1
|
Múnera-Rodríguez AM, Leiva-Castro C, Sobrino F, López-Enríquez S, Palomares F. Sulforaphane-mediated immune regulation through inhibition of NF-kB and MAPK signaling pathways in human dendritic cells. Biomed Pharmacother 2024; 177:117056. [PMID: 38945082 DOI: 10.1016/j.biopha.2024.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Inflammation and immune responses are intricately intertwined processes crucial for maintaining homeostasis and combating against pathogens. These processes involve complex signaling pathways, notably the Nuclear Factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) pathways, which play crucial roles. Sulforaphane (SFN), a nutraceutic, has emerged as a potential regulator of NF-κB and MAPK signaling pathways, exhibiting anti-inflammatory properties. However, limited knowledge exists regarding SFN's effects on immune cell modulation. This study aimed to assess the immunomodulatory capacity of SFN pretreatment in human dendritic cells (DCs), followed by exposure to a chronic inflammatory environment induced by lipopolysaccharide. SFN pretreatment was found to inhibit the NF-κB and MAPK signaling pathways, resulting in phenotypic changes in DCs characterized by a slight reduction in the expression of surface markers, as well as a decrease of TNF-α/IL-10 ratio. Additionally, SFN pretreatment enhanced the proliferation of Treg-cells and promoted the production of IL-10 by B-cells before exposure to the chronic inflammatory environment. Furthermore, these changes in DCs were found to be influenced by the inhibition of NF-κB and MAPK pathways (specifically p38 MAPK and JNK), suggesting that these pathways may play a role in the regulation of the differentiation of adaptive immune responses (proliferation of T- and IL-10-producing regulatory-cells), prior to SFN pretreatment. Our findings suggest that SFN pretreatment may induce a regulatory response by inhibiting NF-κB and MAPK signaling pathways in an inflammatory environment. SFN could be considered a promising strategy for utilizing functional foods to protect against inflammation and develop immunoregulatory interventions.
Collapse
Affiliation(s)
- Ana M Múnera-Rodríguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain
| | - Camila Leiva-Castro
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain; Institute of Biomedicine of Seville (IBiS)/ Virgen del Rocío University Hospital/ Virgen Macarena University Hospital/ University of Seville/ CSIC, Seville, Spain.
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, Seville 41009, Spain; Institute of Biomedicine of Seville (IBiS)/ Virgen del Rocío University Hospital/ Virgen Macarena University Hospital/ University of Seville/ CSIC, Seville, Spain.
| |
Collapse
|
2
|
Huan C, Zhang R, Xie L, Wang X, Wang X, Wang X, Yao J, Gao S. Plantago asiatica L. polysaccharides: Physiochemical properties, structural characteristics, biological activity and application prospects: A review. Int J Biol Macromol 2024; 258:128990. [PMID: 38158057 DOI: 10.1016/j.ijbiomac.2023.128990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Plantago asiatica L. (PAL), a traditional herb, has been used in East Asia for thousands of years. In recent years, polysaccharides extracted from PAL have garnered increased attention due to their outstanding pharmacological and biological properties. Previous research has established that PAL-derived polysaccharides exhibit antioxidant, anti-inflammatory, antidiabetic, antitumor, antimicrobial, immune-regulatory, intestinal health-promoting, antiviral, and other effects. Nevertheless, a comprehensive summary of the research related to Plantago asiatica L. polysaccharides (PALP) has not been reported to date. In this paper, we review the methods for isolation and purification, physiochemical properties, structural features, and biological activities of PALP. To provide a foundation for research and application in the fields of medicine and food, this review also outlines the future development prospects of plantain polysaccharides.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Ruizhen Zhang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Li Xie
- Fujian Yixinbao Biopharmaceutical Co., Ltd., Zhangzhou, China
| | - Xingyu Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaotong Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaobing Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Miao K, Liu W, Xu J, Qian Z, Zhang Q. Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front Immunol 2023; 14:1277243. [PMID: 38035069 PMCID: PMC10684919 DOI: 10.3389/fimmu.2023.1277243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
At present, cancer is the largest culprit that endangers human health. The current treatment options for cancer mainly include surgical resection, adjuvant radiotherapy and chemotherapy, but their therapeutic effects and long-term prognosis are unsatisfactory. Immunotherapy is an emerging therapy that has completely transformed the therapeutic landscape of advanced cancers, and has tried to occupy a place in the neoadjuvant therapy of resectable tumors. However, not all patients respond to immunotherapy due to the immunological and molecular features of the tumors. Traditional Chinese Medicine (TCM) provides a new perspective for cancer treatment and is considered to have the potential as promising anti-tumor drugs considering its immunoregulatory properties. This review concludes commonly used TCM monomers and compounds from the perspective of immune regulatory pathways, aiming to clearly introduce the basic mechanisms of TCM in boosting cancer immunotherapy and mechanisms of several common TCM. In addition, we also summarized closed and ongoing trials and presented prospects for future development. Due to the significant role of immunotherapy in the treatment of non-small cell lung cancer (NSCLC), TCM combined with immunotherapy should be emphasized in NSCLC.
