS, Lemmon ME, Thomas C, Numis A, Franck LS, Rogers E, Callen A, McCulloch CE, Shellhaas RA, Glass HC. Neonatal brain MRI and short-term outcomes after acute provoked seizures. J Perinatol 2023; 43:1392-1397. [PMID: 37454174 PMCID: PMC10615741 DOI: 10.1038/s41372-023-01723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE We investigated how diagnosis and injury location on neonatal brain MRI following onset of acute provoked seizures was associated with short term outcome. STUDY DESIGN A multicenter cohort of neonates with acute provoked seizures enrolled in the Neonatal Seizure Registry. MRIs were centrally evaluated by a neuroradiologist for location of injury and radiologic diagnosis. Clinical outcomes were determined by chart review. Multivariate logistic regression was used to examine the association between MRI findings and outcomes. RESULTS Among 236 newborns with MRI at median age 4 days (IQR 3-8), 91% had abnormal MRI. Radiologic diagnoses of intracranial hemorrhage (OR 3.2 [1.6-6.5], p < 0.001) and hypoxic-ischemic encephalopathy (OR 2.7 [1.4-5.4], p < 0.003) were associated with high seizure burden. Radiologic signs of intracranial infection were associated with abnormal neurologic examination at discharge (OR 3.9 [1.3-11.6], p < 0.01). CONCLUSION Findings on initial MRI can help with expectant counseling on short-term outcomes following acute provoked neonatal seizures.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Aaron Scheffler
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Anthony James Barkovich
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Taeun Chang
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shavonne L Massey
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas S Abend
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Departments of Anesthesia & Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Monica E Lemmon
- Department of Pediatrics and Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Cameron Thomas
- Department of Pediatrics, University of Cincinnati and Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam Numis
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Linda S Franck
- Department of Family Health Care Nursing, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Rogers
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Callen
- Department of Radiology, University of Colorado Denver School of Medicine, Denver, CO, USA
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Renée A Shellhaas
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hannah C Glass
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Debelo BS, Thamineni BL, Dasari HK, Dawud AA. Detection and Severity Identification of Neonatal Seizure Using Deep Convolutional Neural Networks from Multichannel EEG Signal. Pediatric Health Med Ther 2023; 14:405-417. [PMID: 37933303 PMCID: PMC10625745 DOI: 10.2147/phmt.s427773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Introduction One of the most frequent neurological conditions in newborns is neonatal seizures, which may indicate severe neurological dysfunction. These seizures may have very subtle or very modest clinical indications because patterns like oscillatory (spike) trains begin with relatively low amplitude and gradually increase over time. This becomes very challenging and erroneous if clinical observation is the primary basis for identifying newborn seizures. In this study, a diagnosis system using deep convolutional neural networks is proposed to determine and classify the severity level of neonatal seizures using multichannel neonatal EEG data. Methods Datasets from publicly accessible online sources were used to compile clinical multichannel EEG datasets. Various preprocessing steps were taken, including the conversion of 2D time series data to equivalent waveform pictures. The proposed models have undergone training, and evaluations of their performance were conducted. Results The proposed CNN was used to perform binary classification with an accuracy of 92.6%, F1-score of 92.7%, specificity of 92.8%, and precision of 92.6%. To detect newborn seizures, this model is utilized. Using the proposed CNN model, multiclassification was performed with accuracy rates of 88.6%, specificity rates of 92.18%, F1-score rates of 85.61%, and precision rates of 88.9%. The results demonstrated that the suggested strategy can assist medical professionals in making accurate diagnoses close to healthcare institutions. Conclusion The developed system was capable of detecting neonatal seizures and has the potential to be used as a decision-making tool in resource-limited areas with a scarcity of expert neurologists.
Collapse
Affiliation(s)
- Biniam Seifu Debelo
- Department of Biomedical Engineering, Nigist Eleni Mohamed Memorial Compressive Specialized Hospital, Wachamo University, Hosanna, Ethiopia
| | | | - Hanumesh Kumar Dasari
- Department of Electronics and Communication, Rayalaseema University, Kurnool, AP, India
| | - Ahmed Ali Dawud
- School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| |
Collapse
|
13
|
Schmidt R, Welzel B, Löscher W. Effects of season, daytime, sex, and stress on the incidence, latency, frequency, severity, and duration of neonatal seizures in a rat model of birth asphyxia. Epilepsy Behav 2023; 147:109415. [PMID: 37729684 DOI: 10.1016/j.yebeh.2023.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
Neonatal seizures are common in newborn infants after birth asphyxia. They occur more frequently in male than female neonates, but it is not known whether sex also affects seizure severity or duration. Furthermore, although stress and diurnal, ultradian, circadian, or multidien cycles are known to affect epileptic seizures in adults, their potential impact on neonatal seizures is not understood. This prompted us to examine the effects of season, daytime, sex, and stress on neonatal seizures in a rat model of birth asphyxia. Seizures monitored in 176 rat pups exposed to asphyxia on 40 experimental days performed over 3 years were evaluated. All rat pups exhibited seizures when exposed to asphyxia at postnatal day 11 (P11), which in terms of cortical development corresponds to term human babies. A first examination of these data indicated a seasonal variation, with the highest seizure severity in the spring. Sex and daytime did not affect seizure characteristics. However, when rat pups were subdivided into animals that were exposed to acute (short-term) stress after asphyxia (restraint and i.p. injection of vehicle) and animals that were not exposed to this stress, the seizures in stress-exposed rats were more severe but less frequent. Acute stress induced an increase in hippocampal microglia density in sham-exposed rat pups, which may have an additive effect on microglia activation induced by asphyxia. When seasonal data were separately analyzed for stress-exposed vs. non-stress-exposed rat pups, no significant seasonal variation was observed. This study illustrates that without a detailed analysis of all factors, the data would have erroneously indicated significant seasonal variability in the severity of neonatal seizures. Instead, the study demonstrates that even mild, short-lasting postnatal stress has a profound effect on asphyxia-induced seizures, most likely by increasing the activity of the hypothalamic-pituitary-adrenal axis. It will be interesting to examine how postnatal stress affects the treatment and adverse outcomes of birth asphyxia and neonatal seizures in the rat model used here.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Björn Welzel
- Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
14
|
