1
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
2
|
Youn KW, Lee S, Kim JH, Park YI, So J, Kim C, Cho CW, Park J. Amentoflavone from Selaginella tamariscina inhibits SARS-CoV-2 RNA-dependent RNA polymerase. Heliyon 2024; 10:e36568. [PMID: 39258186 PMCID: PMC11386279 DOI: 10.1016/j.heliyon.2024.e36568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
The SARS-CoV-2 pandemic caused millions of deaths due to its prominent infectivity and mortality. Although the vaccines and medicines for SARS-CoV-2 are on the market, new coronavirus variants like influenza are expected to reemerge continuously. Therefore, effective and inexpensive medicines will be required to respond to SARS-CoV-2 variants. Here, we used herbal plant extracts to search for effective compounds that can interfere with SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and found that Selaginella tamariscina extract (STE) can reduce SARS-CoV-2 RdRp activity. The HCoV-OC43 beta coronavirus model was used to examine whether STE treatment could inhibit coronavirus replication and reduce coronavirus-induced cytotoxicity. Next, we searched the active compound of STE and found that amentoflavone is the main active compound of STE. Finally, we demonstrated that amentoflavone inhibits SARS-CoV-2 RdRp and coronavirus replication. Our results collectively indicate that amentoflavone from STE is possibly beneficial in responding to coronavirus-related diseases, including SARS-CoV-2.
Collapse
Affiliation(s)
- Kyoung Won Youn
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Siyun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, 27709, Republic of Korea
| | - Yea-In Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Jaeyeon So
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Chansoo Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Chong Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| |
Collapse
|
3
|
Saha C, Naskar R, Chakraborty S. Antiviral Flavonoids: A Natural Scaffold with Prospects as Phytomedicines against SARS-CoV2. Mini Rev Med Chem 2024; 24:39-59. [PMID: 37138419 DOI: 10.2174/1389557523666230503105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.
Collapse
Affiliation(s)
- Chiranjeet Saha
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Roumi Naskar
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
4
|
Shamim S, Akhtar M, Gul S. Novel designed analogues of quercetin against SARS-CoV2:an in-silico pharmacokinetic evaluation, molecular modeling, MD simulations based study. J Biomol Struct Dyn 2023:1-19. [PMID: 37798928 DOI: 10.1080/07391102.2023.2265469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Here we present the design of the series of quercetin analogues and their molecular docking study involving the binding of quercetin and its analogues with SARS-CoV2 3CLpro. The scientific literature shows that quercetin compound has been successfully used against SARS-CoV by inhibiting the replication of virus in respiratory epithelial cell through the inhibition of the SARS-CoV main protease (3CLpro.) It was suggested that the modification at position 3 in quercetin structure may produce potent compounds against SARS-CoV2. A series of quercetin analogues were designed and screened for physicochemical and pharmacokinetics parameters. The activities of selected compounds against SARS-CoV2 were screened by molecular modelling and evaluated that analogues, Q5, Q6 and Q13 have the best docking scores (-8.01 to -8.17 kcal/mol) and also better than quercetin, α-ketoamide and current available inhibitors of the same target. The structure-activity relationship (SAR) study revealed that the introduction of the amino group in a designed molecule was highly promising for increasing the inhibitory activity against SARS-CoV2 3CL pro. Moreover, to check the stability and orientation of selected compounds inside the binding pocket, the molecular dynamic simulations were performed for 100 ns. Results revealed that the designed analogues Q1, Q6 and Q13 having lowest binding energies (-8.0, -8.17 and -8.06 kcal/mol respectively) as well as better physicochemical properties, pharmacokinetics, and toxicity profile show their potential to synthesize and develop as the therapeutic agents against corona virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumbul Shamim
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan
| | - Mahwish Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan
| | - Somia Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jinnah University for Women, Karachi, Pakistan
| |
Collapse
|
5
|
Toigo L, Dos Santos Teodoro EI, Guidi AC, Gancedo NC, Petruco MV, Melo EB, Tonin FS, Fernandez-Llimos F, Chierrito D, de Mello JCP, de Medeiros Araújo DC, Sanches ACC. Flavonoid as possible therapeutic targets against COVID-19: a scoping review of in silico studies. Daru 2023; 31:51-68. [PMID: 37195402 PMCID: PMC10191091 DOI: 10.1007/s40199-023-00461-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
OBJECTIVES This scoping review aims to present flavonoid compounds' promising effects and possible mechanisms of action on potential therapeutic targets in the SARS-CoV-2 infection process. METHODS A search of electronic databases such as PubMed and Scopus was carried out to evaluate the performance of substances from the flavonoid class at different stages of SARS-CoV-2 infection. RESULTS The search strategy yielded 382 articles after the exclusion of duplicates. During the screening process, 265 records were deemed as irrelevant. At the end of the full-text appraisal, 37 studies were considered eligible for data extraction and qualitative synthesis. All the studies used virtual molecular docking models to verify the affinity of compounds from the flavonoid class with crucial proteins in the replication cycle of the SARS-CoV-2 virus (Spike protein, PLpro, 3CLpro/ MPro, RdRP, and inhibition of the host's ACE II receptor). The flavonoids with more targets and lowest binding energies were: orientin, quercetin, epigallocatechin, narcissoside, silymarin, neohesperidin, delphinidin-3,5-diglucoside, and delphinidin-3-sambubioside-5-glucoside. CONCLUSION These studies allow us to provide a basis for in vitro and in vivo assays to assist in developing drugs for the treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Larissa Toigo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | | | - Ana Carolina Guidi
- Laboratório de Biologia Farmacêutica, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Naiara Cássia Gancedo
- Laboratório de Biologia Farmacêutica, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Marcus Vinícius Petruco
- Clínica de Reumatologia-Pneumologia Laboratório do Sono de Maringá e Hospital Bom Samaritano de Maringá, Maringá, Brazil
| | - Eduardo Borges Melo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Fernanda Stumpf Tonin