Collapse
Affiliation(s)
- Keyan Miao
- Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingtong Xu
- The First School of Clinical Medicine, Nanjing Medical University. Nanjing, Jiangsu, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Qinglin Zhang
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Jayanthi Antonisamy A, Marimuthu S, Malayandi S, Rajendran K, Lin YC, Andaluri G, Lee SL, Ponnusamy VK. Sustainable approaches on industrial food wastes to value-added products - A review on extraction methods, characterizations, and its biomedical applications. ENVIRONMENTAL RESEARCH 2023; 217:114758. [PMID: 36400225 DOI: 10.1016/j.envres.2022.114758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The concept of zero waste discharge has been gaining importance in recent years towards attaining a sustainable environment. Fruit processing industries generate millions of tons of byproducts like fruit peels and seeds, and their disposal poses an environmental threat. The concept of extracting value-added bioactive compounds from bio-waste is an excellent opportunity to mitigate environmental issues. To date, significant research has been carried out on the extraction of essential biomolecules, particularly polysaccharides from waste generated by fruit processing industries. In this review article, we aim to summarize the different extraction methodologies, characterization methods, and biomedical applications of polysaccharides extracted from seeds and peels of different fruit sources. The review also focuses on the general scheme of extraction of polysaccharides from fruit waste with special emphasis on various methods used in extraction. Also, the various types of polysaccharides obtained from fruit processing industrial wastes are explained in consonance with the important techniques related to the structural elucidation of polysaccharides obtained from seed and peel waste. The use of seed polysaccharides as pharmaceutical excipients and the application of peel polysaccharides possessing biological activities are also elaborated.
Collapse
Affiliation(s)
- Arul Jayanthi Antonisamy
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Sivasankari Marimuthu
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Sankar Malayandi
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Karthikeyan Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Siew Ling Lee
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Vinoth Kumar Ponnusamy
- Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung, 807, Taiwan.
| |
Collapse
|
5
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Huan C, Zhang W, Xu Y, Ni B, Gao S. Antiviral Activity of Plantago asiatica Polysaccharide against Pseudorabies Virus In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3570475. [PMID: 35096266 PMCID: PMC8794672 DOI: 10.1155/2022/3570475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 01/03/2023]
Abstract
Pseudorabies (PR) is an acute infectious disease of various domestic animals and wild animals caused by pseudorabies virus (PRV). It is mainly characterized by fever, itching, encephalomyelitis, and respiratory and neurological disorders. Plantago asiatica polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., showed immunomodulatory and antioxidation effects, but the antiviral activity had not been reported. In this study, the inhibitory effect of PLP on PRV infection was studied. Our study first revealed that PLP could inhibit PRV infection in a dose-dependent manner. By adding PLP at different stages of the virus's life cycle, we revealed that PLP could reduce the attachment and penetration of PRV into PK15 cells. The inhibition of PRV attachment was better than inhibition of PRV penetration. However, PLP did not affect PRV replication and inactivation. In addition, PLP decreased the intracellular ROS levels in infected cells significantly, and ROS scavenger NAC decreased PRV infection. Therefore, our study provided preliminary data of anti-PRV activity of PLP, which was established to be a novel anti-PRV infection agent.
Collapse
Affiliation(s)
- Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009 Jiangsu, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009 Jiangsu, China
| | - Yao Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009 Jiangsu, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009 Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, China
| |
Collapse
|
7
|
Zhang S, Hu J, Sun Y, Tan H, Yin J, Geng F, Nie S. Review of structure and bioactivity of the Plantago (Plantaginaceae) polysaccharides. Food Chem X 2021; 12:100158. [PMID: 34825168 PMCID: PMC8604743 DOI: 10.1016/j.fochx.2021.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023] Open
Abstract
Plantago (Plantaginaceae) is an herbal plant, which is used in folk medicine, functional food, and dietary supplement products. Recent pharmacological and phytochemical studies have shown that polysaccharides isolated from Plantago have multiple medicinal and nutritional benefits, including improve intestinal health, hypoglycemic effect, immunomodulatory effect, etc. These health and pharmacological benefits are of great interest to the public, academia, and biotechnology industries. This paper provides an overview of recent advances in the physicochemical, structural features, and biological effects of Plantago polysaccharides and highlights the similarities and differences of the polysaccharides from different species and in different parts, including leaves, seeds, and husks. The scientific support for its use as a prebiotic is also addressed. The purpose of this review is to provide background as well as useful and up-to-date information for future research and applications of these polysaccharides.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| |
Collapse
|
8
|
Gao J, Zhang YN, Cui J, Zhang J, Ming Y, Hao Z, Xu H, Cheng N, Zhang D, Jin Y, Lin D, Lin J. A Polysaccharide From the Whole Plant of Plantago asiatica L. Enhances the Antitumor Activity of Dendritic Cell-Based Immunotherapy Against Breast Cancer. Front Pharmacol 2021; 12:678865. [PMID: 34504423 PMCID: PMC8421731 DOI: 10.3389/fphar.2021.678865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) that mediate T-cell immune responses. Breast cancer is one of the most commonly diagnosed diseases and its mortality rate is higher than any other cancer in both humans and canines. Plantain polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., could promote the maturation of DCs. In this research, we found that PLP could upregulate the maturation of DCs both in vitro and in vivo. PLP-activated DCs could stimulate lymphocytes’ proliferation and differentiate naive T cells into cytotoxic T cells. Tumor antigen-specific lymphocyte responses were enhanced by PLP and CIPp canine breast tumor cells lysate-pulsed DCs, and PLP and CIPp-cell-lysate jointly stimulated DCs cocultured with lymphocytes having the great cytotoxicity on CIPp cells. In the 4T1 murine breast tumor model, PLP could control the size of breast tumors and improve immunity by recruiting DCs, macrophages, and CD4+ and CD8+ T cells in the tumor microenvironment. These results indicated that PLP could achieve immunotherapeutic effects and improve immunity in the breast tumor model.
Collapse
Affiliation(s)
- Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi-Nan Zhang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Toronto, Canada
| | - Jingwen Cui
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiatong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexiang Ming
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihui Hao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huihao Xu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nan Cheng
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Feng H, Zhi H, Hu X, Yang Y, Zhang L, Liu Q, Feng Y, Wu D, Yang X. Immunological studies of Morinda officinalis: How polysaccharides act as adjuvants. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1954657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Haibo Feng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Hui Zhi
- Department of Veterinary Medicine, Southwest University, Chongqing, PR China
| | - Xin Hu
- Department of Veterinary Medicine, Southwest University, Chongqing, PR China
| | - Yan Yang
- Department of Veterinary Medicine, Southwest University, Chongqing, PR China
| | - Linzi Zhang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Qianqian Liu
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Yangyang Feng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Daiyan Wu
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| | - Xiaonong Yang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, PR China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, PR China
| |
Collapse
|
10
|
Zhao H, Zhao L, Wu F, Shen L. Clinical research on traditional Chinese medicine treatment for bacterial vaginosis. Phytother Res 2021; 35:4943-4956. [PMID: 33860974 DOI: 10.1002/ptr.7123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Bacterial vaginosis (BV) is a common disease among women of reproductive age, with a serious impact on their daily life and health. At present, the most common treatment for BV is to take antibiotics, which results in good short-term treatment effects, but poor long-term effects. Traditional Chinese medicine (TCM) has been used to treat BV for over a millennium, with little risk of triggering drug resistance and adverse effects. Based on syndrome differentiation, there are three oral TCM treatment strategies for BV, including invigorating spleen, clearing dampness and heat, and nourishing kidney. The oral TCM prescriptions, such as Yi Huang decoction, Longdan Xiegan decoction, Zhibai Dihaung decoction, and so on are commonly used. Topical TCM treatment is also popular in China. According to the research results of pharmacological effects of active TCM ingredients, the most potential mechanisms of TCM for BV treatment are immune-enhancement effects, antibacterial activity, and estrogen-liked effects. Nonetheless, the multi-constituent of herbs may result in possible disadvantages to BV treatment, and the pharmacological mechanisms of TCM need further study. Here, we provide an overview of TCM compounds and their preparations used for BV, based on the pathogenesis and the potential therapeutic mechanisms, therefore providing a reference for further studies.
Collapse
Affiliation(s)
- Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Li J, Guo Y, Duan X, Li B. Heme oxygenase-1 (HO-1) assists inorganic arsenic-induced immune tolerance in murine dendritic cells. CHEMOSPHERE 2021; 264:128452. [PMID: 33049506 DOI: 10.1016/j.chemosphere.2020.128452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Inorganic arsenic, a well-known human carcinogen, poses a major threat to global health. Given the immunosuppressive potentials of inorganic arsenic as well as limited understanding of this metalloid on antigen-presenting dendritic cells (DCs), we systematically screened the immune targets in response to arsenic treatment, as well as its possible molecular mechanism in cultured murine DCs. Our results denoted that arsenite (As) significantly induced immune tolerance by down-regulating the expression of phenotypic molecules, pro-inflammatory factors and T-lymphocyte helper (Th)1/Th17-inducible cytokines in lipopolysaccharides (LPS)-stimulated myeloid-derived dendritic cells (BMDCs). Inconsistent with dampened phosphorylation of immune-related proteins (nuclear factor kappa-B) NF-κB, p38 and JNK, the metalloid drastically induced the expression of Heme oxygenase-1 (HO-1) protein, which enlightened us to continuously explore the possible roles of HO-1 pathway in As-induced immune tolerance in BMDCs. In this respect, immunosuppressive properties of HO-1 pathway in BMDCs were firstly confirmed through pharmacological overexpression of HO-1 by both CoPP and CORM-2. By contrast, limited HO-1 expression by HO-1 inhibitor ZnPP specifically alleviated As-mediated down-regulation of CD80, chemokine factor C-C chemokine receptor 7 (CCR7), tumor necrosis factor (TNF) -α, Interleukin (IL)-23 and IL-6, which reminds us the peculiarity of HO-1 in As-induced immune tolerance in murine DCs. Based on these experimental findings, we postulated the immunosuppressive property of inorganic arsenic might be mediated partially by HO-1 in DCs, thus contributing to the interactions of DCs-polarized differentiation of T-lymphocyte subtype as well as the development of infections and malignant diseases.
Collapse
Affiliation(s)
- Jinlong Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China; Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuanyuan Guo
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
12
|
Liu X, Xia X, Wang X, Zhou J, Sung LA, Long J, Geng X, Zeng Z, Yao W. Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions. Front Immunol 2021; 11:587441. [PMID: 33552047 PMCID: PMC7856346 DOI: 10.3389/fimmu.2020.587441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. Upon maturation, DCs express costimulatory molecules and migrate to the lymph nodes to present antigens to T cells. The actin cytoskeleton plays key roles in multiple aspects of DC functions. However, little is known about the mechanisms and identities of actin-binding proteins that control DC maturation and maturation-associated functional changes. Tropomodulin1 (Tmod1), an actin-capping protein, controls actin depolymerization and nucleation. We found that Tmod1 was expressed in bone marrow-derived immature DCs and was significantly upregulated upon lipopolysaccharide (LPS)-induced DC maturation. By characterizing LPS-induced mature DCs (mDCs) from Tmod1 knockout mice, we found that compared with Tmod1+/+ mDCs, Tmod1-deficient mDCs exhibited lower surface expression of costimulatory molecules and chemokine receptors and reduced secretion of inflammatory cytokines, suggesting that Tmod1 deficiency retarded DC maturation. Tmod1-deficient mDCs also showed impaired random and chemotactic migration, deteriorated T-cell stimulatory ability, and reduced F-actin content and cell stiffness. Furthermore, Tmod1-deficient mDCs secreted high levels of IFN-β and IL-10 and induced immune tolerance in an experimental autoimmune encephalomyelitis (EAE) mouse model. Mechanistically, Tmod1 deficiency affected TLR4 signaling transduction, resulting in the decreased activity of MyD88-dependent NFκB and MAPK pathways but the increased activity of the TRIF/IRF3 pathway. Rescue with exogenous Tmod1 reversed the effect of Tmod1 deficiency on TLR4 signaling. Therefore, Tmod1 is critical in regulating DC maturation and immune functions by regulating TLR4 signaling and the actin cytoskeleton. Tmod1 may be a potential target for modulating DC functions, a strategy that would be beneficial for immunotherapy for several diseases.
Collapse
Affiliation(s)
- Xianmei Liu
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue Xia
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jinhua Long
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xueyu Geng
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhu Zeng
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, China
| |
Collapse
|
13
|
Han Y, Ouyang K, Li J, Liu X, An Q, Zhao M, Chen S, Li X, Ye X, Zhao Z, Cai L, Wang W. Sulfated modification, characterization, immunomodulatory activities and mechanism of the polysaccharides from Cyclocarya paliurus on dendritic cells. Int J Biol Macromol 2020; 159:108-116. [PMID: 32407946 DOI: 10.1016/j.ijbiomac.2020.04.265] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
In this study, a crude and purified polysaccharide from Cyclocarya paliurus (CPP, CPP0.05) were performed with chlorosulfonic acid-pyridine (CSA-Pyr) method to obtain sulfated derivatives (S-CPP, S-CPP0.05). After comparatively investigating, characterization results showed that the modifications were successful. Polysaccharides were used to culture mouse bone marrow-derived dendritic cells (BM-DCs) to evaluate their immunomodulatory activity and explore mechanism. The functional activity of CPP was significantly stronger than that of the purified polysaccharide CPP0.05. Meanwhile, S-CPP showed stronger immunomodulatory activity than CPP through determination of cytokine expression levels. We found that p-JNK, p-p38MAPK and NF-κB p65 proteins were significantly increased by stimulus of CPP and S-CPP, blocking TLR2/4 could significantly decreased proteins above which proved that immune regulation effect of CPP and S-CPP on DCs was performed via MAPK and NF-κB signaling pathways by triggering TLR2/4. S-CPP could serve as potential immunomodulatory agents used as complementary medicine or functional foods.
Collapse
Affiliation(s)
- Yi Han
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingen Li
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi An
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang Li
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ximei Ye
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zitong Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Cai
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
14
|
Han Y, Ouyang K, Li J, Liu X, An Q, Zhao M, Chen S, Li X, Ye X, Zhao Z, Cai L, Wang W. Sulfated modification, characterization, immunomodulatory activities and mechanism of the polysaccharides from Cyclocarya paliurus on dendritic cells. Int J Biol Macromol 2020. [DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Plantago asiatica Seed Extracts Alleviated Blood Pressure in Phase I⁻Spontaneous Hypertension Rats. Molecules 2019; 24:molecules24091734. [PMID: 31060204 PMCID: PMC6540195 DOI: 10.3390/molecules24091734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Arterial pressure of each new breeding spontaneous Phase-1 hypertension (P1-HT) rat was recorded for 5 min by intravascular femoral artery catheter that served as a reference value prior to treatment. In the acute antihypertensive test, 0.36 g/kg Bwt of Plantago asiatica seed extract (PSE) was administered, via gavage feeding, to P1-HT rats, and the arterial pressures were continuously recorded for 1 h. The acute antihypertensive effects of PSE on P1-HT rats appeared within 15 min after PSE administration and lasted over 1 h with systolic pressure decreased 31.5 mmHg and diastolic pressure decreased 18.5 mmHg. The systolic pressure decreased 28 mmHg and diastolic pressure decreased 16 mmHg in P1-HT rats when simultaneously compared with verapamil hydrochloride (reference drug), whereas there were no significant differences in the pretreated reference values of acute PSE treatment and the untreated control. In the chronic test, P1-HT rats received 0.36 g/kg Bwt day of PSE or equal volume of water for 4 weeks via oral gavage, and the lower blood pressure tendencies of chronic PSE treatment were also found when compared with the controls. The antihypertensive values of PSE were also confirmed in spontaneously hypertensive rats (SHRs). Oral administration with PSE can effectively moderate blood pressure within an hour, while taking PSE daily can control the severity of hypertension, suggesting PSE is a potentially antihypertensive herb.
Collapse
|