1
|
Binduga UE, Kopeć A, Skoczylas J, Szychowski KA. Comparison of the Cytotoxic Mechanisms of Different Garlic ( Allium sativum L.) Cultivars with the Crucial Involvement of Peroxisome Proliferator-Activated Receptor Gamma. Int J Mol Sci 2025; 26:387. [PMID: 39796240 PMCID: PMC11720107 DOI: 10.3390/ijms26010387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Garlic (Allium sativum L.) is one of the oldest known useful plants, valued for thousands of years. This plant contains many biologically active compounds, including polyphenols, sterols, cysteine-sulfoxides, carbohydrates, proteins, and amino acids. The aim of our study was to compare the antioxidant potential, cytotoxicity, and apoptosis induction properties of four garlic cultivars-Harnaś, Ornak, Violeta, and Morado-in human squamous carcinoma (SCC-15) cells, colon adenocarcinoma (CACO-2) cells, and normal fibroblasts (BJ). Additionally, we investigated the mRNA and protein expression of peroxisome proliferator-activated receptor gamma (PPARγ), microtubule-associated protein 1 light chain 3 (LC3A), superoxide dismutase 1 (SOD1), and catalase (CAT) after treatment with the studied garlic extracts. Our study demonstrated that high ROS production was correlated with the strong toxicity of the garlic extracts. All studied extracts produced a lesser increase in ROS in normal BJ fibroblasts and were less toxic to these cells. The expression patterns of PPARγ, LC3A, SOD1, and CAT, along with chromatographic analysis, suggest differing mechanisms among the garlic cultivars. The highest levels of catechin, a known PPARγ agonist, were detected in the Harnaś (3.892 µg/mL) and Ornak (3.189 µg/mL) cultivars. A high catechin content was correlated with similar changes in PPARγ and related SOD1 and LC3A. Our findings showed the health-promoting and anticancer properties of garlic. However, we could not definitively identify which polyphenol or how it is involved in PPARγ activation. Further studies are required to elucidate the role of PPARγ in the mechanism of action of garlic extracts.
Collapse
Affiliation(s)
- Urszula E. Binduga
- Department of Civilization Diseases and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Aneta Kopeć
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, Agricultural University of Krakow, St. Balicka 122, 30-149 Kraków, Poland; (A.K.); (J.S.)
| | - Joanna Skoczylas
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, Agricultural University of Krakow, St. Balicka 122, 30-149 Kraków, Poland; (A.K.); (J.S.)
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35-225 Rzeszów, Poland;
| |
Collapse
|
2
|
Devaraju R, Reddy D, Paul ST, Azher U, Umashankar K, Srinivas L. Evaluation of Cytotoxicity of Allium sativum (Garlic Extract) against Human Dental Pulp Fibroblasts. Int J Clin Pediatr Dent 2024; 17:143-148. [PMID: 39184882 PMCID: PMC11339490 DOI: 10.5005/jp-journals-10005-2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Background Vital pulp therapy procedures in primary dentition focuses on preservation and maintenance of pulp tissue that has been compromised due to caries, trauma, etc. Several pulp dressing materials have been used in primary teeth and some natural materials from the field of traditional medicine have also been introduced as medicaments in vital pulp therapy. The understanding of biologic and cytotoxic properties of newer materials is important for safe clinical usage. The biologic compatibility of these newer materials is imperative to limit or avoid tissue irritation or degeneration. Aim To evaluate the cytotoxic effects of Allium sativum on cultured human primary dental pulp fibroblasts. Materials and methods Primary pulp fibroblasts were cultured from the pulp tissue obtained from extracted deciduous primary canines and central incisor teeth. The freshly prepared concentrations of 1000, 500, 250, 125, and 62.5 µg/mL A. sativum extract were added to the 96-well plate in triplicates to which culture medium containing fourth passage cell suspension was added previously. Cells without treatment served as control, while cells treated with 5% dimethyl sulfoxide (DMSO) served as toxic control. After the addition of experimental and control agents, cells were incubated for 24 and 48 hours at 37°C in 5% CO2 atmosphere. After the incubation period, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to determine the number of viable cells. Absorbance was read with a microplate reader at 570 nm wavelength and the relative viability of dental pulp fibroblasts at various concentrations was expressed as color intensity of the experimental wells relative to that of control. The percentage of cell viability was also calculated accordingly. Results The MTT assay results revealed that A. sativum extract, in all the concentrations tested at both the time intervals maintained a cell viability of greater than 90%. At 24 hours, the mean absorbance value of untreated control wells was