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Brazil
- H&TRC- Health & Technology Research Center, ESTeSLEscola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | | | - Danielly Chierrito
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
- Centro Universitário Ingá - UNINGÁ, Maringá, Brazil
| | - João Carlos Palazzo de Mello
- Laboratório de Biologia Farmacêutica, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | |
Collapse
|
6
|
Fu M, Gao L, Geng Q, Li T, Dai T, Liu C, Chen J. Noncovalent interaction mechanism and functional properties of flavonoid glycoside-β-lactoglobulin complexes. Food Funct 2023; 14:1357-1368. [PMID: 36648058 DOI: 10.1039/d2fo02791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interaction of flavonoid glycosides with milk protein and effects on the functional properties of flavonoid glycoside-β-lactoglobulin complexes are still inexplicit. The noncovalent interactions between flavonoid glycosides including quercetin (QE), quercitrin (QI), and rutin (RU) with β-lactoglobulin (β-LG) were determined by computer molecular docking and multispectral technique analysis. The fluorescence quenching results indicated that the flavonoid glycosides formed stable complexes with β-LG by the static quenching mechanism. The computer molecular docking and thermodynamic parameters analysis conclude that the main interaction of β-LG-QE was via hydrogen bonding, while for β-LG-QI and β-LG-RU it is via hydrophobic forces. The order of binding affinity to β-LG was QE (37.76 × 104 L mol-1) > RU (16.80 × 104 L mol-1) > QI (11.17 × 104 L mol-1), which indicated that glycosylation adversely affected the colloidal complex binding capacity. In this study, the physicochemical properties of the protein-flavonoid colloidal complex were determined. The analysis by circular dichroism spectroscopy demonstrated that flavonoid glycosides made the protein structure looser by inducing the secondary structure of β-LG to transform from the α-helix and β-sheet to random coils. The hydrophobicity of β-LG decreased due to binding with flavonoid glycosides, while functional properties including foaming, emulsification, and antioxidant capacities of β-LG were improved due to the noncovalent interactions. This study presents a part of the insight and guidance on the interactive mechanism of flavonoid glycosides and proteins and is helpful for developing functional protein-based foods.
Collapse
Affiliation(s)
- Min Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Lizhi Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China. .,West Yunnan University of Applied Sciences, Dali, Yunnan, 671000, China
| | - Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
7
|
Schultz JV, Tonel MZ, Martins MO, Fagan SB. Graphene oxide and flavonoids as potential inhibitors of the spike protein of SARS-CoV-2 variants and interaction between ligands: a parallel study of molecular docking and DFT. Struct Chem 2023; 34:1-11. [PMID: 36721714 PMCID: PMC9880933 DOI: 10.1007/s11224-023-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Nanocarriers allow the connection between biomolecules and other structures to enhance the treatment efficacy, through the biomolecule's properties to an existing drug, or to allow a better and specific delivery. Apigenin and orientin are biomolecules with excellent therapeutic properties that are proposed in the fight against COVID-19. Besides that, graphene oxide is a nanomaterial that exhibits antiviral activity and is used as a nanocarrier of several drugs. We evaluated in this work, through molecular docking, the binding affinity between these structures to the receptor-binding domain of spike protein of two coronavirus variants, Delta and Omicron. The results indicate that all the structures exhibit affinity with the two protein targets, with binding affinity values of -11.88 to -6.65 kcal/mol for the Delta variant and values of -9.58 to -13.20 kcal/mol for the Omicron variant, which is a successful value as found in the literature as a potential inhibitor of SARS-CoV-2 infection. Also, through first-principles calculations based on Density Functional Theory, the interaction of graphene oxide with the biomolecules apigenin and orientin occurred. The results exhibit weak binding energy, which indicates that physical adsorption occurs, with better results when the biomolecule is set in parallel to the nanomaterial due to attractive π-π staking. These results are conducive to the development of a nanocarrier.
Collapse
Affiliation(s)
- Júlia Vaz Schultz
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| | - Mariana Zancan Tonel
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| | - Mirkos Ortiz Martins
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| | - Solange Binotto Fagan
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| |
Collapse
|
8
|
Shrestha A, Marahatha R, Basnet S, Regmi BP, Katuwal S, Dahal SR, Sharma KR, Adhikari A, Chandra Basnyat R, Parajuli N. Molecular Docking and Dynamics Simulation of Several Flavonoids Predict Cyanidin as an Effective Drug Candidate against SARS-CoV-2 Spike Protein. Adv Pharmacol Pharm Sci 2022; 2022:3742318. [PMID: 36407836 PMCID: PMC9668477 DOI: 10.1155/2022/3742318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/15/2022] [Indexed: 09/08/2024] Open
Abstract
The in silico method has provided a versatile process of developing lead compounds from a large database in a short duration. Therefore, it is imperative to look for vaccinations and medications that can stop the havoc caused by SARS-CoV-2. The spike protein of SARS-CoV-2 is required for the viral entry into the host cells, hence inhibiting the virus from fusing and infecting the host. This study determined the binding interactions of 36 flavonoids along with two FDA-approved drugs against the spike protein receptor-binding domain of SARS-CoV-2 through molecular docking and molecular dynamics (MD) simulations. In addition, the molecular mechanics generalized Born surface area (MM/GBSA) approach was used to calculate the binding-free energy (BFE). Flavonoids were selected based on their in vitro assays on SARS-CoV and SARS-CoV-2. Our pharmacokinetics study revealed that cyanidin showed good drug-likeness, fulfilled Lipinski's rule of five, and conferred favorable toxicity parameters. Furthermore, MD simulations showed that cyanidin interacts with spike protein and alters the conformation and binding-free energy suited. Finally, an in vitro assay indicated that about 50% reduction in the binding of hACE2 with S1-RBD in the presence of cyanidin-containing red grapes crude extract was achieved at approximately 1.25 mg/mL. Hence, cyanidin may be a promising adjuvant medication for the SARS-CoV-2 spike protein based on in silico and in vitro research.