Colman R, Pierre P, Adriansjach J, Crosno K, Noguchi KK, Ikonomidou C. Behavioral and Cognitive Outcomes of Rhesus Macaques Following Neonatal Exposure to Antiseizure Medications. Ann Neurol 2023; 95:10.1002/ana.26794. [PMID: 37706347 PMCID: PMC10937326 DOI: 10.1002/ana.26794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE Exposure of neonatal macaques to the antiseizure medications phenobarbital and midazolam (PbM) causes widespread apoptotic death of neurons and oligodendrocytes. We studied behavior and neurocognitive performance in 12 to 24 month-old macaques treated as neonates with PbM. METHODS A total of 14 monkeys received phenobarbital and midazolam over 24 hours under normothermia (n = 8) or mild hypothermia (n = 6). Controls (n = 8) received no treatment. Animals underwent testing in the human intruder paradigm at ages 12 and 18 months, and a 3-step stimulus discrimination task at ages 12, 18, and 24 months. RESULTS Animals treated with PbM displayed lower scores for environmental exploration, and higher scores for locomotion and vocalizations compared with controls. Combined PbM and hypothermia resulted in lower scores for aggression and vigilance at 12 months compared with controls and normothermic PbM animals. A mixed-effects generalized linear model was used to test for differences in neurocognitive performance between the control and PbM groups in the first step of the stimulus discrimination task battery (shape center baited to shape center non-baited). The odds of passing this step differed by group (p = 0.044). At any given age, the odds of passing for a control animal were 9.53-fold (95% CI 1.06-85) the odds for a PbM animal. There was also evidence suggesting a higher learning rate in the shape center non-baited for the control relative to the PbM group (Cox model HR 2.13, 95% CI 1.02-4.43; p = 0.044). INTERPRETATION These findings demonstrate that a 24-hour-long neonatal treatment with a clinically relevant combination of antiseizure medications can have long-lasting effects on behavior and cognition in nonhuman primates. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Ricki Colman
- Wisconsin National Primate Research Center, Madison WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin, School of Medicine, Madison WI USA
| | - Peter Pierre
- Wisconsin National Primate Research Center, Madison WI, USA
| | | | - Kristin Crosno
- Wisconsin National Primate Research Center, Madison WI, USA
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin, School of Medicine, Madison WI USA
| |
Collapse
|
15
|
Welzel B, Johne M, Löscher W. Bumetanide potentiates the anti-seizure and disease-modifying effects of midazolam in a noninvasive rat model of term birth asphyxia. Epilepsy Behav 2023; 142:109189. [PMID: 37037061 DOI: 10.1016/j.yebeh.2023.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Birth asphyxia and the resulting hypoxic-ischemic encephalopathy (HIE) are highly associated with perinatal and neonatal death, neonatal seizures, and an adverse later-life outcome. Currently used drugs, including phenobarbital and midazolam, have limited efficacy to suppress neonatal seizures. There is a medical need to develop new therapies that not only suppress neonatal seizures but also prevent later-life consequences. We have previously shown that the loop diuretic bumetanide does not potentiate the effects of phenobarbital in a rat model of birth asphyxia. Here we compared the effects of bumetanide (0.3 or 10 mg/kg i.p.), midazolam (1 mg/kg i.p.), and a combination of bumetanide and midazolam on neonatal seizures and later-life outcomes in this model. While bumetanide at either dose was ineffective when administered alone, the higher dose of bumetanide markedly potentiated midazolam's effect on neonatal seizures. Median bumetanide brain levels (0.47-0.53 µM) obtained with the higher dose were in the range known to inhibit the Na-K-Cl-cotransporter NKCC1 but it remains to be determined whether brain NKCC1 inhibition was underlying the potentiation of midazolam. When behavioral and cognitive alterations were examined over three months after asphyxia, treatment with the bumetanide/midazolam combination, but not with bumetanide or midazolam alone, prevented impairment of learning and memory. Furthermore, the combination prevented the loss of neurons in the dentate hilus and aberrant mossy fiber sprouting in the CA3a area of the hippocampus. The molecular mechanisms that explain that bumetanide potentiates midazolam but not phenobarbital in the rat model of birth asphyxia remain to be determined.
Collapse
Affiliation(s)
- Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| |
Collapse
|
16
|
Carrasco M, Bonifacio SL, deVeber G, Chau V. Early Discontinuation of Phenobarbital After Acute Symptomatic Neonatal Seizures in the Term Newborn. Neurol Clin Pract 2023; 13:e200125. [PMID: 36891461 PMCID: PMC9987207 DOI: 10.1212/cpj.0000000000200125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/07/2022] [Indexed: 02/18/2023]
Abstract
Acute symptomatic seizures in the term newborn are often seen after perinatal brain injury. Common etiologies include hypoxic-ischemic encephalopathy, ischemic stroke, intracranial hemorrhage, metabolic derangements, and intracranial infections. Neonatal seizures are often treated with phenobarbital, which may cause sedation and may have significant long-term effects on brain development. Recent literature has suggested that phenobarbital may be safely discontinued in some patients before discharge from the neonatal intensive care unit. Optimizing a strategy for selective early phenobarbital discontinuation would be of great value. In this study, we present a unified framework for phenobarbital discontinuation after resolution of acute symptomatic seizures in the setting of brain injury of the newborn.
Collapse
Affiliation(s)
- Melisa Carrasco
- Department of Neurology (MC), University of Wisconsin and University Hospital, Madison, WI; Department of Pediatrics (Neonatology) (SLB), Lucile Packard Children's Hospital and Stanford University, Stanford, CA; Department of Pediatrics (Neurology) (GdV), The Hospital for Sick Children, SickKids Research Institute (Child Health Evaluative Sciences) and University of Toronto, Toronto, Ontario, Canada; and Department of Pediatrics (Neurology) (VC), The Hospital for Sick Children, SickKids Research Institute (Neuroscience and Mental Health) and University of Toronto, Ontario, Canada
| | - Sonia Lomeli Bonifacio
- Department of Neurology (MC), University of Wisconsin and University Hospital, Madison, WI; Department of Pediatrics (Neonatology) (SLB), Lucile Packard Children's Hospital and Stanford University, Stanford, CA; Department of Pediatrics (Neurology) (GdV), The Hospital for Sick Children, SickKids Research Institute (Child Health Evaluative Sciences) and University of Toronto, Toronto, Ontario, Canada; and Department of Pediatrics (Neurology) (VC), The Hospital for Sick Children, SickKids Research Institute (Neuroscience and Mental Health) and University of Toronto, Ontario, Canada
| | - Gabrielle deVeber
- Department of Neurology (MC), University of Wisconsin and University Hospital, Madison, WI; Department of Pediatrics (Neonatology) (SLB), Lucile Packard Children's Hospital and Stanford University, Stanford, CA; Department of Pediatrics (Neurology) (GdV), The Hospital for Sick Children, SickKids Research Institute (Child Health Evaluative Sciences) and University of Toronto, Toronto, Ontario, Canada; and Department of Pediatrics (Neurology) (VC), The Hospital for Sick Children, SickKids Research Institute (Neuroscience and Mental Health) and University of Toronto, Ontario, Canada
| | - Vann Chau
