1
|
Bossa M, Alaniz-Zanon MS, Monesterolo NE, Monge MDP, Coria YM, Chulze SN, Chiotta ML. Aflatoxin Decontamination in Maize Steep Liquor Obtained from Bioethanol Production Using Laccases from Species within the Basidiomycota Phylum. Toxins (Basel) 2024; 16:27. [PMID: 38251243 PMCID: PMC10819231 DOI: 10.3390/toxins16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Maize (Zea mays L.) is an important crop in Argentina. Aspergillus section Flavi can infect this crop at the pre-harvest stage, and the harvested grains can be contaminated with aflatoxins (AFs). During the production of bioethanol from maize, AF levels can increase up to three times in the final co-products, known as, dry and wet distiller's grain with solubles (DDGS and WDGS), intended for animal feed. Fungal enzymes like laccases can be a useful tool for reducing AF contamination in the co-products obtained from this process. The aim of the present study was to evaluate the ability of laccase enzymes included in enzymatic extracts (EE) produced by different species in the Basidiomycota phylum to reduce AF (AFB1 and AFB2) accumulation under the conditions of in vitro assays. Four laccase activities (5, 10, 15, and 20 U/mL) exerted by nine isolates were evaluated in the absence and presence of vanillic acid (VA), serving as a laccase redox mediator for the degradation of total AFs. The enzymatic stability in maize steep liquor (MSL) was confirmed after a 60 h incubation period. The most effective EE in terms of reducing AF content in the buffer was selected for an additional assay carried out under the same conditions using maize steep liquor obtained after the saccharification stage during the bioethanol production process. The highest degradation percentages were observed at 20 U/mL of laccase enzymatic activity and 1 mM of VA, corresponding to 26% for AFB1 and 26.6% for AFB2. The present study provides valuable data for the development of an efficient tool based on fungal laccases for preventing AF accumulation in the co-products of bioethanol produced from maize used for animal feed.
Collapse
Affiliation(s)
- Marianela Bossa
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - María Silvina Alaniz-Zanon
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - Noelia Edith Monesterolo
- Instituto de Biotecnología Ambiental y de la Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina;
| | - María del Pilar Monge
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - Yamila Milagros Coria
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - Sofía Noemí Chulze
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| | - María Laura Chiotta
- Instituto de Investigación en Micología y Micotoxicología (IMICO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Córdoba, Argentina; (M.B.); (M.S.A.-Z.); (M.d.P.M.); (Y.M.C.); (S.N.C.)
| |
Collapse
|
2
|
Hevilla V, Sonseca A, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Enzymatic Synthesis of Polyesters and Their Bioapplications: Recent Advances and Perspectives. Macromol Biosci 2021; 21:e2100156. [PMID: 34231313 DOI: 10.1002/mabi.202100156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Indexed: 01/17/2023]
Abstract
This article reviews the most important advances in the enzymatic synthesis of polyesters. In first place, the different processes of polyester enzymatic synthesis, i.e., polycondensation, ring opening, and chemoenzymatic polymerizations, and the key parameters affecting these reactions, such as enzyme, concentration, solvent, or temperature, are analyzed. Then, the latest articles on the preparation of polyesters either by direct synthesis or via modification are commented. Finally, the main bioapplications of enzymatically obtained polyesters, i.e., antimicrobial, drug delivery, or tissue engineering, are described. It is intended to point out the great advantages that enzymatic polymerization present to obtain polymers and the disadvantages found to develop applied materials.
Collapse
Affiliation(s)
- Víctor Hevilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Agueda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
| | - Coro Echeverría
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Alexandra Muñoz-Bonilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Marta Fernández-García
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| |
Collapse
|
3
|
A Fungal Ascorbate Oxidase with Unexpected Laccase Activity. Int J Mol Sci 2020; 21:ijms21165754. [PMID: 32796622 PMCID: PMC7460845 DOI: 10.3390/ijms21165754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
Ascorbate oxidases are an enzyme group that has not been explored to a large extent. So far, mainly ascorbate oxidases from plants and only a few from fungi have been described. Although ascorbate oxidases belong to the well-studied enzyme family of multi-copper oxidases, their function is still unclear. In this study, Af_AO1, an enzyme from the fungus Aspergillus flavus, was characterized. Sequence analyses and copper content determination demonstrated Af_AO1 to belong to the multi-copper oxidase family. Biochemical characterization and 3D-modeling revealed a similarity to ascorbate oxidases, but also to laccases. Af_AO1 had a 10-fold higher affinity to ascorbic acid (KM = 0.16 ± 0.03 mM) than to ABTS (KM = 1.89 ± 0.12 mM). Furthermore, the best fitting 3D-model was based on the ascorbate oxidase from Cucurbita pepo var. melopepo. The laccase-like activity of Af_AO1 on ABTS (Vmax = 11.56 ± 0.15 µM/min/mg) was, however, not negligible. On the other hand, other typical laccase substrates, such as syringaldezine and guaiacol, were not oxidized by Af_AO1. According to the biochemical and structural characterization, Af_AO1 was classified as ascorbate oxidase with unusual, laccase-like activity.