Collapse
Affiliation(s)
- Asmita Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Rishab Marahatha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Saroj Basnet
- Center for Drug Design and Molecular Simulation Division, Cancer Care and Research Center, Kathmandu, Nepal
| | - Bishnu P. Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Salik Ram Dahal
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Ram Chandra Basnyat
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
9
|
Houchi S, Messasma Z. Exploring the inhibitory potential of Saussurea costus and Saussurea involucrata phytoconstituents against the Spike glycoprotein receptor binding domain of SARS-CoV-2 Delta (B.1.617.2) variant and the main protease (M pro) as therapeutic candidates, using Molecular docking, DFT, and ADME/Tox studies. J Mol Struct 2022; 1263:133032. [PMID: 35431327 PMCID: PMC8993769 DOI: 10.1016/j.molstruc.2022.133032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
Abstract
The B.1.617.2 Delta variant is considered to be the most infectious of all SARS-CoV2 variants. Here, an attempt has been made through in-silico screening of 55 bioactive compounds from two selected plants, Saussurea costus and Saussurea involucrata as potential inhibitors of two viral proteases, main protease Mpro (PDB ID:6LU7) and the RBD of SGP of Sars-CoV-2 B1.617.2 Delta variant (PDB ID:7ORB) where the binding energy, molecular interactions, ADMET/Tox, chemical descriptors and Quantum-Chemical Calculations were explored. Molecular docking results demonstrated that the three top docked compounds formed relatively stable complexes within the active site and displayed remarkable binding energy in the order of Tangshenoside III, Rutin and Hesperidin (-9.35, -9.14 and -8.57 kcal/mol, respectively) with Mpro and Rutin, Tangshenoside III and Hesperidin (-9.07, -7.71 and -7.57 kcal/mol) with RBD of SGP. These compounds are non-Mutagen and non-carcinogen. Therefore, according to the Lipinski's Rule of Five they exhibited three violations concerning hydrogen acceptor, donor and molecular weight. However, based on the Quantum-Chemical Calculations results the selected ligands have effective reactivity, as they showed lower band gaps. The difference of the ELUMO and EHOMO was low, ranging from 0.0639 to 0.0978 a.u, implying the strong affinity of these inhibitors towards the target proteins. Among the three inhibitors, Rutin exhibited higher reactivity against two viral proteases, main protease (Mpro) and the Sars-CoV-2 B1.617.2, as the band energy gap was lowest among all the three phytochemicals, 0.0639 a.u This could indicate that Rutincan be potential anti-viral drug candidates against the existing SARS-CoV-2, the B.1.617.2 Delta variant.
Collapse
Affiliation(s)
- Selma Houchi
- Department of Biochemistry, Laboratory of Applied Biochemistry, Faculty of Life and Nature Sciences, University of Ferhat Abbas Setif-1, Algeria
| | - Zakia Messasma
- Department of Process Engineering, Laboratory of Electrochemistry, Molecular Engineering and Redox Catalysis, Faculty of Technology, University of Ferhat Abbas Setif-1, 19000, Algeria
- Department of Chemistry, Faculty of Sciences, University of Ferhat Abbas Setif-1, 19000, Algeria
| |
Collapse
|
10
|
Wang Z, Belecciu T, Eaves J, Reimers M, Bachmann MH, Woldring D. Phytochemical drug discovery for COVID-19 using high-resolution computational docking and machine learning assisted binder prediction. J Biomol Struct Dyn 2022:1-21. [PMID: 35993534 DOI: 10.1080/07391102.2022.2112976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The COVID-19 pandemic has resulted in millions of deaths around the world. Multiple vaccines are in use, but there are many underserved locations that do not have adequate access to them. Variants may emerge that are highly resistant to existing vaccines, and therefore cheap and readily obtainable therapeutics are needed. Phytochemicals, or plant chemicals, can possibly be such therapeutics. Phytochemicals can be used in a polypharmacological approach, where multiple viral proteins are inhibited and escape mutations are made less likely. Finding the right phytochemicals for viral protein inhibition is challenging, but in-silico screening methods can make this a more tractable problem. In this study, we screen a wide range of natural drug products against a comprehensive set of SARS-CoV-2 proteins using a high-resolution computational workflow. This workflow consists of a structure-based virtual screening (SBVS), where an initial phytochemical library was docked against all selected protein structures. Subsequently, ligand-based virtual screening (LBVS) was employed, where chemical features of 34 lead compounds obtained from the SBVS were used to predict 53 lead compounds from a larger phytochemical library via supervised learning. A computational docking validation of the 53 predicted leads obtained from LBVS revealed that 28 of them elicit strong binding interactions with SARS-CoV-2 proteins. Thus, the inclusion of LBVS resulted in a 4-fold increase in the lead discovery rate. Of the total 62 leads, 18 showed promising pharmacokinetic properties in a computational ADME screening. Collectively, this study demonstrates the advantage of incorporating machine learning elements into a virtual screening workflow.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zirui Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Theodore Belecciu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Joelle Eaves
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Mark Reimers
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael H Bachmann
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Daniel Woldring
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Rathod NB, Elabed N, Özogul F, Regenstein JM, Galanakis CM, Aljaloud SO, Ibrahim SA. The Impact of COVID-19 Pandemic on Seafood Safety and Human Health. Front Microbiol 2022; 13:875164. [PMID: 35814679 PMCID: PMC9257084 DOI: 10.3389/fmicb.2022.875164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused several negative impacts on global human health and the world's economy. Food and seafood safety and security were among the principal challenges and causes of concern for the food industry and consumers during the spread of this global pandemic. This article focused on the effects of COVID-19 pandemic on potential safety issues with seafood products and their processing methods. Moreover, the potential impacts of coronavirus transmission through seafood on human health were evaluated. The role of authenticity, traceability, and antimicrobials from natural sources to preserve seafood and the possible interaction of functional foods on the human immune system are also discussed. Although seafood is not considered a principal vector of SARS-CoV-2 transmission, the possible infections through contaminated surfaces of such food products cannot be neglected. The positive effects of seafood consumption on possible immunity built up, and COVID-19 are also summarized.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post-graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, India
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Charis M. Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Sulaiman Omar Aljaloud
- College of Sports Science and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, 171 Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, United States
| |
Collapse
|
13
|
Wang B, Ding Y, Zhao P, Li W, Li M, Zhu J, Ye S. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Comput Biol Med 2022; 143:105241. [PMID: 35114443 PMCID: PMC8789666 DOI: 10.1016/j.compbiomed.2022.105241] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recently, the value of natural products has been extensively considered because these resources can potentially be applied to prevent and treat coronavirus pneumonia 2019 (COVID-19). However, the discovery of nature drugs is problematic because of their complex composition and active mechanisms. METHODS This comprehensive study was performed on flavonoids, which are compounds with anti-inflammatory and antiviral effects, to show drug discovery and active mechanism from natural products in the treatment of COVID-19 via a systems pharmacological model. First, a chemical library of 255 potential flavonoids was constructed. Second, the pharmacodynamic basis and mechanism of action between flavonoids and COVID-19 were explored by constructing a compound-target and target-disease network, targets protein-protein interaction (PPI), MCODE analysis, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. RESULTS In total, 105 active flavonoid components were identified, of which 6 were major candidate compounds (quercetin, epigallocatechin-3-gallate (EGCG), luteolin, fisetin, wogonin, and licochalcone A). 152 associated targets were yielded based on network construction, and 7 family proteins (PTGS, GSK3β, ABC, NOS, EGFR, and IL) were included as central hub targets. Moreover, 528 GO items and 178 KEGG pathways were selected through enrichment of target functions. Lastly, molecular docking demonstrated good stability of the combination of selected flavonoids with 3CL Pro and ACEⅡ. CONCLUSION Natural flavonoids could enable resistance against COVID-19 by regulating inflammatory, antiviral, and immune responses, and repairing tissue injury. This study has scientific significance for the selective utilization of natural products, medicinal value enhancement of flavonoids, and drug screening for the treatment of COVID-19 induced by SARS-COV-2.