- Department of Neurology (MC), University of Wisconsin and University Hospital, Madison, WI; Department of Pediatrics (Neonatology) (SLB), Lucile Packard Children's Hospital and Stanford University, Stanford, CA; Department of Pediatrics (Neurology) (GdV), The Hospital for Sick Children, SickKids Research Institute (Child Health Evaluative Sciences) and University of Toronto, Toronto, Ontario, Canada; and Department of Pediatrics (Neurology) (VC), The Hospital for Sick Children, SickKids Research Institute (Neuroscience and Mental Health) and University of Toronto, Ontario, Canada
| |
Collapse
|
17
|
Molloy EJ, El-Dib M, Juul SE, Benders M, Gonzalez F, Bearer C, Wu YW, Robertson NJ, Hurley T, Branagan A, Michael Cotten C, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Bonifacio S, Soul JS, Gunn AJ. Neuroprotective therapies in the NICU in term infants: present and future. Pediatr Res 2022:10.1038/s41390-022-02295-2. [PMID: 36195634 PMCID: PMC10070589 DOI: 10.1038/s41390-022-02295-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023]
Abstract
Outcomes of neonatal encephalopathy (NE) have improved since the widespread implementation of therapeutic hypothermia (TH) in high-resource settings. While TH for NE in term and near-term infants has proven beneficial, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. There is therefore a critical need to find additional pharmacological and non-pharmacological interventions that improve the outcomes for these children. There are many potential candidates; however, it is unclear whether these interventions have additional benefits when used with TH. Although primary and delayed (secondary) brain injury starting in the latent phase after HI are major contributors to neurodisability, the very late evolving effects of tertiary brain injury likely require different interventions targeting neurorestoration. Clinical trials of seizure management and neuroprotection bundles are needed, in addition to current trials combining erythropoietin, stem cells, and melatonin with TH. IMPACT: The widespread use of therapeutic hypothermia (TH) in the treatment of neonatal encephalopathy (NE) has reduced the associated morbidity and mortality. However, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. This review details the pathophysiology of NE along with the evidence for the use of TH and other beneficial neuroprotective strategies used in term infants. We also discuss treatment strategies undergoing evaluation at present as potential adjuvant treatments to TH in NE.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland. .,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland. .,Neonatology, CHI at Crumlin, Dublin, Ireland. .,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Manon Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | | | - Sidhartha Tan
- Pediatrics, Division of Neonatology, Children's Hospital of Michigan, Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, 12267, USA.,Pediatrics, Division of Neonatology, Central Michigan University, Mount Pleasant, MI, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK.,Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Sonia Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
18
|
Ikonomidou C, Wang SH, Fuhler NA, Larson S, Capuano S, Brunner KR, Crosno K, Simmons HA, Mejia AF, Noguchi KK. Mild hypothermia fails to protect infant macaques from brain injury caused by prolonged exposure to Antiseizure drugs. Neurobiol Dis 2022; 171:105814. [PMID: 35817217 PMCID: PMC9354232 DOI: 10.1016/j.nbd.2022.105814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/28/2023] Open
Abstract
Barbiturates and benzodiazepines are GABAA-receptor agonists and potent antiseizure medications. We reported that exposure of neonatal macaques to combination of phenobarbital and midazolam (Pb/M) for 24 h, at clinically relevant doses and plasma levels, causes widespread apoptosis affecting neurons and oligodendrocytes. Notably, the extent of injury was markedly more severe compared to shorter (8 h) exposure to these drugs. We also reported that, in the infant macaque, mild hypothermia ameliorates the apoptosis response to the anesthetic sevoflurane. These findings prompted us explore whether mild hypothermia might protect infant nonhuman primates from neuro- and gliotoxicity of Pb/M. Since human infants with seizures may receive combinations of benzodiazepines and barbiturates for days, we opted for 24 h treatment with Pb/M. Neonatal rhesus monkeys received phenobarbital intravenously, followed by midazolam infusion over 24 h under normothermia (T > 36.5 °C-37.5 °C; n = 4) or mild hypothermia (T = 35 °C-36.5 °C; n = 5). Medication doses and blood levels measured were comparable to those in human infants. Animals were euthanized at 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated. Extensive degeneration of neurons and oligodendrocytes was seen at 36 h in both groups within neocortex, basal ganglia, hippocampus and brainstem. Mild hypothermia over 36 h (maintained until terminal perfusion) conferred no protection against the neurotoxic and gliotoxic effects of Pb/M. This is in marked contrast to our previous findings that mild hypothermia is protective in the context of a 5 h-long exposure to sevoflurane in infant macaques. These findings demonstrate that brain injury caused by prolonged exposure to Pb/M in the neonatal primate cannot be ameliorated by mild hypothermia.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin, School of Medicine, Madison, WI, USA.
| | - Sophie H Wang
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Nicole A Fuhler
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Shreya Larson
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kevin R Brunner
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kristin Crosno
- Wisconsin National Primate Research Center, Madison, WI, USA
| | | | - Andres F Mejia
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| |
Collapse
|
19
|
Kim EH, Shin J, Lee BK. Neonatal seizures: diagnostic updates based on new definition and classification. Clin Exp Pediatr 2022; 65:387-397. [PMID: 35381171 PMCID: PMC9348949 DOI: 10.3345/cep.2021.01361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022] Open
Abstract
Neonatal seizures are the most common neurological symptoms caused by various etiologies in the neonatal period, but their diagnosis and treatment are challenging because their pathophysiology and electroclinical manifestations differ from those of patients in older age groups. Many seizures present as electrographic-only events without clinical signs or as obscure clinical manifestations that are difficult to distinguish from other neonatal behaviors. Accordingly, a new definition and classification of neonatal seizures was recently proposed by the International League Against Epilepsy Task Force on neonatal seizures, highlighting the role of electroencephalography in diagnosing and treating neonatal seizures. Neonatal seizures are defined as electrographic events with sudden, paroxysmal, and abnormal alteration of activity and divided into electroclinical seizures and electrographic-only seizures according to their clinical signs, thus excluding clinical events without an electrographic correlation. Seizure types are described by their predominant clinical features and divided into motor (automatisms, clonic, epileptic spasms, myoclonic, tonic, and sequential), nonmotor (autonomic and behavioral arrest), and unclassified. Although many neonatal seizures are acute reactive events caused by hypoxic-ischemic encephalopathy or vascular insults, structural, genetic, or metabolic etiologies of neonatal-onset epilepsy should also be thoroughly evaluated to determine their appropriate management.