Collapse
|
4
|
Biotransformation of industrial tannins by filamentous fungi. Appl Microbiol Biotechnol 2018; 102:10361-10375. [PMID: 30293196 DOI: 10.1007/s00253-018-9408-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Tannins are secondary metabolites that are widely distributed in the plant kingdom. They act as growth inhibitors for many microorganisms: they are released upon microbial attack, helping to fight infection in plant tissues. Extraction of tannins from plants is an active industrial sector with several applications, including oenology, animal feeding, mining, the chemical industry, and, in particular, the tanning industry. However, tannins are also considered very recalcitrant pollutants in wastewater of diverse origin. The ability to grow on plant substrates rich in tannins and on industrial tannin preparations is usually considered typical of some species of fungi. These organisms are able to tolerate the toxicity of tannins thanks to the production of enzymes that transform or degrade these substrates, mainly through hydrolysis and oxidation. Filamentous fungi capable of degrading tannins could have a strong environmental impact as bioremediation agents, in particular in the treatment of tanning wastewaters.
Collapse
|
5
|
Iqbal HMN. The Quest for Materials-Based Hydrogels with Antimicrobial and Antiviral Potentialities. Open Virol J 2018; 12:69-79. [PMID: 30288196 PMCID: PMC6142656 DOI: 10.2174/1874357901812010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 03/14/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022] Open
Abstract
In recent years, the Antimicrobial Resistance (AMR) or Multidrug Resistance (MDR) and viral infections have become serious health issues, globally. Finally, after decades of negligence, the AMR/MDR and viral infection issues have now captured a worldwide attention of the global leaders, public health community, legalization authorities, academia, research-based organizations, and medicinal sector of the modern world, alike. Aiming to resolve these issues, various methodological approaches have been exploited, in the past several years. Among them, biomaterials-based therapeutic hydrogels are of supreme interests for an enhanced and efficient delivery in the current biomedical sector. Depending on the regulatory authorities and practices, the antibiotics consumption was expedited than ever before driven by rising and increasing access, across the globe. Though the emergence of AMR/MDR in microorganisms and emergence/reemergence of viral infections are considered as a natural phenomenon, however, these concerning issues have been driven by those mentioned above faulty human behavior. In this context, many scientists, around the globe, are working at wider spectrum to resolve this problematic issue, efficiently. A proper understanding of biological mechanisms is essential to combat this global threat to the living beings. In this review, an effort has been made to highlight the potent features of materials based hydrogels possessing antimicrobial and antiviral potentialities. The information is also given on the potential research activities, and possible mechanisms of actions of hydrogels are discussed with a closeup look at the future recommendations.
Collapse
Affiliation(s)
- Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| |
Collapse
|
6
|
Huerta-Ángeles G, Knotková K, Knotek P, Židek O, Brandejsová M, Pokorný M, Vagnerová H, Roy I, Velebný V. Aligned nanofibres made of poly(3-hydroxybutyrate) grafted to hyaluronan for potential healthcare applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:32. [PMID: 29546462 DOI: 10.1007/s10856-018-6045-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
In this work, a hybrid copolymer consisting of poly(3-hydroxybutyrate) grafted to hyaluronic acid (HA) was synthesised and characterised. Once formed, the P(3HB)-g-HA copolymer was soluble in water allowing a green electrospinning process. The diameters of nanofibres can be tailored by simply varying the Mw of polymer. The optimization of the process allowed to produce fibres of average diameter in the range of 100-150 nm and low polydispersity. The hydrophobic modification has not only increased the fibre diameter, but also the obtained layers were homogenous. At the nanoscale, the hybrid copolymer exhibited an unusual hairy topography. Moreover, the hardness and tensile properties of the hybrid were found to be superior compared to fibres made of unmodified HA. Particularly, this reinforcement was achieved at the longitudinal direction. Additionally, this work reports the use in the composition of a water-soluble copolymer containing photo cross-linkable moieties to produce insoluble materials post-electrospinning. The derivatives as well as their nanofibrous mats retain the biocompatibility of the natural polymers used for the fabrication.
Collapse
Affiliation(s)
| | - Kateřina Knotková
- Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic
| | - Petr Knotek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic
| | - Ondrej Židek
- Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic
| | | | - Marek Pokorný
- Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic
| | - Hana Vagnerová
- Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic
| | - Ipsita Roy
- Department of Life Science, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Vladimir Velebný
- Department of Life Science, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| |
Collapse
|
7
|
Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X. Biotransformation of lignocellulosic materials into value-added products-A review. Int J Biol Macromol 2017; 98:447-458. [PMID: 28163129 DOI: 10.1016/j.ijbiomac.2017.01.133] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023]
Abstract
In the past decade, with the key biotechnological advancements, lignocellulosic materials have gained a particular importance. In serious consideration of global economic, environmental and energy issues, research scientists have been re-directing their interests in (re)-valorizing naturally occurring lignocellulosic-based materials. In this context, lignin-modifying enzymes (LMEs) have gained considerable attention in numerous industrial and biotechnological processes. However, their lower catalytic efficiencies and operational stabilities limit their practical and multipurpose applications in various sectors. Therefore, to expand the range of natural industrial biocatalysts e.g. LMEs, significant progress related to the enzyme biotechnology has appeared. Owing to the abundant lignocellulose availability along with LMEs in combination with the scientific advances in the biotechnological era, solid-phase biocatalysts can be economically tailored on a large scale. This review article outlines first briefly on the lignocellulose materials as a potential source for biotransformation into value-added products including composites, fine chemicals, nutraceutical, delignification, and enzymes. Comprehensive information is also given on the purification and characterization of LMEs to present their potential for the industrial and biotechnological sector.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|