Collapse
Affiliation(s)
- Bin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| | - Penghui Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Shuhong Ye
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
14
|
Al-Shuhaib MBS, Hashim HO, Al-Shuhaib JMB, Obayes DH. Artecanin of Laurus nobilis is a novel inhibitor of SARS-CoV-2 main protease with highly desirable druglikeness. J Biomol Struct Dyn 2022; 41:2355-2367. [PMID: 35067202 DOI: 10.1080/07391102.2022.2030801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Main protease (Mpro) is a critical enzyme in the life cycle of severe acute respiratory syndrome Coronavirus -2 (SARS-CoV-2). Due to its essential role in the maturation of the polyproteins, the necessity to inhibit Mpro is one of the essential means to prevent the outbreak of COVID-19. In this context, this study was conducted on the natural compounds of medicinal plants that are commonly available in the Middle East to find out the most potent one to inhibit Mpro with the best bioavailability and druglikeness properties. A total of 3392 compounds of sixty-six medicinal plants were retrieved from PubChem database and docked against Mpro. Thirty compounds with the highest docking scores with Mpro were chosen for further virtual screening. Variable druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened compounds, artecanin was predicted to exhibit the most favourable druglikeness potentials, accompanied by no predicted hepatoxicity, carcinogenicity, mutagenicity, and cytotoxicity. Molecular dynamics (MD) simulations showed that Mpro-artecanin complex exhibited comparable stability with that observed in the ligand-free Mpro. This study revealed for the first time that artecanin from Laurus nobilis provided a novel static and dynamic inhibition for Mpro with excellent safety, oral bioavailability, and pharmacokinetic profile. This study suggested the ability of artecanin to be used as a potential natural inhibitor that can be used to block or at least counteract the SARS-CoV-2 invasion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Hayder O. Hashim
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, Babil, Iraq
| | | | - Daniel H. Obayes
- Babylon Directorate of Education, Ministry of Education, Babil, Iraq
| |
Collapse
|
15
|
Xiong X, Tang N, Lai X, Zhang J, Wen W, Li X, Li A, Wu Y, Liu Z. Insights Into Amentoflavone: A Natural Multifunctional Biflavonoid. Front Pharmacol 2022; 12:768708. [PMID: 35002708 PMCID: PMC8727548 DOI: 10.3389/fphar.2021.768708] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Amentoflavone is an active phenolic compound isolated from Selaginella tamariscina over 40 years. Amentoflavone has been extensively recorded as a molecule which displays multifunctional biological activities. Especially, amentoflavone involves in anti-cancer activity by mediating various signaling pathways such as extracellular signal-regulated kinase (ERK), nuclear factor kappa-B (NF-κB) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and emerges anti-SARS-CoV-2 effect via binding towards the main protease (Mpro/3CLpro), spike protein receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Therefore, amentoflavone is considered to be a promising therapeutic agent for clinical research. Considering the multifunction of amentoflavone, the current review comprehensively discuss the chemistry, the progress in its diverse biological activities, including anti-inflammatory, anti-oxidation, anti-microorganism, metabolism regulation, neuroprotection, radioprotection, musculoskeletal protection and antidepressant, specially the fascinating role against various types of cancers. In addition, the bioavailability and drug delivery of amentoflavone, the molecular mechanisms underlying the activities of amentoflavone, the molecular docking simulation of amentoflavone through in silico approach and anti-SARS-CoV-2 effect of amentoflavone are discussed.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Nan Tang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xudong Lai
- Department of Infectious Disease, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Weilun Wen
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Kamel NA, Ismail NSM, Yahia IS, Aboshanab KM. Potential Role of Colchicine in Combating COVID-19 Cytokine Storm and Its Ability to Inhibit Protease Enzyme of SARS-CoV-2 as Conferred by Molecular Docking Analysis. Medicina (B Aires) 2021; 58:medicina58010020. [PMID: 35056328 PMCID: PMC8781828 DOI: 10.3390/medicina58010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the advance in the management of Coronavirus disease 2019 (COVID-19), the global pandemic is still ongoing with a massive health crisis. COVID-19 manifestations may range from mild symptoms to severe life threatening ones. The hallmark of the disease severity is related to the overproduction of pro-inflammatory cytokines manifested as a cytokine storm. Based on its anti-inflammatory activity through interfering with several pro and anti-inflammatory pathways, colchicine had been proposed to reduce the cytokine storm and subsequently improve clinical outcomes. Molecular docking analysis of colchicine against RNA-dependent RNA polymerase (RdRp) and protease enzymes of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) revealed that colchicine provided a grid-based molecular docking method, C-DOCKER interaction energy 64.26 and 47.53 (Kcal/mol) with protease and RdRp, respectively. This finding indicated higher binding stability for colchicine–protease complexes than the colchicine–RdRp complex with the involvement of seven hydrogen bonds, six hydrogen acceptors with Asn142, Gly143, Ser144, and Glu166 and one hydrogen-bond donors with Cys145 of the protease enzyme. This is in addition to three hydrophobic interactions with His172, Glu166, and Arg188. A good alignment with the reference compound, Boceprevir, indicated high probability of binding to the protease enzyme of SARS-CoV-2. In conclusion, colchicine can ameliorate the destructive effect of the COVID-19 cytokine storm with a strong evidence of antiviral activity by inhibiting the protease enzyme of SARS-CoV-2.
Collapse
Affiliation(s)
- Noha A. Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt;
| | - Nasser S. M. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt;
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University (ASU), Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Abbassia, Cairo 11566, Egypt
- Correspondence: ; Tel.: +20-1-0075-82620; Fax: +20-2-2405110
| |
Collapse
|
17
|
Rabie AM. Discovery of Taroxaz-104: The first potent antidote of SARS-CoV-2 VOC-202012/01 strain. J Mol Struct 2021; 1246:131106. [PMID: 34305173 PMCID: PMC8282935 DOI: 10.1016/j.molstruc.2021.131106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023]
Abstract
Polyhydroxyphenols and nitrogenous heterocyclics are two of the most powerful active species of molecules in pharmaceutical chemistry, as each of them is renowned for its various bioactivities for humans. One of their outstanding actions is the antiviral activities, which clearly appear if the principal functional entities of both classes meet into one compound. The recent COVID-19 pandemic pushed us to computationally sift and assess our small library of synthetic 2-(3,4,5-trihydroxyphenyl)-1,3,4-oxadiazoles against the main coronaviral protein/enzymatic targets. Surprisingly, few ligands exhibited interesting low binding energies (strong inhibitory affinities) with some SARS-CoV-2 proteins, mainly the pivotal enzyme RNA-dependent RNA polymerase (nCoV-RdRp). One of these compounds was Taroxaz-104 (5,5'-{5,5'-[(1R,2R)-1,2-dihydroxyethane-1,2-diyl]bis(1,3,4-oxadiazole-5,2-diyl)}dibenzene-1,2,3-triol), which presented lower binding free energies of about -10.60 and -9.10 kcal/mol (as compared to the reference agent, GS-443902, which presented about -9.20 and -7.90 kcal/mol) with nCoV-RdRp-RNA and nCoV-RdRp alone, respectively. Extensive molecular modeling examination disclosed the potent Taroxaz-104 inhibition of one of the possible active/allosteric sites of nCoV-RdRp, since Taroxaz-104 molecule interacts with at least seven main amino acids of the presumed pocket/cavity of this nCoV-RdRp active site. The effective repurposing of Taroxaz-104 molecule was attained after the satisfactorily interesting results of the anti-COVID-19 bioassay were secured, since these data demonstrated that Taroxaz-104 showed very efficient anti-COVID-19 actions (anti-SARS-CoV-2 EC50 = 0.42 μM) with specific promising efficacy against the new SARS-CoV-2 strains. Additional research studies for the progress of Taroxaz-104 and other related polyphenolic 2,5-disubstituted-1,3,4-oxadiazole analogs as successful anti-SARS-CoV-2 medications, via, e.g., preclinical/clinical trials, are pressingly required.
Collapse
Affiliation(s)
- Amgad M Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
18
|
Şimşek Y, Baran SS, Aslım B. In silico identification of SARS-CoV-2 cell entry inhibitors from selected natural antivirals. J Mol Graph Model 2021; 109:108038. [PMID: 34607208 PMCID: PMC8479391 DOI: 10.1016/j.jmgm.2021.108038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023]
Abstract
The aim of this study is to identify potential drug-like molecules against SARS-CoV-2 virus among the natural antiviral compounds published in the Encyclopedia of Traditional Chinese Medicine. To test inhibition capability of these compounds first, we docked them with Spike protein, angiotensin-converting enzyme 2 (ACE2) (PDB ID: 6M0J) and neuropilin 1 (NRP1) (PDB ID: 7JJC) receptors, and found significant docking scores with extra precision up to -11 kcal/mol. Then, their stability in the binding pockets were further evaluated with molecular dynamics simulation. Eight natural antiviral compounds were identified as potential inhibitors against SARS-CoV-2 cell entry after 200 ns molecular dynamics simulations. We found CMP-3, CMP-4, CMP-5, CMP-6 and CMP-8 are strong binders for the spike protein, CMP-1, CMP-2, CMP-4, CMP-5 and CMP-7 are strong binders for the neuropilin receptor, and CMP-5 is a strong binder for the ACE2. Quercetin derivatives (CMP-4, CMP-5, CMP-6 and CMP-7) were found highly stable in the active domain of NRP1, ACE2 and Spike protein. Especially, CMP-5 showed an inhibitory activity for all targets. These natural antivirals may be potential drug candidates for the prevention of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yusuf Şimşek
- Vocational School of Health Services, Gazi University, Ankara, Turkey.
| | | | - Belma Aslım
- Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
19
|
Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics 2021; 13:pharmaceutics13111895. [PMID: 34834309 PMCID: PMC8625292 DOI: 10.3390/pharmaceutics13111895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of ‘variants of concern’. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.