Collapse
Affiliation(s)
- Eun-Hee Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Jeongmin Shin
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Byoung Kook Lee
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| |
Collapse
|
20
|
Herzberg EM, Machie M, Glass HC, Shellhaas RA, Wusthoff CJ, Chang T, Abend NS, Chu CJ, Cilio MR, Bonifacio SL, Massey SL, McCulloch CE, Soul JS. Seizure Severity and Treatment Response in Newborn Infants with Seizures Attributed to Intracranial Hemorrhage. J Pediatr 2022; 242:121-128.e1. [PMID: 34780777 DOI: 10.1016/j.jpeds.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We sought to characterize intracranial hemorrhage (ICH) as a seizure etiology in infants born term and preterm. For infants born term, we sought to compare seizure severity and treatment response for multisite vs single-site ICH and hypoxic-ischemic encephalopathy (HIE) with vs without ICH. STUDY DESIGN We studied 112 newborn infants with seizures attributed to ICH and 201 infants born at term with seizures attributed to HIE, using a cohort of consecutive infants with clinically diagnosed and/or electrographic seizures prospectively enrolled in the multicenter Neonatal Seizure Registry. We compared seizure severity and treatment response among infants with complicated ICH, defined as multisite vs single-site ICH and HIE with vs without ICH. RESULTS ICH was a more common seizure etiology in infants born preterm vs term (27% vs 10%, P < .001). Most infants had subclinical seizures (74%) and an incomplete response to initial antiseizure medication (ASM) (68%). In infants born term, multisite ICH was associated with more subclinical seizures than single-site ICH (93% vs 66%, P = .05) and an incomplete response to the initial ASM (100% vs 66%, P = .02). Status epilepticus was more common in HIE with ICH vs HIE alone (38% vs 17%, P = .05). CONCLUSIONS Seizure severity was greater and treatment response was lower among infants born term with complicated ICH. These data support the use of continuous video electroencephalogram monitoring to accurately detect seizures and a multistep treatment plan that considers early use of multiple ASMs, particularly with parenchymal and high-grade intraventricular hemorrhage and complicated ICH.
Collapse
Affiliation(s)
- Emily M Herzberg
- Department of Neurology, Boston Children's Hospital, Boston, MA; Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
| | - Michelle Machie
- Departments of Neurology and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hannah C Glass
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, CA; Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | | | | | - Taeun Chang
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC
| | - Nicholas S Abend
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - M Roberta Cilio
- Division of Pediatric Neurology, Department of Pediatrics, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University, Palo Alto, CA
| | - Shavonne L Massey
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Boston, MA.
| |
Collapse
|
21
|
Vasquez A, Farias-Moeller R, Sánchez-Fernández I, Abend NS, Amengual-Gual M, Anderson A, Arya R, Brenton JN, Carpenter JL, Chapman K, Clark J, Gaillard WD, Glauser T, Goldstein JL, Goodkin HP, Guerriero RM, Lai YC, McDonough TL, Mikati MA, Morgan LA, Novotny EJ, Ostendorf AP, Payne ET, Peariso K, Piantino J, Riviello JJ, Sands TT, Sannagowdara K, Tasker RC, Tchapyjnikov D, Topjian A, Wainwright MS, Wilfong A, Williams K, Loddenkemper T. Super-Refractory Status Epilepticus in Children: A Retrospective Cohort Study. Pediatr Crit Care Med 2021; 22:e613-e625. [PMID: 34120133 DOI: 10.1097/pcc.0000000000002786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To characterize the pediatric super-refractory status epilepticus population by describing treatment variability in super-refractory status epilepticus patients and comparing relevant clinical characteristics, including outcomes, between super-refractory status epilepticus, and nonsuper-refractory status epilepticus patients. DESIGN Retrospective cohort study with prospectively collected data between June 2011 and January 2019. SETTING Seventeen academic hospitals in the United States. PATIENTS We included patients 1 month to 21 years old presenting with convulsive refractory status epilepticus. We defined super-refractory status epilepticus as continuous or intermittent seizures lasting greater than or equal to 24 hours following initiation of continuous infusion and divided the cohort into super-refractory status epilepticus and nonsuper-refractory status epilepticus groups. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We identified 281 patients (157 males) with a median age of 4.1 years (1.3-9.5 yr), including 31 super-refractory status epilepticus patients. Compared with nonsuper-refractory status epilepticus group, super-refractory status epilepticus patients had delayed initiation of first nonbenzodiazepine-antiseizure medication (149 min [55-491.5 min] vs 62 min [33.3-120.8 min]; p = 0.030) and of continuous infusion (495 min [177.5-1,255 min] vs 150 min [90-318.5 min]; p = 0.003); prolonged seizure duration (120 hr [58-368 hr] vs 3 hr [1.4-5.9 hr]; p < 0.001) and length of ICU stay (17 d [9.5-40 d] vs [1.8-8.8 d]; p < 0.001); more medical complications (18/31 [58.1%] vs 55/250 [22.2%] patients; p < 0.001); lower return to baseline function (7/31 [22.6%] vs 182/250 [73.4%] patients; p < 0.001); and higher mortality (4/31 [12.9%] vs 5/250 [2%]; p = 0.010). Within the super-refractory status epilepticus group, status epilepticus resolution was attained with a single continuous infusion in 15 of 31 patients (48.4%), two in 10 of 31 (32.3%), and three or more in six of 31 (19.4%). Most super-refractory status epilepticus patients (30/31, 96.8%) received midazolam as first choice. About 17 of 31 patients (54.8%) received additional treatments. CONCLUSIONS Super-refractory status epilepticus patients had delayed initiation of nonbenzodiazepine antiseizure medication treatment, higher number of medical complications and mortality, and lower return to neurologic baseline than nonsuper-refractory status epilepticus patients, although these associations were not adjusted for potential confounders. Treatment approaches following the first continuous infusion were heterogeneous, reflecting limited information to guide clinical decision-making in super-refractory status epilepticus.