recorded as 0.84400 ± 0.00916 with 100% cell viability. Among all the concentrations of garlic extract tested, highest mean absorbance value of 0.83933 ± 0.00550 with 99.44% cell viability was recorded for 62.5 µg/mL concentration. At 48 hours, the mean absorbance value of untreated control wells was recorded as 1.22767 ± 0.01106 with 100% cell viability, and the highest mean absorbance value of 1.22567 ± 0.01006 with 99.83% cell viability was recorded for 62.5 µg/mL concentration. The cell viability did not seem to be affected by the concentration of A. sativum extract at 24 hours. However, at 48 hours, the sensitivity of the cells was observed to be dependent on the concentration of A. sativum with a decrease in the viability of cells noted with the increase in concentration. Conclusion A. sativum extract is noncytotoxic in nature and preserves the vitality of cultured human primary dental pulp fibroblasts making it a suitable material for use in vital pulp therapy procedures of primary teeth. How to cite this article Devaraju R, Reddy D, Paul ST, et al. Evaluation of Cytotoxicity of Allium sativum (Garlic Extract) against Human Dental Pulp Fibroblasts. Int J Clin Pediatr Dent 2024;17(2):143-148.
Collapse
Affiliation(s)
- Raghu Devaraju
- Department of Paedodontics and Preventive Dentistry, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bengaluru, Karnataka, India
| | - Divya Reddy
- Department of Paedodontics and Preventive Dentistry, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bengaluru, Karnataka, India
| | - Santhosh T Paul
- Department of Paedodontics and Preventive Dentistry, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bengaluru, Karnataka, India
| | - Umme Azher
- Department of Paedodontics and Preventive Dentistry, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bengaluru, Karnataka, India
| | - Keerthy Umashankar
- Department of Periodontology and Implantology, Priya Multispeciality Dental Clinic, Sainagar, Bengaluru, Karnataka, India
| | - Likhith Srinivas
- Department of Oral and Maxillofacial Pathology & Microbiology, Vista 32 Multispeciality Dental Clinic, Yelahanka New Town, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Chandrasekaran R, Krishnan M, Chacko S, Gawade O, Hasan S, Joseph J, George E, Ali N, AlAsmari AF, Patil S, Jiang H. Assessment of anticancer properties of cumin seed ( Cuminum cyminum) against bone cancer. Front Oncol 2023; 13:1322875. [PMID: 38125945 PMCID: PMC10730939 DOI: 10.3389/fonc.2023.1322875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Early-life osteosarcoma is associated with severe morbidity and mortality, particularly affecting young children and adults. The present cancer treatment regimen is exceedingly costly, and medications like ifosfamide, doxorubicin, and cisplatin have unneeded negative effects on the body. With the introduction of hyphenated technology to create medications based on plant molecules, the application of ayurvedic medicine as a new dimension (formulation, active ingredients, and nanoparticles) in the modern period is rapidly growing. The primary source of lead compounds for the development of medications for avariety of ailments is plants and their products. Traditionally, Cuminum cyminum (cumin) has been used as medication to treat a variety of illnesses and conditions. Methods The cumin seed was successfully extracted with solvents Hexane, Chloroform, Methanol, Ethanol and Acetone. Following the solvent extraction, the extract residue was assayed in MG63 cells for their anti-proliferative properties. Results First, we used the [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] (MTT) assay to test the extracted residue's cytotoxicity. The results show that hexane extract Half-maximal inhibitory concentration (IC50 86 µG/mL) effciently inhibits cells by causing programmed cell death. Furthermore, using the Acridine orange/ethidium bromide (AO/EB) staining method, the lactate dehydrogenase assay, and the reactive oxygen species assay using the Dichloro-dihydro-fluorescein diacetate (DCHFDA) staining method, we have demonstrated that the hexane extract causes apoptosis in MG63 cells. Furthermore, flow cytometry research revealed that the hexane extract stops the cell cycle in the S phase. In addition, the hexane extract limits colony formation and the migration potential as shown by the scratch wound healing assay. Furthermore, the extract from cumin seeds exhibits remarkable bactericidal properties against infections that are resistant to drugs. Gas chromatography analysis was used to quantitatively determine the hexane and methanolic extract based on the experimental data. The primary chemical components of the extract are revealed by the study, and these help the malignant cells heal. The present study finds that there is scientific validity in using cumin seeds as a novel method of anticancer therapy after undergoing both intrinsic and extrinsic research.
Collapse
Affiliation(s)
| | - Muthukumar Krishnan
- Department of Petrochemical Technology, Anna University, Tiruchirappalli, India
| | - Sonu Chacko
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Omkar Gawade
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sheik Hasan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - John Joseph
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Evelin George
- Department of Biochemistry, JSS Academy of Higher Education, Mysuru, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Haoli Jiang
- Department of Orthopedics, the Third People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
4
|
Boonpisuttinant K, Taka T, Ruksiriwanich W, Chutoprapat R, Udompong S, Kansawang R, Sangsee J, Chompoo W, Samothai K, Srisuttee R. Assessment of in vitro anti-skin aging activities of Phyllanthus indofischeri Bennet extracts for dermatological and aesthetic applications. Sci Rep 2023; 13:18661. [PMID: 37907639 PMCID: PMC10618208 DOI: 10.1038/s41598-023-45434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Giant Indian Gooseberry (GIG) or Phyllanthus indofischeri Bennet are commercially cultivated and commonly used herbs in Traditional medicine, especially in Thailand. The aim of this study was to assess the potential of the GIG extracts in anti-aging activities to be a dermatological application. The juice, meat residues, and seeds of GIG collected from Sra Kaeo Province, Thailand, were extracted by the Boiling method (B) and the Maceration process (M) by using 95% ethanol as a solvent. The GIG extracts gave the total phenolic, total flavonoid contents and quercetin contents, as well as exhibited anti-oxidative activities. The GIG-R-B extract inhibited tyrosinase activity and had the highest anti-melanogenesis activity on B16F10 cells at 31.63 ± 0.70%. The GIG-S-B, GIG-S-M, and GIG-R-M extracts demonstrated the highest collagen biosynthesis, which was comparable to vitamin C (p < 0.05), whereas the GIG-R-B extracts gave the highest stimulation of anti-aging genes (SIRT1 and FOXO1). All extracts at the concentration of 0.1 mg/mL showed no cytotoxicity on human skin fibroblasts. Therefore, the GIG-S-B extract was discovered to be a promising natural anti-aging agent for dermatological health and aesthetic applications that can be further developed in cosmetic, functional food and food supplement industries.
Collapse
Affiliation(s)
- Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani, 12130, Thailand
| | - Thanachai Taka
- iCell Research Institute Laboratory Unit, Bangkok, 10230, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarinporn Udompong
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani, 12130, Thailand
| | - Rattiya Kansawang
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani, 12130, Thailand
| | - Jinapa Sangsee
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani, 12130, Thailand
| | - Wirinda Chompoo
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani, 12130, Thailand
| | - Kitrawi Samothai
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani, 12130, Thailand
| | - Ratakorn Srisuttee
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
5
|
Sadanandan B, Vijayalakshmi V, Ashrit P, Babu UV, Sharath Kumar LM, Sampath V, Shetty K, Joglekar AP, Awaknavar R. Aqueous spice extracts as alternative antimycotics to control highly drug resistant extensive biofilm forming clinical isolates of Candida albicans. PLoS One 2023; 18:e0281035. [PMID: 37315001 PMCID: PMC10266687 DOI: 10.1371/journal.pone.0281035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Candida albicans form biofilm by associating with biotic and abiotic surfaces. Biofilm formation by C. albicans is relevant and significant as the organisms residing within, gain resistance to conventional antimycotics and are therefore difficult to treat. This study targeted the potential of spice-based antimycotics to control C. albicans biofilms. Ten clinical isolates of C. albicans along with a standard culture MTCC-3017 (ATCC-90028) were screened for their biofilm-forming ability. C. albicans M-207 and C. albicans S-470 were identified as high biofilm formers by point inoculation on Trypticase Soy Agar (TSA) medium as they formed a lawn within 16 h and exhibited resistance to fluconazole and caspofungin at 25 mcg and 8 mcg respectively. Aqueous and organic spice extracts were screened for their antimycotic activity against C. albicans M-207 and S-470 by agar and disc diffusion and a Zone of Inhibition was observed. Minimal Inhibitory Concentration was determined based on growth absorbance and cell viability measurements. The whole aqueous extract of garlic inhibited biofilms of C. albicans M-207, whereas whole aqueous extracts of garlic, clove, and Indian gooseberry were effective in controlling C. albicans S-470 biofilm within 12 h of incubation. The presence of allicin, ellagic acid, and gallic acid as dominant compounds in the aqueous extracts of garlic, clove, and Indian gooseberry respectively was determined by High-Performance Thin Layer Chromatography and Liquid Chromatography-Mass Spectrometry. The morphology of C. albicans biofilm at different growth periods was also determined through bright field microscopy, phase contrast microscopy, and fluorescence microscopy. The results of this study indicated that the alternate approach in controlling high biofilm-forming, multi-drug resistant clinical isolates of C. albicans M-207 and S-470 using whole aqueous extracts of garlic, clove, and Indian gooseberry is a safe, potential, and cost-effective one that can benefit the health care needs with additional effective therapeutics to treat biofilm infections.
Collapse
Affiliation(s)
- Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | | | - Priya Ashrit
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Uddagiri Venkanna Babu
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | | | - Vasulingam Sampath
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | | | - Rashmi Awaknavar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Anuar MNN, Ibrahim M, Zakaria NH, Ichwan SJA, Md Isa ML, Mat Alewi NA, Hagar A, Abdul Majid FA. The Antioxidant Activity and Induction of Apoptotic Cell Death by Musa paradisiaca and Trigona sp. Honey Jelly in ORL115 and ORL188 Cells. Malays J Med Sci 2023; 30:82-91. [PMID: 36875196 PMCID: PMC9984108 DOI: 10.21315/mjms2023.30.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/29/2022] [Indexed: 03/05/2023] Open
Abstract
Background Head and neck cancer patients usually need nutritional support due to difficulties in swallowing and chewing. Therefore, this study aimed to formulate Musa paradisiaca and Trigona sp. honey jelly (MTJ) as a convenient functional food. Methods The antioxidant properties were analysed using 2,2'-diphenyl-1 picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and 2,2'-azinodi 3-ethylbenthiazolinesulfonate (ABTS) assays. Cytotoxicity was assayed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test and the induction of apoptosis was observed via caspase-3/7 activity assay. The identification of phenolic compounds was done via ultra-high-performance-liquid chromatography coupled to mass spectrometer (UHPLC-MS/MS). Results The antioxidant analysis exhibited: the half inhibitory concentration (IC50) of DPPH inhibition, 54.10 (SD = 4.51) μg/mL; the FRAP value, 30.07 (SD = 0.93) mM TEQ/100 g; and the ABTS value, 131.79 (SD = 8.73) mg TEQ/100 g. Cinnamic acid was the most abundant phenolic compound, followed by maleic acid and salicylic acid. The IC50 for ORL115 and ORL188 were 35.51 mg/mL and 43.54 mg/mL, respectively. The cells became rounded and dissymmetrical which reduced in number and size. The apoptotic cell death in ORL115 and ORL188 was deduced as caspase-3/7 activities that significantly increased (P < 0.05). Conclusion The study evidenced that the antioxidant activity of MTJ could influence the induction of apoptosis in ORL115 and ORL188 in future investigations and verifications.
Collapse
Affiliation(s)
- Mohd Nur Nasyriq Anuar
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | - Muhammad Ibrahim
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | - Nor Hafizah Zakaria
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Muhammad Lokman Md Isa
- Department of Basic Medical Sciences for Nursing, Kulliyyah of Nursing, International Islamic University Malaysia, Pahang, Malaysia
| | - Nur Aizura Mat Alewi
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | - Abdullah Hagar
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia
| | | |
Collapse
|
7
|
Sachdeva A, Dhawan D, Jain GK, Yerer MB, Collignon TE, Tewari D, Bishayee A. Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer. Cancers (Basel) 2022; 15:cancers15010268. [PMID: 36612264 PMCID: PMC9818473 DOI: 10.3390/cancers15010268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Oral cancer is emerging as a major cause of mortality globally. Oral cancer occupies a significant proportion of the head and neck, including the cheeks, tongue, and oral cavity. Conventional methods in the treatment of cancer involve surgery, radiotherapy, and immunotherapy, and these have not proven to completely eradicate cancerous cells, may lead to the reoccurrence of oral cancer, and possess numerous adverse side effects. Advancements in novel drug delivery approaches have gained popularity in cancer management with an increase in the number of cases associated with oral cancer. Natural products are potent sources for drug discovery, especially for anticancer drugs. Natural product delivery has major challenges due to its low solubility, poor absorption, inappropriate size, instability, poor permeation, and first-pass metabolism. Therefore, it is of prime importance to investigate novel treatment approaches for the delivery of bioactive natural products. Nanotechnology is an advanced method of delivering cancer therapy with minimal damage to normal cells while targeting cancer cells. Therefore, the present review elaborates on the advancements in novel strategies for natural product delivery that lead to the significant enhancement of bioavailability, in vivo activity, and fewer adverse events for the prevention and treatment of oral cancer. Various approaches to accomplish the desired results involve size reduction, surface property modification, and polymer attachment, which collectively result in the higher stability of the formulation.
Collapse
Affiliation(s)
- Alisha Sachdeva
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Dimple Dhawan
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Gaurav K. Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
- Center for Advanced Formulation Development, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Mükerrem Betül Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Taylor E. Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
- Correspondence: or (D.T.); or (A.B.)
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: or (D.T.); or (A.B.)
| |
Collapse
|
8
|
Bar M, Binduga UE, Szychowski KA. Methods of Isolation of Active Substances from Garlic ( Allium sativum L.) and Its Impact on the Composition and Biological Properties of Garlic Extracts. Antioxidants (Basel) 2022; 11:1345. [PMID: 35883836 PMCID: PMC9312217 DOI: 10.3390/antiox11071345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Garlic (Allium sativum L.) is widely used in the human diet and in scientific research due to its biological properties. Various factors, e.g., temperature, pressure, extraction method, type of solvent, size, and territorial origin of garlic, affect the amount and type of bioactive compounds obtained from garlic extracts. In turn, the content of bioactive compounds correlates with the biological activity of the extracts. Therefore, the aim of this review was to summarize the current state of knowledge of the methods and effectiveness of isolation of active substances from garlic and their impact on the garlic extract composition and, consequently, biological properties. According to the literature, extracts obtained using water as a solvent are mainly responsible for antimicrobial properties, which is related to, inter alia, the high content of allicin. The use of alcohols, such as methanol or ethanol, is associated with the outstanding antioxidant power of extracts resulting from the presence of phenolic compounds. In turn, due to the presence of diallyl disulfide and disulfide trisulfide, garlic oil has anticancer potential. Acetone is the most effective organic solvent; however, it is not suitable for immediate consumption.
Collapse
Affiliation(s)
- Monika Bar
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Urszula E. Binduga
- Department of Lifestyle Disorders and Regenerative Medicine, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| | - Konrad A. Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland;
| |
Collapse
|
9
|
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int J Mol Sci 2022; 23:ijms23031532. [PMID: 35163459 PMCID: PMC8835907 DOI: 10.3390/ijms23031532] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.
Collapse
Affiliation(s)
- Shaloam Dasari
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Sylvianne Njiki
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Ariane Mbemi
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
- Correspondence: ; Tel.: +1-601-979-0777
| |
Collapse
|
10
|
Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, Bulgakov VP, Arroo RRJ, Malik S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021; 26:molecules26133868. [PMID: 34202844 PMCID: PMC8270261 DOI: 10.3390/molecules26133868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
Collapse
Affiliation(s)
- Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01033 Kyiv, Ukraine;
- Department of Plant Physiology, Slovak University of Agriculture Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran;
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran
| | - Eduardo Bezerra de Almeida
- Biological and Health Sciences Centre, Laboratory of Botanical Studies, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
| | - Surender K. Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Victor P. Bulgakov
- Department of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Sonia Malik
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orléans, 1 Rue de Chartres-BP 6759, 45067 Orleans, France
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| |
Collapse
|
11
|
Țigu AB, Moldovan CS, Toma VA, Farcaș AD, Moț AC, Jurj A, Fischer-Fodor E, Mircea C, Pârvu M. Phytochemical Analysis and In Vitro Effects of Allium fistulosum L. and Allium sativum L. Extracts on Human Normal and Tumor Cell Lines: A Comparative Study. Molecules 2021; 26:574. [PMID: 33499159 PMCID: PMC7866094 DOI: 10.3390/molecules26030574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Allium sativum L. (garlic bulbs) and Allium fistulosum L. (Welsh onion leaves) showed quantitative differences of identified compounds: allicin and alliin (380 µg/mL and 1410 µg/mL in garlic; 20 µg/mL and 145 µg/mL in Welsh onion), and the phenolic compounds (chlorogenic acid, p-coumaric acid, ferulic acid, gentisic acid, 4-hydroxybenzoic acid, kaempferol, isoquercitrin, quercitrin, quercetin, and rutin). The chemical composition determined the inhibitory activity of Allium extracts in a dose-dependent manner, on human normal cells (BJ-IC50 0.8841% garlic/0.2433% Welsh onion and HaCaT-IC50 1.086% garlic/0.6197% Welsh onion) and tumor cells (DLD-1-IC50 5.482%/2.124%; MDA-MB-231-IC50 6.375%/2.464%; MCF-7-IC50 6.131%/3.353%; and SK-MES-1-IC50 4.651%/5.819%). At high concentrations, the cytotoxic activity of each extract, on normal cells, was confirmed by: the 50% of the growth inhibition concentration (IC50) value, the cell death induced by necrosis, and biochemical determination of LDH, catalase, and Caspase-3. The four tumor cell lines treated with high concentrations (10%, 5%, 2.5%, and 1.25%) of garlic extract showed different sensibility, appreciated on the base of IC50 value for the most sensitive cell line (SK-MES-1), and the less sensitive (MDA-MB-231) cell line. The high concentrations of Welsh onion extract (5%, 2.5%, and 1.25%) induced pH changes in the culture medium and SK-MES-1 being the less sensitive cell line.
Collapse
Affiliation(s)
- Adrian Bogdan Țigu
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (C.S.M.); (E.F.-F.)
| | - Cristian Silviu Moldovan
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (C.S.M.); (E.F.-F.)
| | - Vlad-Alexandru Toma
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresurces “3B”, Babeș-Bolyai University, 400000 Cluj-Napoca, Romania
| | - Anca Daniela Farcaș
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
| | - Augustin Cătălin Moț
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Ancuța Jurj
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Eva Fischer-Fodor
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (C.S.M.); (E.F.-F.)
- Department of Radiobiology and Tumor Biology, The Oncology Institute “Prof Dr Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Cristina Mircea
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
| |
Collapse
|
12
|
Guo Y, Liu H, Chen Y, Yan W. The effect of allicin on cell proliferation and apoptosis compared to blank control and cis-platinum in oral tongue squamous cell carcinoma. Onco Targets Ther 2020; 13:13183-13189. [PMID: 33402832 PMCID: PMC7778678 DOI: 10.2147/ott.s178718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) has aggressive clinical behavior with poor prognosis. Allicin plays a tumor-suppressive role in various cancers, although the role of allicin in OTSCC is unknown. We aimed to investigate the effect of allicin on cell proliferation and apoptosis compared to blank control and cis-platinum in OTSCC. Methods Tca-8113 and SCC-25 cells were treated with non-stimulated control, 12.5 µg/mL allicin, 25 µg/mL allicin, 50 µg/mL allicin, and 40 µg/mL cis-platinum, which were divided into blank control, allicin 12.5 µg/mL, allicin 25 µg/mL, allicin 50 µg/mL, and cis-platinum 40 µg/mL groups, respectively. Cell proliferation was determined by the Cell Counting Kit-8 assay. Cell apoptosis was detected by annexin V/propidium iodide and Western blot assays. Results In Tca-8113 and SCC-25 cells, cell proliferation was inhibited by 40 μg/mL cis-platinum, 12.5 μg/mL allicin, 25 μg/mL allicin, and 50 μg/mL allicin. Cell apoptosis was promoted by 40 μg/mL cis-platinum, 12.5 μg/mL allicin, 25 μg/mL allicin, and 50 μg/mL allicin, while compared to 40 μg/mL cis-platinum, it was increased by 50 μg/mL allicin. Western blot assay revealed that expression of pro-apoptosis protein Bax and C-Caspase 3 increased, but apoptosis-inhibitory protein Bcl-2 expression decreased with 40 μg/mL cis-platinum, 12.5 μg/mL allicin, 25 μg/mL allicin, and 50 μg/mL allicin, while compared to 40 μg/mL cis-platinum, Bax and C-Caspase 3 expression was increased by 50 μg/mL allicin. Conclusion Allicin was shown to have good efficacy in repressing cell proliferation as well as facilitating cell apoptosis in OTSCC.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Hongli Liu
- School of Stomatology, Cangzhou Medical College, Cangzhou, People's Republic of China
| | - Yong Chen
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Wei Yan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| |
Collapse
|
13
|
Moghadam ET, Yazdanian M, Tahmasebi E, Tebyanian H, Ranjbar R, Yazdanian A, Seifalian A, Tafazoli A. Current herbal medicine as an alternative treatment in dentistry: In vitro, in vivo and clinical studies. Eur J Pharmacol 2020; 889:173665. [PMID: 33098834 DOI: 10.1016/j.ejphar.2020.173665] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022]
Abstract
Since the time that human population comprehended the importance of general health maintenance and the burden of disease, there has been a search for healing properties in the natural environment. Herbal medicine is the use of plants with medical properties for prevention and treatment of conditions that can affect general health. Recently, a growing interest has been observed toward the use of traditional herbal medicine alongside synthetic modern drugs. Around 80% of the population, especially in developing countries relies on it for healthcare. Oral healthcare is considered a major part of general health. According to the world health organization (WHO), oral health is considered an important part of general health and quality of life. The utilization of natural medications for the management of pathologic oro-dental conditions can be a logical alternative to pharmaceutical methods due to their availability, low costs, and lower side effects. The current literature review aimed at exploration of the variety and extent of herbal products application in oral health maintenance including different fields of oral healthcare such as dental caries, periodontal maintenance, microbial infections, oral cancers, and inflammatory conditions.
Collapse
Affiliation(s)
- Ehsan Tafazoli Moghadam
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), The London Bioscience Innovation Centre, London, United Kingdom
| | - Ali Tafazoli
- Clinical Pharmacy Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Influence of Thermal Processing on the Bioactive, Antioxidant, and Physicochemical Properties of Conventional and Organic Agriculture Black Garlic (Allium sativum L.). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examines the effect of fermentation processes (70 °C temperature; 80% humidity; 45 days) on the content of bioactive compounds (total polyphenols, selected phenolic acids, and flavonoids), antioxidant activity and physicochemical properties of conventional and organic garlic (Allium sativum L.). Raw garlic from conventional cultivation (GR) showed significantly lower content of phenolic components and antioxidant activity compared to raw garlic from organic cultivation (GREcol) (by 22.8% and 25.1%, respectively). The fermentation processes of the garlic from both the conventional (BG) and organic (BGEcol) cultivation significantly increased the content of total polyphenols (more than two times), phenolic acids (more than 1.5 times) and flavonoids (1.5 and 1.3 times, respectively). The garlic fermentation process also significantly increased antioxidant potential: two times for BG and three times for BGEcol. The content of bioactive compounds (total polyphenols, phenolic acids, and flavonoids) was significantly (p < 0.05) higher in organic black garlic (BGEcol) compared to conventional black garlic (BG). Heat treatment leading to changes in both the physicochemical, organoleptic and health-promoting properties allowed to obtain a new product gaining in sensory attractiveness and enabling a wide range of applications.
Collapse
|
15
|
Zhang Y, Liu X, Ruan J, Zhuang X, Zhang X, Li Z. Phytochemicals of garlic: Promising candidates for cancer therapy. Biomed Pharmacother 2019; 123:109730. [PMID: 31877551 DOI: 10.1016/j.biopha.2019.109730] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
Of the numerous health benefits of garlic, the anticancer effect is probably the most noticeable. Observations over the past years have shown that the consumption of garlic in the diet provides strong protection against cancer risk. Previous studies involving garlic phytochemicals have usually focused on the cancer chemopreventive properties, but there is little published evidence showing its therapeutic potential in cancer treatment. In view of the multitargeted carcinoma actions and lack of severe toxicity, some components of garlic are likely to play vital roles in the selective killing of cancer cells. However, the rational design of experimental studies and clinical trials are required to verify this concept. This paper discusses the promises and pitfalls of garlic for the treatment of cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Reproductive Health, Tongji College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xingping Liu
- Institute of Reproductive Health, Tongji College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jun Ruan
- College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| | - Xuan Zhuang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China.
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510600, Guangdong, China.
| | - Zhiming Li
- Institute of Reproductive Health, Tongji College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
16
|
Eghbaliferiz S, Soheili V, Tayarani-Najaran Z, Asili J. Antimicrobial and cytotoxic activity of extracts from Salvia tebesana Bunge and Salvia sclareopsis Bornm cultivated in Iran. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1083-1089. [PMID: 31402826 PMCID: PMC6656823 DOI: 10.1007/s12298-019-00652-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/04/2019] [Accepted: 03/05/2019] [Indexed: 05/26/2023]
Abstract
Salvia, a member of the Lamiaceae family, represents more than 58 species in Iran. In the present study, antibacterial and cytotoxic activity of extracts obtained from the roots of Salvia tebesana and Salvia sclareopsis were investigated. The antibacterial activity of the extracts was investigated against 4 bacterial strains and yeast using serial dilution method. The petroleum ether and CH2Cl2 extracts of S. tebesana showed a good activity against Gram-positive bacteria particularly Bacillus cereus (MIC 1.25 mg/mL) while Gram-negative bacteria and yeast were resistant to the extracts. Also, the cytotoxic effects of the extracts on A2780 (ovarian), MCF-7 (breast) and DU 145 (prostate) cancer cell lines were examined using AlamarBlue® assay. The petroleum ether and CH2Cl2 extracts of S. tebesana were found to be cytotoxic against the tested cell lines, with IC50 values less than 50 µg/mL. The petroleum ether extract also showed a potent anti-proliferative activity against DU 145 cells with the lowest IC50 value (6.25 µg/mL).
Collapse
Affiliation(s)
- Samira Eghbaliferiz
- Department of Pharmacognosy, Faculty of Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box: 91775-1365, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, Faculty of Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box: 91775-1365, Mashhad, Iran
| |
Collapse
|
17
|
He B, Shen XF, Nie J, Wang XL, Liu FM, Yin W, Hou CJ, Huo DQ, Fa HB. Electrochemical sensor using graphene/Fe3O4 nanosheets functionalized with garlic extract for the detection of lead ion. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4041-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|