Collapse
|
20
|
(2E)-2-(4-ethoxybenzylidene)-3,4-dihydro-2H-naphthalen-1-one single crystal: Synthesis, growth, crystal structure, spectral characterization, biological evaluation and binding interactions with SARS-CoV-2 main protease. J Mol Struct 2021; 1244:130967. [PMID: 36373070 PMCID: PMC9637384 DOI: 10.1016/j.molstruc.2021.130967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022]
Abstract
A new α-Tetralone based chalcone compound, (2E)-2-(4-ethoxybenzylidene)-3,4-dihydro-2H-naphthalen-1-one (EBDN) has been synthesized by Claisen–Schmidt condensation reaction of α-Tetralone (1) with 4-Ethoxybenzaldehyde (2) in basic medium. Then it was allowed to grow through slow evaporation solution growth technique. The molecular structure of grown EBDN has been systematically characterized by SCXRD, FT-IR, 1H NMR and 13C NMR spectroscopic studies. The micro-hardness, thermal (TGA & DTA) and photoluminence studies of the synthesized EBDN were also examined. The EBDN was screened for its anti-inflammatory, antidiabetic and anti-oxidant activity. It has shown admirable anti-inflammatory and antidiabetic activity. Protein-Ligand interactions of EBDN with SARS-CoV-2 main protease (PDB code: 6yb7) also performed.
Collapse
|
21
|
Optimization of Pre-Inoculum, Fermentation Process Parameters and Precursor Supplementation Conditions to Enhance Apigenin Production by a Recombinant Streptomyces albus Strain. FERMENTATION 2021. [DOI: 10.3390/fermentation7030161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptomyces albus J1074-pAPI (Streptomyces albus-pAPI) is a recombinant strain constructed to biotechnologically produce apigenin, a flavonoid with interesting bioactive features that up to now has been manufactured by extraction from plants with long and not environmentally friendly procedures. So far, in literature, only a maximum apigenin concentration of 80.0 µg·L−1 has been obtained in shake flasks. In this paper, three integrated fermentation strategies were exploited to enhance the apigenin production by Streptomyces albus J1074-pAPI, combining specific approaches for pre-inoculum conditions, optimization of fermentation process parameters and supplementation of precursors. Using a pre-inoculum of mycelium, the apigenin concentration increased of 1.8-fold in shake flask physiological studies. In 2L batch fermentation, the aeration and stirring conditions were optimized and integrated with the new inoculum approach and the apigenin production reached 184.8 ± 4.0 µg·L−1, with a productivity of 2.6 ± 0.1 μg·L−1·h−1. The supplementation of 1.5 mM L-tyrosine in batch fermentations allowed to obtain an apigenin production of 343.3 ± 3.0 µg·L−1 in only 48 h, with an increased productivity of 7.1 ± 0.1 μg·L−1·h−1. This work demonstrates that the optimization of fermentation process conditions is a crucial requirement to increase the apigenin concentration and productivity by up to 4.3- and 10.7-fold.
Collapse
|
22
|
Rehman MFU, Akhter S, Batool AI, Selamoglu Z, Sevindik M, Eman R, Mustaqeem M, Akram MS, Kanwal F, Lu C, Aslam M. Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the In-Silico World. Antibiotics (Basel) 2021; 10:1011. [PMID: 34439061 PMCID: PMC8388999 DOI: 10.3390/antibiotics10081011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS CoV-2 pandemic has affected millions of people around the globe. Despite many efforts to find some effective medicines against SARS CoV-2, no established therapeutics are available yet. The use of phytochemicals as antiviral agents provides hope against the proliferation of SARS-CoV-2. Several natural compounds were analyzed by virtual screening against six SARS CoV-2 protein targets using molecular docking simulations in the present study. More than a hundred plant-derived secondary metabolites have been docked, including alkaloids, flavonoids, coumarins, and steroids. SARS CoV-2 protein targets include Main protease (MPro), Papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), Spike glycoprotein (S), Helicase (Nsp13), and E-Channel protein. Phytochemicals were evaluated by molecular docking, and MD simulations were performed using the YASARA structure using a modified genetic algorithm and AMBER03 force field. Binding energies and dissociation constants allowed the identification of potentially active compounds. Ligand-protein interactions provide an insight into the mechanism and potential of identified compounds. Glycyrrhizin and its metabolite 18-β-glycyrrhetinic acid have shown a strong binding affinity for MPro, helicase, RdRp, spike, and E-channel proteins, while a flavonoid Baicalin also strongly binds against PLpro and RdRp. The use of identified phytochemicals may help to speed up the drug development and provide natural protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Fayyaz ur Rehman
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Institute of Chemistry, University of Sargodha, Sargodha 41600, Pakistan; (S.A.); (R.E.)
| | - Shahzaib Akhter
- Institute of Chemistry, University of Sargodha, Sargodha 41600, Pakistan; (S.A.); (R.E.)
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha 41600, Pakistan;
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde 51240, Turkey;
| | - Mustafa Sevindik
- Department of Food Processing, Bahçe Vocational School, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey;
| | - Rida Eman
- Institute of Chemistry, University of Sargodha, Sargodha 41600, Pakistan; (S.A.); (R.E.)
| | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha, Bhakkar Campus, Bhakkar 30000, Pakistan;
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK;
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Fariha Kanwal
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201620, China;
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Lahore 54600, Pakistan
| |
Collapse
|
23
|
Kowalczyk M, Golonko A, Świsłocka R, Kalinowska M, Parcheta M, Swiergiel A, Lewandowski W. Drug Design Strategies for the Treatment of Viral Disease. Plant Phenolic Compounds and Their Derivatives. Front Pharmacol 2021; 12:709104. [PMID: 34393787 PMCID: PMC8363300 DOI: 10.3389/fphar.2021.709104] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus pandemic (SARS CoV-2) that has existed for over a year, constantly forces scientists to search for drugs against this virus. In silico research and selected experimental data have shown that compounds of natural origin such as phenolic acids and flavonoids have promising antiviral potential. Phenolic compounds inhibit multiplication of viruses at various stages of the viral life cycle, e.g., attachment (disturbance of the interaction between cellular and viral receptors), penetration (inhibition of viral pseudo-particle fusion to the host membrane), replication (inhibition of integrase and 3C-like protease), assembly and maturation (inhibition of microsomal triglyceride transfer protein (MTP) activity hydrolysis) and release (inhibition of secretion of apolipoprotein B (apoB) from infected cells). Phenolic compounds also indirectly influence on the viral life cycle by affecting the host cell's biochemical processes that viruses use for their own benefit. Phenolic compounds may inhibit the proteasomes and cellular deubiquitinating activity that causes an increase in the ubiquitinated proteins level in host cells. This, in turn, contributes to the lowering the available ubiquitin molecules that viruses could use for their own replication. One of the drug design strategy for the treatment of viral diseases may be an enhancement of the antiviral properties of phenolic compounds by metal complexation. Many studies have shown that the presence of a metal ion in the structure can significantly affect the affinity of the compound to key structural elements of the SARS CoV-2, such as Mpro protease, RNA-dependent RNA polymerase (RdRp) and spike protein. We believe that in the era of coronavirus pandemic, it is necessary to reconsider the search for therapeutics among well-known compounds of plant origin and their metal complexes.
Collapse
Affiliation(s)
- Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | - Aleksandra Golonko
- Department of Microbiology, Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Monika Parcheta
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Artur Swiergiel
- Faculty of Biology, University of Gdansk, Gdansk, Poland
- Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | | |
Collapse
|
24
|
Rabie AM. Potent toxic effects of Taroxaz-104 on the replication of SARS-CoV-2 particles. Chem Biol Interact 2021; 343:109480. [PMID: 33887223 PMCID: PMC8055500 DOI: 10.1016/j.cbi.2021.109480] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Polyphenolics and 1,3,4-oxadiazoles are two of the most potent bioactive classes of compounds in medicinal chemistry, since both are known for their diverse pharmacological activities in humans. One of their prominent activities is the antimicrobial/antiviral activities, which are much apparent when the key functional structural moieties of both of them meet into the same compounds. The current COVID-19 pandemic motivated us to computationally screen and evaluate our library of previously-synthesized 2-(3,4,5-trihydroxyphenyl)-1,3,4-oxadiazoles against the major SARS-CoV-2 protein targets. Interestingly, few ligands showed promising low binding free energies (potent inhibitory interactions/affinities) with the active sites of some coronaviral-2 enzymes, specially the RNA-dependent RNA polymerase (nCoV-RdRp). One of them was 5,5'-{5,5'-[(1R,2R)-1,2-dihydroxyethane-1,2-diyl]bis(1,3,4-oxadiazole-5,2-diyl)}dibenzene-1,2,3-triol (Taroxaz-104), which showed significantly low binding energies (-10.60 and -9.10 kcal/mol) with nCoV-RdRp-RNA and nCoV-RdRp alone, respectively. These binding energies are even considerably lower than those of remdesivir potent active metabolite GS-443902 (which showed -9.20 and -7.90 kcal/mol with the same targets, respectively). Further computational molecular investigation revealed that Taroxaz-104 molecule strongly inhibits one of the potential active sites of nCoV-RdRp (the one with which GS-443902 molecule mainly interacts), since it interacts with at least seven major active amino acid residues of its predicted pocket. The successful repurposing of Taroxaz-104 has been achieved after the promising results of the anti-COVID-19 biological assay were obtained, as the data showed that Taroxaz-104 exhibited very significant anti-COVID-19 activities (anti-SARS-CoV-2 EC50 = 0.42 μM) with interesting effectiveness against the new strains/variants of SARS-CoV-2. Further investigations for the development of Taroxaz-104 and its coming polyphenolic 2,5-disubstituted-1,3,4-oxadiazole derivatives as anti-COVID-19 drugs, through in vivo bioevaluations and clinical trials research, are urgently needed.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura, Egypt,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt,Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura, Egypt
| |
Collapse
|
25
|
Godinho PIC, Soengas RG, Silva VLM. Therapeutic Potential of Glycosyl Flavonoids as Anti-Coronaviral Agents. Pharmaceuticals (Basel) 2021; 14:546. [PMID: 34200456 PMCID: PMC8227519 DOI: 10.3390/ph14060546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread all over the world, creating a devastating socio-economic impact. Even though protective vaccines are starting to be administered, an effective antiviral agent for the prevention and treatment of COVID-19 is not available yet. Moreover, since new and deadly CoVs can emerge at any time with the potential of becoming pandemics, the development of therapeutic agents against potentially deadly CoVs is a research area of much current interest. In the search for anti-coronaviral drugs, researchers soon turned their heads towards glycosylated flavonoids. Glycosyl flavonoids, widespread in the plant kingdom, have received a lot of attention due to their widely recognized antioxidant, anti-inflammatory, neuroprotective, anticarcinogenic, antidiabetic, antimicrobial, and antiviral properties together with their capacity to modulate key cellular functions. The wide range of biological activities displayed by glycosyl flavonoids, along with their low toxicity, make them ideal candidates for drug development. In this review, we examine and discuss the up-to-date developments on glycosyl flavonoids as evidence-based natural sources of antivirals against coronaviruses and their potential role in the management of COVID-19.
Collapse
Affiliation(s)
- Patrícia I. C. Godinho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Raquel G. Soengas
- Department of Organic and Inorganic Chemistry, University of Oviedo, Julián Clavería 7, 33006 Oviedo, Spain
| | - Vera L. M. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
26
|
Fakhri S, Nouri Z, Moradi SZ, Akkol EK, Piri S, Sobarzo-Sánchez E, Farzaei MH, Echeverría J. Targeting Multiple Signal Transduction Pathways of SARS-CoV-2: Approaches to COVID-19 Therapeutic Candidates. Molecules 2021; 26:2917. [PMID: 34068970 PMCID: PMC8156180 DOI: 10.3390/molecules26102917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19), related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need to develop mechanistic pathogenic pathways and effective agents for preventing/treating future epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accordingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis, and autophagy, as well as relative representative mediators such as tumor necrosis factor-α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively, will pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2 attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19. This is a comprehensive review of the destructive signaling pathways and host-pathogen interaction of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential natural products-based candidates.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey;
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
27
|
Miroshnychenko KV, Shestopalova AV. Combined use of the hepatitis C drugs and amentoflavone could interfere with binding of the spike glycoprotein of SARS-CoV-2 to ACE2: the results of a molecular simulation study. J Biomol Struct Dyn 2021; 40:8672-8686. [PMID: 33896392 PMCID: PMC8074653 DOI: 10.1080/07391102.2021.1914168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
The worldwide rapid spread of the COVID-19 disease necessitates the search for fast and effective treatments. The repurposing of existing drugs seems to be the best solution in this situation. In this study, the molecular docking method was used to test 248 drugs against the receptor-binding domain (RBD) of spike glycoprotein of SARS-CoV-2, which is responsible for viral entry into the host cell. Among the top-ranked ligands are drugs that are used for hepatitis C virus (HCV) treatments (paritaprevir, ledipasvir, simeprevir) and a natural biflavonoid amentoflavone. The binding sites of the HCV drugs and amentoflavone are different. Therefore, the ternary complexes of the HCV drug, amentoflavone, and RBD can be created. For the 5 top-ranked ligands, the validating molecular dynamics simulations of binary and ternary complexes with RBD were performed. According to the MMPBSA-binding free energies, the HCV drugs ledipasvir and paritaprevir (in a neutral form) are the most efficient binders of the RBD when used in combination with amentoflavone.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Anna V. Shestopalova
- O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine, Kharkiv, Ukraine
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
28
|
Nguyen TTH, Jung JH, Kim MK, Lim S, Choi JM, Chung B, Kim DW, Kim D. The Inhibitory Effects of Plant Derivate Polyphenols on the Main Protease of SARS Coronavirus 2 and Their Structure-Activity Relationship. Molecules 2021; 26:1924. [PMID: 33808054 PMCID: PMC8036510 DOI: 10.3390/molecules26071924] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The main protease (Mpro) is a major protease having an important role in viral replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus that caused the pandemic of 2020. Here, active Mpro was obtained as a 34.5 kDa protein by overexpression in E. coli BL21 (DE3). The optimal pH and temperature of Mpro were 7.5 and 37 °C, respectively. Mpro displayed a Km value of 16 μM with Dabcyl-KTSAVLQ↓SGFRKME-Edans. Black garlic extract and 49 polyphenols were studied for their inhibitory effects on purified Mpro. The IC50 values were 137 μg/mL for black garlic extract and 9-197 μM for 15 polyphenols. The mixtures of tannic acid with puerarin, daidzein, and/or myricetin enhanced the inhibitory effects on Mpro. The structure-activity relationship of these polyphenols revealed that the hydroxyl group in C3', C4', C5' in the B-ring, C3 in the C-ring, C7 in A-ring, the double bond between C2 and C3 in the C-ring, and glycosylation at C8 in the A-ring contributed to inhibitory effects of flavonoids on Mpro.
Collapse
Affiliation(s)
- Thi Thanh Hanh Nguyen
- Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun 25354, Gang-won-do, Korea;
| | - Jong-Hyun Jung
- Radiation Research Division, Korea Atomic Engery Research Institute, Jeongeup 56212, Jeollabuk-do, Korea; (J.-H.J.); (M.-K.K.); (S.L.)
| | - Min-Kyu Kim
- Radiation Research Division, Korea Atomic Engery Research Institute, Jeongeup 56212, Jeollabuk-do, Korea; (J.-H.J.); (M.-K.K.); (S.L.)
| | - Sangyong Lim
- Radiation Research Division, Korea Atomic Engery Research Institute, Jeongeup 56212, Jeollabuk-do, Korea; (J.-H.J.); (M.-K.K.); (S.L.)
| | - Jae-Myoung Choi
- Ottogi Sesame Mills Co., Ltd., Eumseong-gun 27623, Chungcheongbuk-do, Korea; (J.-M.C.); (B.C.)
| | - Byoungsang Chung
- Ottogi Sesame Mills Co., Ltd., Eumseong-gun 27623, Chungcheongbuk-do, Korea; (J.-M.C.); (B.C.)
| | - Do-Won Kim
- Department of Physics, Gangneung-Wonju National University, Gangneung 25457, Gangwon-do, Korea;
| | - Doman Kim
- Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun 25354, Gang-won-do, Korea;
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun 25354, Gangwon-do, Korea
| |
Collapse
|
29
|
Fakhri S, Piri S, Majnooni MB, Farzaei MH, Echeverría J. Targeting Neurological Manifestations of Coronaviruses by Candidate Phytochemicals: A Mechanistic Approach. Front Pharmacol 2021; 11:621099. [PMID: 33708124 PMCID: PMC7941749 DOI: 10.3389/fphar.2020.621099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a wide range of manifestations. In this regard, growing evidence is focusing on COVID-19 neurological associations; however, there is a lack of established pathophysiological mechanisms and related treatments. Accordingly, a comprehensive review was conducted, using electronic databases, including PubMed, Scopus, Web of Science, and Cochrane, along with the author's expertize in COVID-19 associated neuronal signaling pathways. Besides, potential phytochemicals have been provided against neurological signs of COVID-19. Considering a high homology among SARS-CoV, Middle East Respiratory Syndrome and SARS-CoV-2, revealing their precise pathophysiological mechanisms seems to pave the road for the treatment of COVID-19 neural manifestations. There is a complex pathophysiological mechanism behind central manifestations of COVID-19, including pain, hypo/anosmia, delirium, impaired consciousness, pyramidal signs, and ischemic stroke. Among those dysregulated neuronal mechanisms, neuroinflammation, angiotensin-converting enzyme 2 (ACE2)/spike proteins, RNA-dependent RNA polymerase and protease are of special attention. So, employing multi-target therapeutic agents with considerable safety and efficacy seems to show a bright future in fighting COVID-19 neurological manifestations. Nowadays, natural secondary metabolites are highlighted as potential multi-target phytochemicals in combating several complications of COVID-19. In this review, central pathophysiological mechanisms and therapeutic targets of SARS-CoV-2 has been provided. Besides, in terms of pharmacological mechanisms, phytochemicals have been introduced as potential multi-target agents in combating COVID-19 central nervous system complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|