Collapse
Affiliation(s)
- Alejandra Vasquez
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Raquel Farias-Moeller
- Department of Neurology, Division of Pediatric Neurology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI
| | - Iván Sánchez-Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Child Neurology, Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nicholas S Abend
- Division of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Son Espases, Universitat de les Illes Balears, Palma, Spain
| | - Anne Anderson
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Ravindra Arya
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - James N Brenton
- Department of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA
| | - Jessica L Carpenter
- Center for Neuroscience, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Kevin Chapman
- Departments of Pediatrics and Neurology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Justice Clark
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - William D Gaillard
- Center for Neuroscience, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Tracy Glauser
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joshua L Goldstein
- Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Howard P Goodkin
- Department of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA
| | - Rejean M Guerriero
- Division of Pediatric Neurology, Washington University Medical Center, Washington University School of Medicine, Saint Louis, MO
| | - Yi-Chen Lai
- Section of Pediatric Critical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Tiffani L McDonough
- Division of Child Neurology, Department of Neurology, Columbia University Medical Center, Columbia University, New York, NY
- Division of Pediatric Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University Medical Center, Duke University, Durham, NC
| | - Lindsey A Morgan
- Department of Neurology, Division of Pediatric Neurology, University of Washington, Seattle, WA
| | - Edward J Novotny
- Department of Neurology, Division of Pediatric Neurology, University of Washington, Seattle, WA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA
| | - Adam P Ostendorf
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University. Columbus, OH
| | - Eric T Payne
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Katrina Peariso
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Juan Piantino
- Department of Pediatrics, Division Pediatric Neurology, Neuro-Critical Care Program, Oregon Health and Science University, Portland, OR
| | - James J Riviello
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Tristan T Sands
- Division of Child Neurology, Department of Neurology, Columbia University Medical Center, Columbia University, New York, NY
| | - Kumar Sannagowdara
- Department of Neurology, Division of Pediatric Neurology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI
| | - Robert C Tasker
- Division of Critical Care, Departments of Neurology, Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dmitry Tchapyjnikov
- Division of Pediatric Neurology, Duke University Medical Center, Duke University, Durham, NC
| | - Alexis Topjian
- Critical Care and Pediatrics, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Mark S Wainwright
- Department of Neurology, Division of Pediatric Neurology, University of Washington, Seattle, WA
| | - Angus Wilfong
- Department of Child Health, University of Arizona College of Medicine and Barrow's Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - Korwyn Williams
- Department of Child Health, University of Arizona College of Medicine and Barrow's Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Gailus B, Naundorf H, Welzel L, Johne M, Römermann K, Kaila K, Löscher W. Long-term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: Cognitive impairment, anxiety, epilepsy, and structural brain alterations. Epilepsia 2021; 62:2826-2844. [PMID: 34458992 DOI: 10.1111/epi.17050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Birth asphyxia is a major cause of hypoxic-ischemic encephalopathy (HIE) in neonates and often associated with mortality, neonatal seizures, brain damage, and later life motor, cognitive, and behavioral impairments and epilepsy. Preclinical studies on rodent models are needed to develop more effective therapies for preventing HIE and its consequences. Thus far, the most popular rodent models have used either exposure of intact animals to hypoxia-only, or a combination of hypoxia and carotid occlusion, for the induction of neonatal seizures and adverse outcomes. However, such models lack systemic hypercapnia, which is a fundamental constituent of birth asphyxia with major effects on neuronal excitability. Here, we use a recently developed noninvasive rat model of birth asphyxia with subsequent neonatal seizures to study later life adverse outcome. METHODS Intermittent asphyxia was induced for 30 min by exposing male and female postnatal day 11 rat pups to three 7 + 3-min cycles of 9% and 5% O2 at constant 20% CO2 . All pups exhibited convulsive seizures after asphyxia. A set of behavioral tests were performed systematically over 14 months following asphyxia, that is, a large part of the rat's life span. Video-electroencephalographic (EEG) monitoring was used to determine whether asphyxia led to the development of epilepsy. Finally, structural brain alterations were examined. RESULTS The animals showed impaired spatial learning and memory and increased anxiety when tested at an age of 3-14 months. Video-EEG at ~10 months showed an abundance of spontaneous seizures, which was paralleled by neurodegeneration in the hippocampus and thalamus, and by aberrant mossy fiber sprouting. SIGNIFICANCE The present model of birth asphyxia recapitulates several of the later life consequences associated with human HIE. This model thus allows evaluation of the efficacy of novel therapies designed to prevent HIE and seizures following asphyxia, and of how such therapies might alleviate long-term adverse consequences.
Collapse
Affiliation(s)
- Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Hannah Naundorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
23
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
24
|
Affiliation(s)
- David W Kimberlin
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL
| | - Karen M Puopolo
- Department of Pediatrics, Section of Newborn Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
25
|
Garg A, Suthar R, Sundaram V, Kumar P, Angurana SK. Clinical profile, aetiology, short-term outcome and predictors of poor outcome of neonatal seizures among out-born neonates admitted to a neonatal unit in Paediatric emergency of a tertiary care hospital in North India: A prospective observational study. Trop Doct 2021; 51:365-371. [PMID: 34018889 DOI: 10.1177/00494755211016226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neonatal seizures are common manifestations of several neurological or systemic disorders and associated with high morbidity, mortality and poor short- and long-term developmental outcomes. It is important to determine the aetiology and factors that determine the poor outcome, more so in a newly developed setting. The early detection of predictors of poor outcome will help in planning acute management, counselling, follow-up and rehabilitation services. In this prospective observational study, we looked at the clinical profile, aetiology, short-term outcomes and predictors of poor outcome of neonatal seizures among out-born neonates. The common causes were hypoxic ischaemic encephalopathy, sepsis and metabolic disturbances. One-third of neonates had poor outcome. Abnormal neurological and cardiorespiratory examination at admission; low oxygen saturation, glucose and pH; and hypoxic ischemic encephalopathy-III were predictors of poor outcome.
Collapse
Affiliation(s)
- Ashish Garg
- Junior Resident, Department of Paediatrics, Advanced Paediatric Centre, Postgraduate Institute of Medical Education and Research (29751PGIMER), Chandigarh, India
| | - Renu Suthar
- Associate Professor, Pediatric Neurology Unit, Department of Paediatrics, Advanced Paediatric Centre, Postgraduate Institute of Medical Education and Research (29751PGIMER), Chandigarh, India
| | - Venkataseshan Sundaram
- Additional Professor, Neonatology Unit, Department of Paediatrics, Advanced Paediatric Centre, Postgraduate Institute of Medical Education and Research (29751PGIMER), Chandigarh, India
| | - Praveen Kumar
- Professor and Unit Head, Neonatology Unit, Department of Paediatrics, Advanced Paediatric Centre, Postgraduate Institute of Medical Education and Research (29751PGIMER), Chandigarh, India
| | - Suresh K Angurana
- Assistant Professor, Division of Paediatric Critical Care, Department of Paediatrics, Advanced Paediatric Centre, Postgraduate Institute of Medical Education and Research (29751PGIMER), Chandigarh, India
| |
Collapse
|
26
|
Johne M, Käufer C, Römermann K, Gailus B, Gericke B, Löscher W. A combination of phenobarbital and the bumetanide derivative bumepamine prevents neonatal seizures and subsequent hippocampal neurodegeneration in a rat model of birth asphyxia. Epilepsia 2021; 62:1460-1471. [PMID: 33955541 DOI: 10.1111/epi.16912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Bumetanide was suggested as an adjunct to phenobarbital for suppression of neonatal seizures. This suggestion was based on the idea that bumetanide, by reducing intraneuronal chloride accumulation through inhibition of the Na-K-2Cl cotransporter NKCC1, may attenuate or abolish depolarizing γ-aminobutyric acid (GABA) responses caused by birth asphyxia. However, a first proof-of-concept clinical trial failed. This could have had several reasons, including bumetanide's poor brain penetration, the wide cellular NKCC1 expression pattern in the brain, and problems with the general concept of NKCC1's role in neonatal seizures. We recently replicated the clinical failure of bumetanide to potentiate phenobarbital's effect in a novel rat model of birth asphyxia. In this study, a clinically relevant dose (0.3 mg/kg) of bumetanide was used that does not lead to NKCC1-inhibitory brain levels. The aim of the present experiments was to examine whether a much higher dose (10 mg/kg) of bumetanide is capable of potentiating phenobarbital in this rat model. Furthermore, the effects of the two lipophilic bumetanide derivatives, the ester prodrug N,N-dimethylaminoethylester of bumetanide (DIMAEB) and the benzylamine derivative bumepamine, were examined at equimolar doses. METHODS Intermittent asphyxia was induced for 30 min by exposing male and female P11 rat pups to three 7 + 3 min cycles of 9% and 5% O2 at constant 20% CO2 . All control pups exhibited neonatal seizures after the asphyxia. RESULTS Even at 10 mg/kg, bumetanide did not potentiate the effect of a submaximal dose (15 mg/kg) of phenobarbital on seizure incidence, whereas a significant suppression of neonatal seizures was determined for combinations of phenobarbital with DIMAEB or, more effectively, bumepamine, which, however, does not inhibit NKCC1. Of interest, the bumepamine/phenobarbital combination prevented the neurodegenerative consequences of asphyxia and seizures in the hippocampus. SIGNIFICANCE Both bumepamine and DIMAEB are promising tools that may help to develop more effective lead compounds for clinical trials.
Collapse
Affiliation(s)
- Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
27
|
Falsaperla R, Scalia B, Giugno A, Pavone P, Motta M, Caccamo M, Ruggieri M. Treating the symptom or treating the disease in neonatal seizures: a systematic review of the literature. Ital J Pediatr 2021; 47:85. [PMID: 33827647 PMCID: PMC8028713 DOI: 10.1186/s13052-021-01027-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Aim The existing treatment options for neonatal seizures have expanded over the last few decades, but no consensus has been reached regarding the optimal therapeutic protocols. We systematically reviewed the available literature examining neonatal seizure treatments to clarify which drugs are the most effective for the treatment of specific neurologic disorders in newborns. Method We reviewed all available, published, literature, identified using PubMed (published between August 1949 and November 2020), that focused on the pharmacological treatment of electroencephalogram (EEG)-confirmed neonatal seizures. Results Our search identified 427 articles, of which 67 were included in this review. Current knowledge allowed us to highlight the good clinical and electrographic responses of genetic early-onset epilepsies to sodium channel blockers and the overall good response to levetiracetam, whose administration has also been demonstrated to be safe in both full-term and preterm newborns. Interpretation Our work contributes by confirming the limited availability of evidence that can be used to guide the use of anticonvulsants to treat newborns in clinical practice and examining the efficacy and potentially harmful side effects of currently available drugs when used to treat the developing newborn brain; therefore, our work might also serve as a clinical reference for future studies.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Bruna Scalia
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy.
| | - Andrea Giugno
- Post graduate programme in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Piero Pavone
- Unit of Clinical Pediatrics, A.O.U. "Policlinico", P.O. "G. Rodolico", University of Catania, Catania, Italy
| | - Milena Motta
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Martina Caccamo
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine Section of Pediatrics and Child Neuropsychiatry, A.O.U. San Marco- Policlinico, University of Catania, Catania, Italy
| |
Collapse
|
28
|
Noguchi KK, Fuhler NA, Wang SH, Capuano S, Brunner KR, Larson S, Crosno K, Simmons HA, Mejia AF, Martin LD, Dissen GA, Brambrink A, Ikonomidou C. Brain pathology caused in the neonatal macaque by short and prolonged exposures to anticonvulsant drugs. Neurobiol Dis 2021; 149:105245. [PMID: 33385515 PMCID: PMC7856070 DOI: 10.1016/j.nbd.2020.105245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 01/18/2023] Open
Abstract
Barbiturates and benzodiazepines are potent GABAA receptor agonists and strong anticonvulsants. In the developing brain they can cause neuronal and oligodendroglia apoptosis, impair synaptogenesis, inhibit neurogenesis and trigger long-term neurocognitive sequelae. In humans, the vulnerable period is projected to extend from the third trimester of pregnancy to the third year of life. Infants with seizures and epilepsies may receive barbiturates, benzodiazepines and their combinations for days, months or years. How exposure duration affects neuropathological sequelae is unknown. Here we investigated toxicity of phenobarbital/midazolam (Pb/M) combination in the developing nonhuman primate brain. Neonatal rhesus monkeys received phenobarbital intravenously, followed by infusion of midazolam over 5 (n = 4) or 24 h (n = 4). Animals were euthanized at 8 or 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated, physiological parameters remained at optimal levels. Compared to naïve controls, Pb/M exposed brains displayed widespread apoptosis affecting neurons and oligodendrocytes. Pattern and severity of cell death differed depending on treatment-duration, with more extensive neurodegeneration following longer exposure. At 36 h, areas of the brain not affected at 8 h displayed neuronal apoptosis, while oligodendroglia death was most prominent at 8 h. A notable feature at 36 h was degeneration of neuronal tracts and trans-neuronal death of neurons, presumably following their disconnection from degenerated presynaptic partners. These findings demonstrate that brain toxicity of Pb/M in the neonatal primate brain becomes more severe with longer exposures and expands trans-synaptically. Impact of these sequelae on neurocognitive outcomes and the brain connectome will need to be explored.
Collapse
Affiliation(s)
- Kevin K Noguchi
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Nicole A Fuhler
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Sophie H Wang
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kevin R Brunner
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Shreya Larson
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kristin Crosno
- Wisconsin National Primate Research Center, Madison, WI, USA
| | | | - Andres F Mejia
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Lauren D Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Ansgar Brambrink
- Department of Anesthesiology, Columbia University, New York Presbyterian Hospital, Irving Medical Center, New York, NY, USA
| | - Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin, School of Medicine, Madison, WI, USA.
| |
Collapse
|
29
|
Pisani F, Spagnoli C, Falsaperla R, Nagarajan L, Ramantani G. Seizures in the neonate: A review of etiologies and outcomes. Seizure 2021; 85:48-56. [PMID: 33418166 DOI: 10.1016/j.seizure.2020.12.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neonatal seizures occur in their majority in close temporal relation to an acute brain injury or systemic insult, and are accordingly defined as acute symptomatic or provoked seizures. However less frequently, unprovoked seizures may also present in the neonatal period as secondary to structural brain abnormalities, thus corresponding to structural epilepsies, or to genetic conditions, thus corresponding to genetic epilepsies. Unprovoked neonatal seizures should be thus considered as the clinical manifestation of early onset structural or genetic epilepsies that often have the characteristics of early onset epileptic encephalopathies. In this review, we address the conundrum of neonatal seizures including acute symptomatic, remote symptomatic, provoked, and unprovoked seizures, evolving to post-neonatal epilepsies, and neonatal onset epilepsies. The different clinical scenarios involving neonatal seizures, each with their distinct post-neonatal evolution are presented. The structural and functional impact of neonatal seizures on brain development and the concept of secondary epileptogenesis, with or without a following latent period after the acute seizures, are addressed. Finally, we underline the need for an early differential diagnosis between an acute symptomatic seizure and an unprovoked seizure, since it is associated with fundamental differences in clinical evolution. These are crucial aspects for neonatal management, counselling and prognostication. In view of the above aspects, we provide an outlook on future strategies and potential lines of research in this field.
Collapse
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatry Unit, Medicine and Surgery Department, University of Parma, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Department of Pediatrics, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit, University-Hospital Policlinico Vittorio Emanuele, Catania, Italy
| | - Lakshmi Nagarajan
- Children's Neuroscience Service, Department of Neurology, Perth Children's Hospital, Australia
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich, Switzerland.
| |
Collapse
|
30
|
Abbasi H, Gunn AJ, Unsworth CP, Bennet L. Deep Convolutional Neural Networks for the Accurate Identification of High-Amplitude Stereotypic Epileptiform Seizures in the Post-Hypoxic-Ischemic EEG of Preterm Fetal Sheep. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1-4. [PMID: 33136538 DOI: 10.1109/embc44109.2020.9237753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neonatal seizures after birth may contribute to brain injury after an hypoxic-ischemic (HI) event, impaired brain development and a later life risk for epilepsy. Despite neural immaturity, seizures can also occur in preterm infants. However, surprisingly little is known about their evolution after an HI insult or patterns of expression. An improved understanding of preterm seizures will help facilitate diagnosis and prognosis and the implementation of treatments. This requires improved detection of seizures, including electrographic seizures. We have established a stable preterm fetal sheep model of HI that results in different types of post-HI seizures. These including the expression of epileptiform transients during the latent phase (0-6 h) of cerebral energy recovery, and bursts of high amplitude stereotypic evolving seizures (HAS) during the secondary phase of cerebral energy failure (∼6-72 h). We have previously developed successful automated machine-learning strategies for accurate identification and quantification of the evolving micro-scale EEG patterns (e.g. gamma spikes and sharp waves), during the latent phase. The current paper introduces, for the first time, a real-time approach that employs a 15-layer deep convolutional neural network (CNN) classifier, directly fed with the raw EEG time-series, to identify HAS in the 1024Hz and 256Hz down-sampled data in our preterm fetuses post-HI. The classifier was trained and tested using EEG segments during ∼6 to 48 hours post-HI recordings. The classifier accurately identified HAS with 98.52% accuracy in the 1024Hz and 97.78% in the 256Hz data. Clinical relevance-Results highlight the promising ability of the proposed CNN classifier for accurate identification of HI related seizures in the neonatal preterm brain, if further applied to the current 256Hz clinical recordings, in real-world.
Collapse
|
31
|
Johne M, Römermann K, Hampel P, Gailus B, Theilmann W, Ala-Kurikka T, Kaila K, Löscher W. Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective. Epilepsia 2020; 62:920-934. [PMID: 33258158 DOI: 10.1111/epi.16778] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Neonatal seizures are the most frequent type of neurological emergency in newborn infants, often being a consequence of prolonged perinatal asphyxia. Phenobarbital is currently the most widely used antiseizure drug for treatment of neonatal seizures, but fails to stop them in ~50% of cases. In a neonatal hypoxia-only model based on 11-day-old (P11) rats, the NKCC1 inhibitor bumetanide was reported to potentiate the antiseizure activity of phenobarbital, whereas it was ineffective in a human trial in neonates. The aim of this study was to evaluate the effect of clinically relevant doses of bumetanide as add-on to phenobarbital on neonatal seizures in a noninvasive model of birth asphyxia in P11 rats, designed for better translation to the human term neonate. METHODS Intermittent asphyxia was induced for 30 minutes by exposing the rat pups to three 7 + 3-minute cycles of 9% and 5% O2 at constant 20% CO2 . Drug treatments were administered intraperitoneally either before or immediately after asphyxia. RESULTS All untreated rat pups had seizures within 10 minutes after termination of asphyxia. Phenobarbital significantly blocked seizures when applied before asphyxia at 30 mg/kg but not 15 mg/kg. Administration of phenobarbital after asphyxia was ineffective, whereas midazolam (0.3 or 1 mg/kg) exerted significant antiseizure effects when administered before or after asphyxia. In general, focal seizures were more resistant to treatment than generalized convulsive seizures. Bumetanide (0.3 mg/kg) alone or in combination with phenobarbital (15 or 30 mg/kg) exerted no significant effect on seizure occurrence. SIGNIFICANCE The data demonstrate that bumetanide does not increase the efficacy of phenobarbital in a model of birth asphyxia, which is consistent with the negative data of the recent human trial. The translational data obtained with the novel rat model of birth asphyxia indicate that it is a useful tool to evaluate novel treatments for neonatal seizures.
Collapse
Affiliation(s)
- Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Philip Hampel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Wiebke Theilmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Tommi Ala-Kurikka
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
32
|
Theilmann W, Brandt C, Bohnhorst B, Winstroth AM, Das AM, Gramer M, Kipper A, Kalesse M, Löscher W. Hydrolytic biotransformation of the bumetanide ester prodrug DIMAEB to bumetanide by esterases in neonatal human and rat serum and neonatal rat brain-A new treatment strategy for neonatal seizures? Epilepsia 2020; 62:269-278. [PMID: 33140458 DOI: 10.1111/epi.16746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The loop diuretic bumetanide has been proposed previously as an adjunct treatment for neonatal seizures because bumetanide is thought to potentiate the action of γ-aminobutyric acid (GABA)ergic drugs such as phenobarbital by preventing abnormal intracellular accumulation of chloride and the subsequent "GABA shift." However, a clinical trial in neonates failed to demonstrate such a synergistic effect of bumetanide, most likely because this drug only poorly penetrates into the brain. This prompted us to develop lipophilic prodrugs of bumetanide, such as the N,N-dimethylaminoethyl ester of bumetanide (DIMAEB), which rapidly enter the brain where they are hydrolyzed by esterases to the parent compound, as demonstrated previously by us in adult rodents. However, it is not known whether esterase activity in neonates is sufficient to hydrolyze ester prodrugs such as DIMAEB. METHODS In the present study, we examined whether esterases in neonatal serum of healthy term infants are capable of hydrolyzing DIMAEB to bumetanide and whether this activity is different from the serum of adults. Furthermore, to extrapolate the findings to brain tissue, we performed experiments with brain tissue and serum of neonatal and adult rats. RESULTS Serum from 1- to 2-day-old infants was capable of hydrolyzing DIMAEB to bumetanide at a rate similar to that of serum from adult individuals. Similarly, serum and brain tissue of neonatal rats rapidly hydrolyzed DIMAEB to bumetanide. SIGNIFICANCE These data provide a prerequisite for further evaluating the potential of bumetanide prodrugs as add-on therapy to phenobarbital and other antiseizure drugs as a new strategy for improving pharmacotherapy of neonatal seizures.
Collapse
Affiliation(s)
- Wiebke Theilmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bettina Bohnhorst
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anne-Mieke Winstroth
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anibh Martin Das
- Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Martina Gramer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andi Kipper
- Institute for Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Markus Kalesse
- Institute for Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
33
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
34
|
Vučetić Tadić B, Kravljanac R, Sretenović V, Martić J, Vukomanović V. The features of neonatal seizures as predictors of drug-resistant epilepsy in children. Epilepsy Behav 2020; 106:107004. [PMID: 32179504 DOI: 10.1016/j.yebeh.2020.107004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE The aim of this study was to evaluate the predictive value of the features of neonatal seizures for pharmacoresistant epilepsy in children. METHOD This is a retrospective study that involved all children diagnosed as having epilepsy who had neonatal seizures and who were hospitalized at the Neurology Department of the Mother and Child Healthcare Institute in Belgrade from January the 1st 2017 until December 31st 2017. The following parameters and their impact on the outcome were investigated: perinatal data, the characteristics of epileptic seizures in the neonatal period, and the response to anticonvulsant treatment. The presence of pharmacoresistance was observed as an outcome parameter. Univariate and multivariate logistic regression analyses were used to define predictors of drug-resistant epilepsy. RESULTS The study involved 55 children, 35 (63.6%) male and 20 (36.4%) female. The average age of the children at the end of the observation period was 5.17 years (min: 0.25, max: 17.75, iqr (interquartile range): 6.92). Pharmacoresistant epilepsy was found in 36 (65.5%) children. The most common type of epilepsy was focal, which affected 30 patients (54.5%), than generalized, which affected 15 patients (27.3%), and combined generalized and focal, which affected 8 patients (14.5%). At the end of the observation period, 28 patients (50.9%) had no seizures, while 14 (25.5%) had daily seizures. It was found that the pharmacoresistant neonatal seizures and metabolic-genetic disorders were predictive factors of the occurrence of pharmacoresistant epilepsy. CONCLUSION Patients prone to developing pharmacoresistant epilepsy might be identified as early as the neonatal and early infant period. High incidence of asphyxia cooccurring with established genetic-metabolic disease further emphasizes need for genetic testing in infants with neonatal seizures including in the presence of hypoxic-ischemic injury.
Collapse
Affiliation(s)
| | - Ružica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, Belgrade, Serbia; University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | | | - Jelena Martić
- Institute for Mother and Child Healthcare of Serbia, Belgrade, Serbia; University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Vladislav Vukomanović
- Institute for Mother and Child Healthcare of Serbia, Belgrade, Serbia; University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| |
Collapse
|
35
|
Czech T, Pardo AC. Utility of Rapid Sequence Magnetic Resonance Imaging in Guiding Management of Patients With Neonatal Seizures. Pediatr Neurol 2020; 103:57-60. [PMID: 31570293 DOI: 10.1016/j.pediatrneurol.2019.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To determine whether the use of rapid sequence magnetic resonance imaging (rsMRI) is associated with improved efficiency of care when managing infants with suspected neonatal onset seizures. METHODS We conducted a preintervention and postintervention study of the use of rsMRI in term infants with suspected neonatal onset seizures without evidence of hypoxic ischemic encephalopathy. Study patients were collected from a contemporary cohort from 2016 to 2017 and were compared with a historical cohort from 2014. The primary outcome was hospital length of stay. Secondary outcomes included use of other imaging modalities (head ultrasound, computed tomography [CT], and MRI), use of antiseizure medications at the time of discharge, and cost of hospitalization. Continuous variables were compared using the Mann-Whitney U test and categorical variables using the Fisher's exact or χ2 tests. A two-tailed P < 0.05 was considered statistically significant. RESULTS Ninety-five patients met inclusion criteria, 47 in the preintervention and 48 in the postintervention group. Incorporation of the protocol-guided rsMRI in the evaluation of patients with neonatal seizures was associated with decreased use of CT scans (34% vs 10%, P = 0.007) and full MRIs (85% vs 62%, P = 0.019). Use of head ultrasound, length of stay, and costs were not different between groups. CONCLUSIONS In patients with neonatal seizures, rsMRI was not associated with a reduced hospital length of stay. The use of rsMRI resulted in fewer neonates receiving CT scans during their hospitalization. rsMRI may hasten the identification of stroke or hemorrhage in neonates with seizures.
Collapse
Affiliation(s)
- Theresa Czech
- Division of Neurology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Andrea C Pardo
- Division of Neurology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
36
|
The Use of Antidepressant Medications During Pregnancy and the Risk of Neonatal Seizures: A Systematic Review. J Clin Psychopharmacol 2020; 39:479-484. [PMID: 31425466 DOI: 10.1097/jcp.0000000000001093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE This review examined the current literature about the potential relationship between the use of antidepressants during pregnancy and neonatal seizures. METHODS PubMed was searched for English language reports published between January 1, 1996, and October 31, 2018, by using combinations of the following key words: pregnancy, neonatal outcome, neonatal convulsion, neonatal seizure, SSRI, selective serotonin norepinephrine reuptake inhibitor (SNRI), tricyclic antidepressant (TCA), antidepressants, sertraline, fluoxetine, paroxetine, citalopram, escitalopram, fluvoxamine, venlafaxine, mirtazapine, duloxetine, bupropion, amitriptyline, imipramine, and clomipramine. FINDINGS A total of 9 relevant studies that met the review criteria were examined. The prevalence rates of neonatal seizures in the antidepressant groups and control groups were 0.30% to 0.91% and 0.10% to 0.30%, respectively. The use of selective serotonin reuptake inhibitors was associated with up to 5-fold increase in the risk of neonatal seizures. Compared with the controls, higher risks were reported in newborns of pregnant women using any antidepressant or tricyclic antidepressants albeit in a limited number of studies. Exposure to antidepressants in the third trimester of pregnancy appeared to be associated more with neonatal seizures compared with earlier exposure. IMPLICATONS Although an increased risk of neonatal seizures in newborns antenatally exposed to antidepressants especially selective serotonin reuptake inhibitors may be suggested, the available studies have severe methodological limitations to enable any firm conclusion.
Collapse
|
37
|
Quinlan S, Merino-Serrais P, Di Grande A, Dussmann H, Prehn JHM, Ní Chonghaile T, Henshall DC, Jimenez-Mateos EM. The Anti-inflammatory Compound Candesartan Cilexetil Improves Neurological Outcomes in a Mouse Model of Neonatal Hypoxia. Front Immunol 2019; 10:1752. [PMID: 31396238 PMCID: PMC6667988 DOI: 10.3389/fimmu.2019.01752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/10/2019] [Indexed: 11/15/2022] Open
Abstract
Recent studies suggest that mild hypoxia-induced neonatal seizures can trigger an acute neuroinflammatory response leading to long-lasting changes in brain excitability along with associated cognitive and behavioral deficits. The cellular elements and signaling pathways underlying neuroinflammation in this setting remain incompletely understood but could yield novel therapeutic targets. Here we show that brief global hypoxia-induced neonatal seizures in mice result in transient cytokine production, a selective expansion of microglia and long-lasting changes to the neuronal structure of pyramidal neurons in the hippocampus. Treatment of neonatal mice after hypoxia-seizures with the novel anti-inflammatory compound candesartan cilexetil suppressed acute seizure-damage and mitigated later-life aggravated seizure responses and hippocampus-dependent learning deficits. Together, these findings improve our understanding of the effects of neonatal seizures and identify potentially novel treatments to protect against short and long-lasting harmful effects.
Collapse
Affiliation(s)
- Sean Quinlan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paula Merino-Serrais
- Division for Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Departamento de Neurobiologia Funcional y de Sistemas, Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Alessandra Di Grande
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.,INFANT Research Centre, UCC, Cork, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|