1
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Xin Y, Guan ST, Ren K, Wang H, Dong J, Wang HY, Zhang J, Xu XP, Yao BW, Zhao L, Shi CX, Peng RY. Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus. Metabolites 2024; 14:354. [PMID: 39057677 PMCID: PMC11278544 DOI: 10.3390/metabo14070354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
To investigate the dynamic changes in hippocampal metabolism after microwave radiation using liquid chromatography in tandem with mass spectrometry/mass spectrometry (LC-MS/MS) and to identify potential biomarkers. Wistar rats were randomly assigned to a sham group and a microwave radiation group. The rats in the microwave radiation group were exposed to 2.856 GHz for 15 min for three times, with 5 min intervals. The rats in the sham group were not exposed. Transmission electron microscope revealed blurring of the synaptic cleft and postsynaptic dense thickening in hippocampal neurons after microwave radiation. Metabolomic analysis revealed 38, 24, and 39 differentially abundant metabolites at 3, 7, and 14 days after radiation, respectively, and the abundance of 9 metabolites, such as argininosuccinic acid, was continuously decreased. After microwave radiation, the abundance of metabolites such as argininosuccinic acid was successively decreased, indicating that these metabolites could be potential biomarkers for hippocampal tissue injury.
Collapse
Affiliation(s)
- Yu Xin
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Shu-Ting Guan
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Ke Ren
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Hui Wang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Ji Dong
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Hao-Yu Wang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Jing Zhang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Xin-Ping Xu
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Bin-Wei Yao
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Li Zhao
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Chang-Xiu Shi
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
| | - Rui-Yun Peng
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| |
Collapse
|
3
|
Zhou GQ, Wang X, Gao P, Qin TZ, Guo L, Zhang ZW, Huang ZF, Lin JJ, Jing YT, Wang HN, Wang CP, Ding GR. Intestinal microbiota via NLRP3 inflammasome dependent neuronal pyroptosis mediates anxiety-like behaviour in mice exposed to 3.5 GHz radiofrequency radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172391. [PMID: 38608899 DOI: 10.1016/j.scitotenv.2024.172391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The rapid development of 5G communication technology has increased public concern about the potential adverse effects on human health. Till now, the impacts of radiofrequency radiation (RFR) from 5G communication on the central nervous system and gut-brain axis are still unclear. Therefore, we investigated the effects of 3.5 GHz (a frequency commonly used in 5G communication) RFR on neurobehavior, gut microbiota, and gut-brain axis metabolites in mice. The results showed that exposure to 3.5 GHz RFR at 50 W/m2 for 1 h over 35 d induced anxiety-like behaviour in mice, accompanied by NLRP3-dependent neuronal pyroptosis in CA3 region of the dorsal hippocampus. In addition, the microbial composition was widely divergent between the sham and RFR groups. 3.5 GHz RFR also caused changes in metabolites of feces, serum, and brain. The differential metabolites were mainly enriched in glycerophospholipid metabolism, tryptophan metabolism, and arginine biosynthesis. Further correlation analysis showed that gut microbiota dysbiosis was associated with differential metabolites. Based on the above results, we speculate that dysfunctional intestinal flora and metabolites may be involved in RFR-induced anxiety-like behaviour in mice through neuronal pyroptosis in the brain. The findings provide novel insights into the mechanism of 5G RFR-induced neurotoxicity.
Collapse
Affiliation(s)
- Gui-Qiang Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; School of Public Health, Shandong Second Medical University, Weifang, China
| | - Xing Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Peng Gao
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhao-Wen Zhang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhi-Fei Huang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jia-Jin Lin
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Hao-Nan Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Chun-Ping Wang
- School of Public Health, Shandong Second Medical University, Weifang, China.
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
4
|
Torres-Ruiz M, Suárez OJ, López V, Marina P, Sanchis A, Liste I, de Alba M, Ramos V. Effects of 700 and 3500 MHz 5G radiofrequency exposure on developing zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169475. [PMID: 38199355 DOI: 10.1016/j.scitotenv.2023.169475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Telecommunications industries are rapidly deploying the fifth generation (5G) spectrum and there is public concern about the safety and health impacts of this type of Radio Frequency Radiation (RFR), in part because of the lack of comparable scientific evidence. In this study we have used a validated commercially available setting producing a uniform field to expose zebrafish embryos (ZFe) to unmodulated 700 and 3500 MHz frequencies. We have combined a battery of toxicity, developmental and behavioral assays to further explore potential RFR effects. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. ZFe were exposed for 1 and 4 h during the blastula period of development and endpoints evaluated up to 120 hours post fertilization (hpf). Our results show no effects on mortality, hatching or body length. However, we have demonstrated specific organ morphological effects, and behavioral effects in activity, anxiety-like behavior, and habituation that lasted in larvae exposed during the early embryonic period. A decrease in acetylcholinesterase activity was also observed and could explain some of the observed behavioral alterations. Interestingly, effects were more pronounced in ZFe exposed to the 700 MHz frequency, and especially for the 4 h exposure period. In addition, we have demonstrated that our exposure setup is robust, flexible with regard to frequency and power testing, and highly comparable. Future work will include exposure of ZFe to 5G modulated signals for different time periods to better understand the potential health effects of novel 5G RFR.
Collapse
Affiliation(s)
- Monica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Oscar J Suárez
- Radio Frequency Laboratory, Telecommunications General Secretary and Audiovisual Communication Services Ordenation, Madrid, Spain
| | - Victoria López
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Pablo Marina
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain
| | - Aránzazu Sanchis
- Non-Ionizing Radiation Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Isabel Liste
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Mercedes de Alba
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Victoria Ramos
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain.
| |
Collapse
|
5
|
Gautam R, Pardhiya S, Nirala JP, Sarsaiya P, Rajamani P. Effects of 4G mobile phone radiation exposure on reproductive, hepatic, renal, and hematological parameters of male Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4384-4399. [PMID: 38102429 DOI: 10.1007/s11356-023-31367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Mobile phones have become a vital part of human life. Due to drastic increase in the number of mobile phone subscribers, exposure to radiofrequency radiation (RFR) emitted from these phones has increased dramatically. Hence, the effect of RFR on humans is an area of concern. This study was performed to determine the impact of 4G mobile phone radiation on the male reproductive system, liver, kidney, and hematological parameters. METHODS Seventy-day-old Wistar rats were exposed to 4G radiation (2350 MHz for 2 h/day for 56 days). Sperm parameters such as sperm count, viability, sperm head morphology, mitochondrial activity, total antioxidant activity, and lipid peroxidation of sperm were evaluated. Histopathology of the testis, prostate, epididymis, seminal vesicle, liver, and kidney was carried out. Complete blood count, liver and kidney function tests, and testosterone hormone analysis were done. RESULTS At the end of the experiment, results showed a significant (p < 0.05) decrease in sperm viability with alterations in the histology of the liver, kidney, testis, and other reproductive organs in the exposed group of rats. A reduced level of testosterone, total antioxidant capacity, and decreased sperm mitochondrial function were also observed in the exposed rats. Moreover, the exposed rats showed an increase in sperm lipid peroxidation and sperm abnormality. Hematological parameters like hemoglobin, red blood cells (RBC), and packed cell volume (PCV) showed a significant (p < 0.05) increase in the exposed rats. CONCLUSION The results indicate that chronic exposure to 4G radiation may affect the male reproductive system, hematological system, liver, and kidney of rats.
Collapse
Affiliation(s)
- Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Sarsaiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Tüfekci KK, Kaplan AA, Kaya A, Alrafiah A, Altun G, Aktaş A, Kaplan S. The potential protective effects of melatonin and omega-3 on the male rat optic nerve exposed to 900 MHz electromagnetic radiation during the prenatal period. Int J Neurosci 2023; 133:1424-1436. [PMID: 37712630 DOI: 10.1080/00207454.2023.2259078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Due to children and adolescents' widespread use of electronic devices, researchers have focused on pre-and early postnatal electromagnetic field (EMF) exposure. However, little is known about the effects of EMF exposure on the optic nerve. The aim of study was to investigate the changes occurring in the optic nerve and the protective effects of melatonin (mel) and omega 3 (ω-3) in rats. METHODS Thirty-five pregnant rats were divided into seven groups, Cont, Sham, EMF, EMF + melatonin (EMF + Mel), EMF + ω3, Mel, and ω3. The EMF groups were exposed to 900 megahertz (MHz) EMF daily for two hours during pregnancy. After the experiment, the right optic nerve of each offspring rat was removed and fixed in glutaraldehyde. Thin and semi-thin sections were taken for electron microscopic and stereological analyses. Myelinated axon numbers, myelin sheath thicknesses, and axonal areas were estimated using stereological methods. RESULTS The groups had no significant differences regarding mean numbers of axons, mean axonal areas, or mean myelin sheath thicknesses (p > 0.05). Histological observations revealed impaired lamellae in the myelin sheath of most axons, and vacuolization was frequently observed between the myelin sheath and axon in the EMF-exposed group. The Mel and ω-3-treated EMF groups exhibited well-preserved myelinated nerve fibers and intact astrocytes and oligodendrocytes. CONCLUSIONS At the ultrastructural level, Mel and ω3 exhibits a neuroprotective effect on the optic nerve exposed to prenatal EMF. The protective effects of these antioxidants on oligodendrocytes, which play an essential role in myelin formation in the central nervous system, now require detailed investigation.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | - Ayşenur Kaya
- Department of Histology and Embryology, Faculty of Medicine, Karamanoğlu Mehmetbey University, Karaman, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Aziza Alrafiah
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Abit Aktaş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, İstanbul Cerrahpaşa University, İstanbul, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
7
|
Islam MS, Islam MM, Rahman MM, Islam K. 4G mobile phone radiation alters some immunogenic and vascular gene expressions, and gross and microscopic and biochemical parameters in the chick embryo model. Vet Med Sci 2023; 9:2648-2659. [PMID: 37725264 PMCID: PMC10650348 DOI: 10.1002/vms3.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The risks to human health have grown over the past 10 years due to the excessive use of mobile phones. OBJECTIVES The study was designed to determine the harmful effects of 4G mobile phone radiation on the expression of immunogenic and vascular genes and gross, microscopic and biochemical alterations in the development of chicken embryos. METHODS Sixty individuals in the exposure group were subjected to mobile phones with a specific absorption rate of 1.4 W/kg and a frequency of 2100 MHz positioned at a distance of 12 cm in the incubator for 60 min/night for 14 days. The histopathological examination involved hematoxylin and eosin staining, whereas cresyl violet staining was used to evaluate the condition and number of neurons in the brain. The biochemical parameters of amniotic fluid were analysed using the photometry method, and the expression of VEGF-A and immunity genes (AvBD9, IL6) was measured using the real-time PCR (qPCR) technique. RESULTS Compared to the control, the exposure group's body weight and length significantly decreased (p < 0.05). Subcutaneous bleeding was seen in the exposure group. Urea, creatinine, alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase levels were all significantly higher than in the control group (p < 0.05). The exposed group showed pathological lesions in the liver and degenerated neurons with lightly stained nuclei in the cerebral cortex. Hyperchromatic neurons were significantly higher in the exposure group (58.8 ± 2.28) compared to the control (6.6 ± 0.44) (p < 0.05). 4G exposure reduced lymphocyte count in the caecal tonsil (86.8 ± 5.38) compared to the control (147.2 ± 9.06) (p < 0.05). Vascular gene mRNA expression was higher, but immune gene expression was lower in the exposed group. CONCLUSION Exposure to mobile phone radiation may result in gross, microscopic and biochemical changes, as well as alterations in gene expression that could hinder embryonic development.
Collapse
Affiliation(s)
- Md. Sadequl Islam
- Department of Anatomy and HistologyFaculty of Veterinary and Animal ScienceHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Md. Mominul Islam
- Department of Pathology and ParasitologyFaculty of Veterinary and Animal ScienceHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
| | - Md. Moshiur Rahman
- Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Khaleda Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
8
|
Eftakhar Jahan Bhuiyan M, Golzar Hossain M, Saha A, Kamrul Islam M, Yeasmin Bari F, Abu Hadi Noor Ali Khan M, Akter S. Protective roles of vitamin C and 5-aminosalicylic acid on reproduction in acrylamide intoxicated male mice. Saudi J Biol Sci 2023; 30:103738. [PMID: 37538350 PMCID: PMC10393805 DOI: 10.1016/j.sjbs.2023.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 08/05/2023] Open
Abstract
Context Serious health risks have been connected to ongoing, escalating exposure to environmental toxins and one of them is acrylamide (ACR), an organic compound. Although there are many published reports on ACR toxicity, limited information is available regarding the use of two potential antioxidants against ACR-instigated reproductive toxicity. Aims The study focused on investigating the protective effects of vitamin C and 5-ASA against ACR-incited reproductive toxicity. