1
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
2
|
Chen X, Abdallah MF, Landschoot S, Audenaert K, De Saeger S, Chen X, Rajkovic A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins (Basel) 2023; 15:577. [PMID: 37756003 PMCID: PMC10534665 DOI: 10.3390/toxins15090577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Maize is frequently contaminated with multiple mycotoxins, especially those produced by Aspergillus flavus and Fusarium verticillioides. As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of A. flavus and F. verticillioides and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize. The gathered data predict the (co-)occurrence and virulence of A. flavus and F. verticillioides would increase worldwide, especially in European cold climate countries. Studies on the interaction of both fungi regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. However, the (co-)contamination of AFB1 and FB1 has risen worldwide in the last decade. Primarily, this co-contamination increased by 32% in Europe (2010-2020 vs. 1992-2009). This implies that fungi and mycotoxins would severely threaten European-grown maize.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng 2028, South Africa
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| |
Collapse
|
3
|
Taktak I, Mansouri A, Guerfali M, Ayadi I, Souissi S, Gargouri A, Etoh MA, Elloumi A. Active bio composites films based on PLA/olive wood flour (Olea europaea L.)/cinnamon essential oil. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Characterization of the microbiological effects of pomegranate, banana, and mandarin peels on water under laboratory conditions. Heliyon 2023; 9:e13402. [PMID: 36820032 PMCID: PMC9937899 DOI: 10.1016/j.heliyon.2023.e13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The protection of natural resources, especially water resources, is attracting international attention by researchers in order to achieve sustainable development. Inadequate treatment of waste from the food industry leads to pollution of ground and surface water through leachate or direct discharge of waste. To understand the impact of inappropriate discharge of these wastes, the microbial groups (bacteria, yeasts, and moulds) of pomegranate peel (PP), banana peel (BP), mandarin peel (MP) and the water in which each waste is decomposed were studied. The microbial groups were isolated, quantified, and purified by elective media at 30 °C. The fungal microbial isolates were identified by their macro and microscopic characteristics. The findings show that the highest density of bacteria (3.95 ± 0.48 × 105 CFU/ml) was obtained in the water in which the BP is decomposed, the highest density of yeasts (4.59 ± 0.52 × 105 CFU/ml) and moulds (4.10 ± 0.34 × 105 CFU/ml) was recorded in the water in which the PP is decomposed compared to the microbial density of the initial and the final control water. The fungal microbial groups were more diverse between the decomposition waters; the waters in which PP and BP are decomposed showed a higher diversity with 9 and 8 species respectively, compared to the water in which MP is decomposed with 7 species, and compared to the initial and the final control water with 3 and 5 species respectively. Conclusively, direct dumping or landfilling of food waste in general, PP, BP, and MP in particular can cause pollution of surface and groundwater by microorganisms that can be harmful.
Collapse
|
5
|
Kpoda DS, Bandé M, Compaoré AM, Bazié RBS, Meda RN, Somda S, Meda DS, Kpoda HBN, Somé SA, Sakana L, Kaboré F, Ouangrawa S, Sié A, Ouattara M, Bakyono R, Meda C, Ilboudo B, Tapsoba L, Semporé E, Konaté B, Mien A, Sanon S, Ouattara AS, Kabré E, Hien H. Nutritional, Microbiological, and Toxicological Quality Assessment of Foods Sold in Urban and Suburban Markets in Burkina Faso. Health Secur 2022; 20:298-307. [PMID: 35917509 PMCID: PMC10818053 DOI: 10.1089/hs.2022.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/22/2022] Open
Abstract
Food safety risks are becoming a public health problem with important socioeconomic consequences for human wellbeing, especially for pregnant women and infants. In this article, we describe findings from microbiological, toxicological, and nutritional quality assessments of foods from 5 localities in Burkina Faso, with the aim to provide baseline data on the quality of food and the risks to mothers and children. Samples for assessment included food sold in markets, stores, and restaurants (eg, cereals, oilseeds, vegetables, edible oils, powdered milk, dried fish, packaged water, ready-to-eat meals). The research team selected the samples using the random route method and analyzed them at the National Public Health Laboratory in Ouagadougou between January and December 2020. A total of 443 food samples were collected, of which 101 were analyzed for microbial contamination, 360 were analyzed for the presence of toxins, and 59 were analyzed for their nutritional value. The microbiological quality of 11.88% of the food samples was unsatisfactory, and 41.50% were contaminated with aflatoxins. At least 1 pesticide residue and cyfluthrin were detected in 58.10% of samples. The most detected contaminant (cyfluthrin) was found in 79.10% of the analyzed samples. A peroxide index higher than the normal value (10 mEq/kg) was found in 3.38% of the oil samples and 76.27% of the oil samples had a vitamin A content lower than the recommended limit of 11 mg/kg. This study is the first in Burkina Faso that provides baseline data on the quality of food and potential health risks to mothers and children in Burkina Faso. Considering the level of contaminants reported in this article, it is imperative to enhance routine monitoring of foods in the country.
Collapse
Affiliation(s)
- Dissinviel S. Kpoda
- Dissinviel S. Kpoda, PhD, is an Assistant Professor, Centre Universitaire de Ziniaré and Laboratoire de Microbiologie et de Biotechnologie Microbienne, Université Joseph Ki-Zerbo, Ouagadougou
| | - Moumouni Bandé
- Moumouni Bandé, MSc, is a PhD Student, Unité de Formation et de la Recherche en Sciences de la Santé, Université Joseph Ki-Zerbo, Ouagadougou
| | - Abdou M. Compaoré
- Abdou M. Compaoré, PhD, is a Research Officer, Laboratoire National de Santé Publique, Ouagadougou
| | - Raoul B. S. Bazié
- Raoul B. S. Bazié, PhD, is an Assistant Professor and Elie Kabré, PhD, is a Professor, Biochemistry, Université Joseph Ki-Zerbo, Ouagadougou
| | - Romaric N. Meda
- Romaric N. Meda, PhD, is a Research Officer, Laboratoire National de Santé Publique, Ouagadougou
| | - Serges Somda
- Serges M. A. Somda, PhD, is an Assistant Professor, Université Nazi Boni, and Centre MURAZ/Institut National de Santé Publique, Bobo-Dioulasso
| | - Dimitri S. Meda
- Dimitri S. Meda, PharmD, is Director, Laboratoire National de Santé Publique, Ouagadougou
| | - Hervé B. N. Kpoda
- Hervé B. N. Kpoda, MD, MSc, CT, is a PhD Student, Centre MURAZ/Institut National de Santé Publique, Bobo-Dioulasso
| | - Satouro A. Somé
- Satouro A. Somé, MD, MPH, is a Research Officer, Centre MURAZ/Institut National de Santé Publique, Bobo-Dioulasso
| | - Leticia Sakana
- Leticia Sakana, MPH, is a Research Officer, Centre MURAZ/Institut National de Santé Publique, Bobo-Dioulasso
| | - Firmin Kaboré
- Firmin Kaboré, MD, PhD, is a Research Officer, Centre MURAZ/Institut National de Santé Publique, Bobo-Dioulasso
| | - Soumeya Ouangrawa
- Soumeya Ouangrawa, PhD, is a Research Officer, Centre MURAZ/Jhpiego, Ouagadougou
| | - Ali Sié
- Ali Sié, MD, PhD, is Director, Centre de recherche en santé de Nouna, Nouna
| | - Mamadou Ouattara
- Mamadou Ouattara, MPH, is a Research Officer, Centre de recherche en santé de Nouna, Nouna
| | - Richard Bakyono
- Richard Bakyono, PharmD, MSc, is a Research Officer, Laboratoire National de Santé Publique, Ouagadougou
| | - Clément Meda
- Clément Meda, MD, MPM, PhD, is an Assistant Professor, Institut supérieur des sciences de la santé, Université Nazi Boni, and Centre Hospitalo-Universitaire Souro Sanou, Bobo-Dioulasso
| | - Bernard Ilboudo
- Bernard Ilboudo, PhD, is a Research Officer, Centre MURAZ/Institut National de Santé Publique, Bobo-Dioulasso
| | - Ludovic Tapsoba
- Ludovic Tapsoba, MSc, is a Research Officer, Institut National de Santé Publique, Ouagadougou
| | - Emmanuelle Semporé
- Emmanuelle Semporé, MPH, is a PhD Student, Institut National de Santé Publique, Ouagadougou
| | - Blahima Konaté
- Blahima Konaté, PhD, is a Research Officer, Institut supérieur des sciences de la santé, and Centre MURAZ/Institut National de Santé Publique, Bobo-Dioulasso
| | - Awa Mien
- Awa Mien, MD, MPH, is a PhD Student, Institut National de Santé Publique, Ouagadougou
| | - Souleymane Sanon
- Souleymane Sanon, PhD, is an Assistant Professor, Institut National de Santé Publique, Ouagadougou
| | - Aboubakar S. Ouattara
- Aboubakar S. Ouattara, PhD, is a Professor, Laboratoire de Microbiologie et de Biotechnologie Microbienne, Université Joseph Ki-Zerbo, Ouagadougou
| | - Elie Kabré
- Elie Kabré is Director General, Laboratoire National de Santé Publique, Ouagadougou
| | - Hervé Hien
- Hervé Hien, PhD, is Director, Institut National de Santé Publique, Ouagadougou
| |
Collapse
|
6
|
Seerat W, Akram A, Qureshi R, Yaseen G, Mukhtar T, Hanif NQ. Light and scanning electron microscopic characterization of aflatoxins producing
Aspergillus flavus
in the maize crop. Microsc Res Tech 2022; 85:2894-2903. [DOI: 10.1002/jemt.24139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Wajiha Seerat
- Department of Botany Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan
| | - Abida Akram
- Department of Botany Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan
| | - Rahmatullah Qureshi
- Department of Botany Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan
| | - Ghulam Yaseen
- Department of Botany, Division of Science and Technology, Township campus University of Education Lahore Pakistan
| | - Tariq Mukhtar
- Department of Plant Pathology Pir Mehr Ali Shah Arid Agriculture University Rawalpindi Pakistan
| | | |
Collapse
|
7
|
Characterization of Fusarium acuminatum: A Potential Enniatins Producer in Tunisian Wheat. J Fungi (Basel) 2022; 8:jof8050458. [PMID: 35628714 PMCID: PMC9144410 DOI: 10.3390/jof8050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium Head Blight (FHB), caused by multiple species of Fusarium in small grain cereals, is a significant and long-standing problem anywhere in the world. Knowing regional Fusarium spp. present on non-symptomatic grains and their potential for mycotoxin production is of concern for identifying novel actions for FHB and mycotoxin management, such as treatments with essential oils. Analyzing the mycotoxin content of grains from non-symptomatic ears of different wheat varieties cultivated in Tunisia, we isolated Fusaria specimens identified as F. culmorum and F. acuminatum using analysis of the partial DNA sequence of the β-tubulin gene and ITS region. Two isolates of the latter species, uncommon in cereal grains in this region until now, were shown to be effective producers of enniatins in vitro, with 1390 and 3089 µg g−1 mycelial biomass (dry) in 11-day-old cultures. The susceptibility of an isolate of F. acuminatum to the fungistatic and antimycotoxin effects of eight essential oils was measured. Essential oils from Ammoides pusilla and Thymus capitatus used at 0.1 µL mL−1 in an agar culture medium, affected the mycelial growth by 55% and 79%, respectively and reduced the accumulation of enniatins per unit of mycelial colony by 26% and 52%, respectively. Finally, F. acuminatum was shown to be a contaminant of wheat grains in Tunisia and it may contribute to the contamination in enniatins. Two essential oils of Tunisian plants could be used for developing a biofungicide limiting both its mycelial growth and its accumulation of mycotoxins in grains.
Collapse
|
8
|
Kagot V, De Boevre M, De Saeger S, Moretti A, Mwamuye M, Okoth S. Incidence of toxigenic Aspergillus and Fusarium species occurring in maize kernels from Kenyan households. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aspergillus and Fusarium are fungal genera that include toxigenic and pathogenic species, able to suffuse farmers’ crops and secrete an array of small molecular weight secondary metabolites which can cause health complications to humans and animals when ingested. In sub-Sahara Africa, contamination and persistence of these fungi is increased by the tropical climatic conditions which are ideal for the fungi to thrive. This study evaluated the incidence, regional distribution and toxigenic potential of Aspergillus and Fusarium species occurring in maize kernels from Eastern, Western, Coastal and the Lake Victoria agro-ecological zones of Kenya. Maize kernels were collected from 16 households in each agro-ecological zone. Single spore technique was used to isolate pure cultures of Aspergillus and Fusarium which were identified morphologically. Further, molecular analysis was done using the internal transcribed spacer 1 (ITS 1) region of the ribosomal DNA for Aspergillus and the translation elongation factor-1 alpha (TEF-1α) for Fusarium. The potential of the isolated fungi to produce mycotoxins was probed by polymerase chain reaction (PCR) based on the aflatoxin regulatory aflaR gene in Aspergillus, and the fumonisin backbone structure gene FUM1 in Fusarium. Among the potentially aflatoxigenic A. flavus species isolated, 55% were from Eastern, 27% from the Coastal zone, 13% from Lake Victoria zone and 5% from Western Kenya. Among the potentially fumonisin producing F. verticillioides isolated, 45% were from the Lake Victoria agro-ecological zone, 30% were from Western, 15% from Eastern Kenya and 10% from the Coastal agro-ecological zone. This study adds data on potential mycotoxin hotspots in Kenya useful in employing targeted and regional mycotoxin mitigation strategies in efforts to avert future mycotoxicoses outbreaks in Kenya.
Collapse
Affiliation(s)
- V. Kagot
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- School of Biological Sciences-University of Nairobi, Riverside Drive, 00100 Nairobi, Kenya
| | - M. De Boevre
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - S. De Saeger
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028 Johannesburg, South Africa
| | - A. Moretti
- Institute of Sciences of Food Production, CNR, Via Amendola 122/o, 70126 Bari, Italy
| | - M. Mwamuye
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - S. Okoth
- School of Biological Sciences-University of Nairobi, Riverside Drive, 00100 Nairobi, Kenya
| |
Collapse
|
9
|
Phylogenetic diversity and antioxidant activity of selected fungi from ethno-medicinal plants and soil. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Ahmed OS, Tardif C, Rouger C, Atanasova V, Richard‐Forget F, Waffo‐Téguo P. Naturally occurring phenolic compounds as promising antimycotoxin agents: Where are we now? Compr Rev Food Sci Food Saf 2022; 21:1161-1197. [DOI: 10.1111/1541-4337.12891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Omar S. Ahmed
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Caroline Rouger
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA) INRAE Villenave d'Ornon France
| | | | - Pierre Waffo‐Téguo
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| |
Collapse
|
11
|
Castañares E, da Cruz Cabral L, Dinolfo MI, Andersen B, Stenglein SA, Patriarca A. Alternaria in malting barley: Characterization and distribution in relation with climatic conditions and barley cultivars. Int J Food Microbiol 2021; 357:109367. [PMID: 34482184 DOI: 10.1016/j.ijfoodmicro.2021.109367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Alternaria is one of the main fungal genera affecting the quality of barley grains. In this study, a polyphasic approach was carried out to characterise the Alternaria population infecting different cultivars of barley grains from the major producing regions of Argentina in the 2014 and 2015 seasons. Its relationship with Fusarium and correlations between predominant species, barley cultivars, and climatic conditions in the growing regions were evaluated. Alternaria incidence exceeded that of Fusarium in all the barley samples and was higher in the drier season (21% in 2014 and 42% in 2015 vs. 6% and 4%, respectively). The main Alternaria species-groups identified were present in both growing seasons in similar frequencies (A. tenuissima sp.-grp., 83.4% in 2014 and 81.7% in 2015; A. infectoria sp.-grp., 11.7% in 2014 and 11.3% in 2015). The dominant Alternaria species-group isolated and identified based on morphological characteristics, DNA sequencing, and metabolite profile was A. tenuissima (72.9%), followed by A. infectoria (14.6%). An association between their frequency and field temperature was observed; A. tenuissima sp.-grp. was more frequent in northern localities, where higher temperatures were registered, while the opposite was observed for A. infectoria sp.-grp. A smaller percentage of A. arborescens sp.-grp. (5%), A. alternata sp.-grp. (3.9%) and A. vaccinii (1.4%) were also identified. Both secondary metabolite profiles and phylogenetic analysis were useful to distinguish isolates from Alternaria section Alternaria and section Infectoriae. Regarding metabolite profiles, alternariol was the most frequent compound produced by isolates of the section Alternaria. Infectopyrones and novae-zelandins were produced by most of the isolates from section Infectoriae. The barley cultivars analysed in this study did not show a particular susceptibility regarding the Alternaria population composition, except for Andreia, which presented the highest frequency of contamination with A. tenuissima sp.-grp. The rest of the cultivars, when grown in different regions, showed different proportion of the Alternaria sp.-grps., suggesting that other factors were determinant in their distribution. The results obtained in the present study will be a valuable tool for health authorities to assess the need for regulations on Alternaria mycotoxins, given the high incidence of Alternaria spp. in barley and the diversity of metabolites that might contaminate the grains.
Collapse
Affiliation(s)
- Eliana Castañares
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, UNCPBA, Azul 7300, Buenos Aires, Argentina
| | - Lucía da Cruz Cabral
- CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria I Dinolfo
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, UNCPBA, Azul 7300, Buenos Aires, Argentina
| | - Birgitte Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Sebastián A Stenglein
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, UNCPBA, Azul 7300, Buenos Aires, Argentina
| | - Andrea Patriarca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Laboratorio de Microbiología de Alimentos, CONICET, Instituto de Micología y Botánica (INMIBO), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Fusarium species richness in mono- and dicotyledonous weeds and their ability to infect barley and wheat. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Batnini M, Haddoudi I, Taamali W, Djebali N, Badri M, Mrabet M, Mhadhbi H. Medicago truncatula in Interaction with Fusarium and Rhizoctonia Phytopathogenic Fungi: Fungal Aggressiveness, Plant Response Biodiversity and Character Heritability Indices. THE PLANT PATHOLOGY JOURNAL 2021; 37:315-328. [PMID: 34365743 PMCID: PMC8357562 DOI: 10.5423/ppj.oa.01.2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 06/01/2023]
Abstract
Fusarium and Rhizoctonia genera are important pathogens of many field crops worldwide. They are constantly evolving and expanding their host range. Selecting resistant cultivars is an effective strategy to break their infection cycles. To this end, we screened a collection of Medicago truncatula accessions against Fusarium oxysporum, Fusarium solani, and Rhizoctonia solani strains isolated from different plant species. Despite the small collection, a biodiversity in the disease response of M. truncatula accessions ranging from resistant phenotypes to highly susceptible ones was observed. A17 showed relative resistance to all fungal strains with the lowest disease incidence and ratings while TN1.11 was among the susceptible accessions. As an initiation of the characterization of resistance mechanisms, the antioxidant enzymes' activities, at the early stages of infections, were compared between these contrasting accessions. Our results showed an increment of the antioxidant activities within A17 plants in leaves and roots. We also analyzed the responses of a population of recombinant inbred lines derived from the crossing of A17 and TN1.11 to the infection with the same fungal strains. The broad-sense heritability of measured traits ranged from 0.87 to 0.95, from 0.72 to 0.96, and from 0.14 to 0.85 under control, F. oxysporum, and R. solani conditions, respectively. This high estimated heritability underlines the importance of further molecular analysis of the observed resistance to identify selection markers that could be incorporated into a breeding program and thus improving soil-borne pathogens resistance in crops.
Collapse
Affiliation(s)
- Marwa Batnini
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Imen Haddoudi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
- Department of Ecosystem Biology, University of South Bohemia in České Budějovice, České Budějovice, PB 37005, Czechia
| | - Wael Taamali
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Naceur Djebali
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Mounawer Badri
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| |
Collapse
|
14
|
Phylogenetic analysis and growth profiles of Fusarium incarnatum-equiseti species complex strains isolated from Tunisian cereals. Int J Food Microbiol 2021; 353:109297. [PMID: 34153829 DOI: 10.1016/j.ijfoodmicro.2021.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
The Fusarium incarnatum-equiseti species complex (FIESC) is a phylogenetically rich complex. It includes more than 30 cryptic phylogenetic species, making morphological identification problematic. FIESC has previously been detected in Tunisian cereals, but knowledge on the phylogeny and the ecophysiology of their species is lacking. In this work a phylogenetic analysis was performed using partial sequences of the translation elongation factor 1a gene (EF1a) of three FIESC strains isolated from barley and wheat from Tunisia, situated south in the Mediterranean basin, and additional strains from other countries. The results indicated that all Tunisian strains clustered with FIESC 5 group (F. clavum) together with other Spanish FIESC 5 strains also isolated from cereals. Growth rate profiles of the Tunisian strains were also determined on wheat and sorghum based media at a range of temperatures (15, 20, 25, 30, 35 and 40 °C) and water potential values (-0.7, -2.8, -7.0, and -9.8 MPa, corresponding to 0.995, 0.98, 0.95 and 0.93 aw values). Optimal growth was observed at 20-30 °C and between -0.7 and -7.0 MPa on both substrates (wheat and sorghum). The highest growth rate for the three strains was seen at 25 °C combined with -2.8 MPa. The comparison between the growth profiles of Tunisian and Spanish FIESC 5 strains showed similar trends with some interesting differences regarding temperature and water potential factors. Tunisian strains seem to perform better between 15 and 30 °C and, notably, at even lower water potentials included -9.8 Mpa. This might suggest that tolerance to low water potentials might be for Tunisian strains a more important selective clue than to higher temperatures. These results appeared to be consistent with a population well adapted to the present climatic conditions and predicted scenarios for North Africa.
Collapse
|
15
|
Nasaruddin N, Jinap S, Samsudin NI, Kamarulzaman NH, Sanny M. Prevalence of mycotoxigenic fungi and assessment of aflatoxin contamination: a multiple case study along the integrated corn-based poultry feed supply chain in Malaysia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1812-1821. [PMID: 32893877 DOI: 10.1002/jsfa.10795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Corn, a main feed ingredient in the livestock industry, is one of the most susceptible crops to fungal infection and aflatoxin contamination. Livestock feeding on aflatoxin (AF)-contaminated feed have been shown to experience feed refusal, and decreased growth rate, milk production, and feed efficiency. In poultry, AF poisoning causes weight loss, poor feed efficiency, and reduced egg production and egg weight. The present work therefore aimed to determine the prevalence of mycotoxigenic fungi and the occurrence of AF contamination along the integrated corn-based poultry feed supply chain in Malaysia. A total of 51 samples were collected from different points along the feed supply chain from integrated poultry feed companies. The samples were subjected to mycological analyses (fungal isolation, enumeration, identification), and AFs were quantified by high-performance liquid chromatography equipped with a fluorescence detector (HPLC-FLD). RESULTS Samples collected from sampling point 1 (company A) and sampling point 9 (company B) yielded the highest total fungal load (>log 4 CFU g-1 ). The prevalent fungal genera isolated were Aspergillus, Fusarium, and Penicillium spp. Aflatoxin B1 was detected in 8.3% of corn samples, and 7.4% of corn-based poultry feed samples along the feed supply chain, whereas AFs B2 , G1 , and G2 were not detected. CONCLUSION The incidence of mycotoxigenic fungi along the integrated poultry feed supply chain warrant continuous monitoring of mycotoxin contamination to reduce the exposure risk of mycotoxin intake in poultry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Norafidah Nasaruddin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Selamat Jinap
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nik Ip Samsudin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nitty H Kamarulzaman
- Laboratory of Halal Policy and Management, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Agribusiness and Bioresource Economics, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maimunah Sanny
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
16
|
Jedidi I, Mateo EM, Marín P, Jiménez M, Said S, González-Jaén MT. Contamination of Wheat, Barley, and Maize Seeds with Toxigenic Fusarium Species and Their Mycotoxins in Tunisia. J AOAC Int 2021; 104:959-967. [DOI: 10.1093/jaoacint/qsab020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 01/21/2023]
Abstract
Abstract
Background
Fusarium is a worldwide distributed fungal genus. It includes different species pathogenic to cereals among others crops. Some of these species can also produce toxic compounds toward animals and humans.
Objective
In this work, occurrence of fumonisins B1+B2, zearalenone, type A trichothecenes (T-2 and HT-2 toxins), and type B trichothecenes (deoxynivalenol[DON] and nivalenol[NIV]) was studied in 65 samples of stored and freshly harvested wheat, barley, and maize collected in Tunisia.
Methods
Mycotoxins analyses were performed by using gas chromatography for type B trichothecenes and HPLC for other mycotoxins. Obtained results were compared with the presence of mycotoxigenic species considered responsible for their synthesis by using species-specific polymerase chain reaction (PCR).
Results
Fumonisins occurred in 20.83% of wheat, 40% of barley, and 57.14% of maize samples, at levels exceeding European limits and suggesting a risk in Tunisian cereals, especially maize. Zearalenone, DON, NIV, and T-2+HT-2 toxins were detected at lower values in only wheat and barley samples. PCR protocols showed the predominance of F. verticillioides especially in maize, and occurrence of F. equiseti and F. graminearum in wheat and barley, and F. proliferatum in only two maize samples. A very consistent correlation was found between the detection of F. verticillioides and the contamination by fumonisins, as well as between the presence of F. graminearum and the contamination by zearalenone, DON, and NIV in the analyzed cereals.
Conclusions
Consequently, the detection of Fusarium species with the current PCR assays strategy in wheat, barley, and maize grains may be considered predictive of their potential mycotoxin risk in these matrices.
Highlights
This work is the first to report information on the occurrence of fumonisins, trichothecene, and ZEN, together with their potentially producing Fusarium species in wheat, barley, and maize in Tunisia. The high level of fumonisins in cereals, especially maize, stresses the importance of the control and the regularization of these mycotoxins for food safety.
Collapse
Affiliation(s)
- Ines Jedidi
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Av. Mohamed El Karoui, Sousse, Tunisia
| | - Eva M Mateo
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, Spain
| | - Patricia Marín
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, Spain
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, Spain
| | - Salem Said
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Av. Mohamed El Karoui, Sousse, Tunisia
| | - María T González-Jaén
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, Spain
| |
Collapse
|
17
|
Mir SA, Dar BN, Shah MA, Sofi SA, Hamdani AM, Oliveira CAF, Hashemi Moosavi M, Mousavi Khaneghah A, Sant'Ana AS. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem Toxicol 2021; 148:111976. [PMID: 33422602 DOI: 10.1016/j.fct.2021.111976] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
Emerging decontamination technologies have been attracted considerable attention to address the consumers' demand for high quality and safe food products. As one of the important foods in the human diet, cereals are usually stored for long periods, resulting in an increased risk of contamination by different hazards. Mycotoxins comprise one of the significant contaminants of cereals that lead to enormous economic losses to the industry and threats to human health. While prevention is the primary approach towards reducing human exposure to mycotoxins, decontamination methods have also been developed as complementary measures. However, some conventional methods (chemical treatments) do not fulfill industries' expectations due to limitations like safety, efficiency, and the destruction of food quality attributes. In this regard, novel techniques have been proposed to food to comply with the industry's demand and overcome conventional methods' limitations. Novel techniques have different efficiencies for removing or reducing mycotoxins depending on processing conditions, type of mycotoxin, and the food matrix. Therefore, this review provides an overview of novel mycotoxin decontamination technologies such as cold plasma, irradiation, and pulse light, which can be efficient for reducing mycotoxins with minimum adverse effects on the quality and nutritional properties of produce.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Food Science & Technology, Government College for Women, M. A. Road, Srinagar, Jammu & Kashmir, India
| | - B N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Jammu & Kashmir, India
| | - Manzoor Ahmad Shah
- Department of Food Science & Technology, Government PG College for Women, Gandhi Nagar, Jammu, Jammu & Kashmir, India
| | - Sajad Ahmad Sofi
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Jammu & Kashmir, India
| | - Afshan Mumtaz Hamdani
- Department of Food Science & Technology, Government College for Women, M. A. Road, Srinagar, Jammu & Kashmir, India
| | - Carlos A F Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Motahareh Hashemi Moosavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
18
|
Gherbawy YA, Elhariry HM, Alamri SA, El‐Dawy EG. Molecular characterization of ochratoxigenic fungi associated with poultry feedstuffs in Saudi Arabia. Food Sci Nutr 2020; 8:5298-5308. [PMID: 33133533 PMCID: PMC7590298 DOI: 10.1002/fsn3.1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/02/2022] Open
Abstract
Fungal and mycotoxins contamination of food and poultry feeds can occur at each step along the chain from grain production, storage, and processing. A total of 200 samples comprising of mixed poultry feedstuffs (n = 100) and their ingredients (n = 100) were collected from Riyadh, Alhassa, Qassium, and Jeddah cities in Saudi Arabia. These samples were screened for contamination by fungi. Penicillium chrysogenum was the predominant species taking into its account and frequency, respectively, in both mixed poultry feedstuff and barley samples (4,561.9 and 687 fungal colony-forming units (CFU)/g) and (66% and 17%). Moisture content was an important indicator for the count of fungi and ochratoxin A. Ochratoxin analysis of plate cultures was performed by a HPLC technique. Sample of mixed poultry feedstuff which was collected from Jeddah displayed the highest level of ochratoxin (14.8 µg/kg) and moisture content (11.5%). Corn grains samples were highly contaminated by ochratoxin A (450 and 423 µg/kg) and recorded the highest moisture contents (14.1 and 14.5%). Ochratoxin A production in fungal species isolated from mixed poultry feedstuff samples were high with P. verrucosum (5.5 μg/kg) and A. niger (1.1 μg/kg). In sorghum and corn grains, the highest ochratoxins producing species were P. viridicatum (5.9 μg/kg) and A. niger (1.3 μg/kg), respectively. Sixty-three isolates of A. niger were ochratoxigenic, and all of them showed the presence of pks genes using PKS15C-MeT and PKS15KS primer pairs. The detection technique of A. niger in poultry feedstuff samples described in the present study was successfully used as a rapid and specific protocol for early detection of A. niger without cultivation on specific media.
Collapse
Affiliation(s)
- Youssuf A. Gherbawy
- Applied and Environmental Microbiology CenterSouth Valley UniversityQenaEgypt
- Botany and Microbiology DepartmentFaculty of ScienceSouth Valley UniversityQenaEgypt
| | - Hesham M. Elhariry
- Department of Food ScienceFaculty of AgricultureAin Shams UniversityCairoEgypt
| | - Saad A. Alamri
- Biology DepartmentFaculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
- Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
| | - Eman G.A. El‐Dawy
- Applied and Environmental Microbiology CenterSouth Valley UniversityQenaEgypt
- Botany and Microbiology DepartmentFaculty of ScienceSouth Valley UniversityQenaEgypt
| |
Collapse
|
19
|
Shen Y, Nie J, Kuang L, Zhang J, Li H. DNA sequencing, genomes and genetic markers of microbes on fruits and vegetables. Microb Biotechnol 2020; 14:323-362. [PMID: 32207561 PMCID: PMC7936329 DOI: 10.1111/1751-7915.13560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The development of DNA sequencing technology has provided an effective method for studying foodborne and phytopathogenic microorganisms on fruits and vegetables (F & V). DNA sequencing has successfully proceeded through three generations, including the tens of operating platforms. These advances have significantly promoted microbial whole‐genome sequencing (WGS) and DNA polymorphism research. Based on genomic and regional polymorphisms, genetic markers have been widely obtained. These molecular markers are used as targets for PCR or chip analyses to detect microbes at the genetic level. Furthermore, metagenomic analyses conducted by sequencing the hypervariable regions of ribosomal DNA (rDNA) have revealed comprehensive microbial communities in various studies on F & V. This review highlights the basic principles of three generations of DNA sequencing, and summarizes the WGS studies of and available DNA markers for major bacterial foodborne pathogens and phytopathogenic fungi found on F & V. In addition, rDNA sequencing‐based bacterial and fungal metagenomics are summarized under three topics. These findings deepen the understanding of DNA sequencing and its application in studies of foodborne and phytopathogenic microbes and shed light on strategies for the monitoring of F & V microbes and quality control.
Collapse
Affiliation(s)
- Youming Shen
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jiyun Nie
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lixue Kuang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jianyi Zhang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Haifei Li
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| |
Collapse
|
20
|
Schabo DC, Martins LM, Maciel JF, Iamanaka BT, Taniwaki MH, Schaffner DW, Magnani M. Production of aflatoxin B 1 and B 2 by Aspergillus flavus in inoculated wheat using typical craft beer malting conditions. Food Microbiol 2020; 89:103456. [PMID: 32139000 DOI: 10.1016/j.fm.2020.103456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/10/2019] [Accepted: 02/06/2020] [Indexed: 12/27/2022]
Abstract
The production of aflatoxin (AF) B1 and B2 was determined during malting of wheat grains artificially contaminated with a toxigenic A. flavus strain (CCDCA 11553) isolated from craft beer raw material. Malting was performed in three steps (steeping, germination and kilning) following standard Central European Commission for Brewing Analysis procedures. AFB1 and AFB2 were quantified in eleven samples collected during the three malting steps and in malted wheat. Both, AFB1 and AFB2 were produced at the beginning of steeping and detected in all samples. The levels of AFB1 ranged from 229.35 to 455.66 μg/kg, and from 5.65 to 13.05 μg/kg for AFB2. The AFB2 increased during steeping, while no changes were observed in AFB1. Otherwise, AFB1 decreased during germination and AFB2 did not change. AFB1 and AFB2 increased after 16 h of kilning at 50 °C and decreased at the end of kilning, when the temperature reached 80 °C. The levels of AFB1 wheat malt were lower than those detected in wheat grains during steeping; however, levels of both AFB1 (240.46 μg/kg) and AFB2 (6.36 μg/kg) in Aspergillus flavus inoculated wheat malt exceeded the limits imposed by the regulatory agencies for cereals and derived products.
Collapse
Affiliation(s)
- Danieli Cristina Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Campus Colorado do Oeste, BR 435, Km 63, Colorado Do Oeste, RO, 76993-000, Brazil; Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB, 58051-900, Brazil
| | - Ligia Manoel Martins
- Center for Science and Food Quality, Food Technology Institute, Avenue Brazil, 2880, Campinas, SP, 13070-178, Brazil
| | - Janeeyre Ferreira Maciel
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB, 58051-900, Brazil
| | - Beatriz Thie Iamanaka
- Center for Science and Food Quality, Food Technology Institute, Avenue Brazil, 2880, Campinas, SP, 13070-178, Brazil
| | - Marta Hiromi Taniwaki
- Center for Science and Food Quality, Food Technology Institute, Avenue Brazil, 2880, Campinas, SP, 13070-178, Brazil
| | - Donald William Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
21
|
Castañares E, Pavicich MA, Dinolfo MI, Moreyra F, Stenglein SA, Patriarca A. Natural occurrence of Alternaria mycotoxins in malting barley grains in the main producing region of Argentina. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1004-1011. [PMID: 31646639 DOI: 10.1002/jsfa.10101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare L.) is one of the most important cereals worldwide, and its quality is affected by fungal contamination such as species of the genus Alternaria. No information is available about the occurrence of Alternaria mycotoxins in Argentinean barley grains, which is of concern, because they can be transferred into malt and beer. The aim of this study was to analyze the occurrence of alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TeA) in malting barley grains from the main producing region of Argentina during the 2014 and 2015 growing seasons. RESULTS The most frequent mycotoxin was AOH (64%), which was detected at higher levels (712 μg kg-1 ) compared with other studies, followed by TeA (37%, 1522 μg kg-1 ), while AME was present in five samples in the 2015 growing season only, with a mean of 4876 μg kg-1 . A similar frequency of mycotoxin occurrence was observed in both years (80.8 vs 85.3%), but more diverse contamination was found in 2015, which was characterized by lower accumulated precipitation. Nevertheless, AOH was more frequently found in 2014 than in 2015 (80.8 and 47.1% respectively). A negative correlation between AOH concentration and temperature was observed. The susceptibility of different barley varieties to mycotoxin accumulation varied with the mycotoxin, geographical location and meteorological conditions. CONCLUSION The results obtained in the present work represent a tool for risk assessment of exposition to these mycotoxins and could be used by food safety authorities to determine the need for their regulation. Furthermore, the establishment of a hazard analysis and critical control point (HACCP) system to minimize fungal and mycotoxin contamination in barley from farm to processing could be apply to ensure food safety. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eliana Castañares
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, UNCPBA, Azul, Buenos Aires, Argentina
| | - Maria A Pavicich
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Laboratorio de Microbiología de Alimentos, CONICET, Instituto de Micología y Botánica (INMIBO), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria I Dinolfo
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, UNCPBA, Azul, Buenos Aires, Argentina
| | - Federico Moreyra
- Estación Experimental Agropecuaria INTA Bordenave, Bordenave, Buenos Aires, Argentina
| | - Sebastián A Stenglein
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA, Facultad de Agronomía, UNCPBA, Azul, Buenos Aires, Argentina
| | - Andrea Patriarca
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Laboratorio de Microbiología de Alimentos, CONICET, Instituto de Micología y Botánica (INMIBO), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Bakri MM, El-Naggar MA, Helmy EA, Ashoor MS, Abdel Ghany TM. Efficacy of Juniperus procera Constituents with Silver Nanoparticles Against Aspergillus fumigatus and Fusarium chlamydosporum. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-019-00716-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Bouti K, Verheecke‐Vaessen C, Mokrane S, Meklat A, Djemouai N, Sabaou N, Mathieu F, Riba A. Polyphasic characterization of
Aspergillus
section
Flavi
isolated from animal feeds in Algeria. J Food Saf 2019. [DOI: 10.1111/jfs.12743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Karima Bouti
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
| | - Carol Verheecke‐Vaessen
- Applied Mycology Group, Environment and AgriFood ThemeCranfield University Cranfield UK
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS Toulouse France
| | - Salim Mokrane
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
- Département de Biologie et Physiologie Cellulaire, Faculté des Sciences de la Nature et de la VieUniversité Saad Dahlab Blida Algeria
| | - Nadjette Djemouai
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
- Laboratoire de Biologie et Physiologie des OrganismesUniversité des Sciences et de la Technologie Houari Boumediene Bab Ezzouar (USTHB) Algiers Algeria
| | - Nasserdine Sabaou
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
| | - Florence Mathieu
- Applied Mycology Group, Environment and AgriFood ThemeCranfield University Cranfield UK
| | - Amar Riba
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
- Département de Biologie, Faculté des SciencesUniversité M'Hamed Bougara Boumerdès Algeria
| |
Collapse
|
24
|
Maatouk I, Mehrez A, Amara AB, Chayma R, Abid S, Jerbi T, Landoulsi A. Effects of Gamma Irradiation on Ochratoxin A Stability and Cytotoxicity in Methanolic Solutions and Potential Application in Tunisian Millet Samples. J Food Prot 2019; 82:1433-1439. [PMID: 31339370 DOI: 10.4315/0362-028x.jfp-18-557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gamma irradiation is a useful technology for degrading mycotoxins. The purpose of this study was to investigate the effect of irradiation on ochratoxin A (OTA) stability under different conditions. OTA was irradiated in methanolic solution and on millet flour at doses of 2 and 4 kGy. Residual OTA concentrations and possible degradation products in irradiated samples were analyzed by high-performance liquid chromatography with fluorescence detection and liquid chromatography coupled to mass spectrometry. The extent of in vitro cytotoxicity of OTA to HepG2 cells, with and without irradiation treatment, was assessed with an MTT assay. OTA was more sensitive to gamma radiation on Tunisian millet flour than in methanolic solutions. After irradiation of naturally contaminated millet flour, the OTA concentration was significantly reduced by 48 and 62% at a dose of 2 and 4 kGy, respectively. However, in the methanolic solution, OTA at concentrations of 1 and 5 μg mL-1 was relatively stable even at a dose of 4 kGy, with no degradation products detected in the chemical analysis. Analytical results were confirmed by cell culture assays. The remaining cytotoxicity (MTT assay) of OTA following irradiation was not significantly affected compared with the controls. These findings indicate that gamma irradiation could offer a solution for OTA decontamination in the postharvest processing chain of millet flour. However, the associated toxicological hazard of decontaminated food matrices needs more investigation.
Collapse
Affiliation(s)
- Imed Maatouk
- 1 Research Unit Risques Iiés aux stress environmentaux: Lutte et prévention, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Amel Mehrez
- 1 Research Unit Risques Iiés aux stress environmentaux: Lutte et prévention, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Aya Ben Amara
- 1 Research Unit Risques Iiés aux stress environmentaux: Lutte et prévention, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Ragoubi Chayma
- 1 Research Unit Risques Iiés aux stress environmentaux: Lutte et prévention, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Salwa Abid
- 2 Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia
| | - Taieb Jerbi
- 3 National Center for Nuclear Sciences and Technologies (CNSTN), Tunis cedex 2020, Tunisia
| | - Ahmed Landoulsi
- 1 Research Unit Risques Iiés aux stress environmentaux: Lutte et prévention, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| |
Collapse
|
25
|
Target Analysis and Retrospective Screening of Multiple Mycotoxins in Pet Food Using UHPLC-Q-Orbitrap HRMS. Toxins (Basel) 2019; 11:toxins11080434. [PMID: 31344880 PMCID: PMC6723864 DOI: 10.3390/toxins11080434] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 11/21/2022] Open
Abstract
A comprehensive strategy combining a quantitative method for 28 mycotoxins and a post-target screening for other 245 fungal and bacterial metabolites in dry pet food samples were developed using an acetonitrile-based extraction and an ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) method. The proposed method showed satisfactory validation results according to Commission Decision 2002/657/EC. Average recoveries from 72 to 108% were obtained for all studied mycotoxins, and the intra-/inter-day precision were below 9 and 14%, respectively. Results showed mycotoxin contamination in 99% of pet food samples (n = 89) at concentrations of up to hundreds µg/kg, with emerging Fusarium mycotoxins being the most commonly detected mycotoxins. All positive samples showed co-occurrence of mycotoxins with the simultaneous presence of up to 16 analytes per sample. In the retrospective screening, up to 54 fungal metabolites were tentatively identified being cyclopiazonic acid, paspalitrem A, fusaric acid, and macrosporin, the most commonly detected analytes.
Collapse
|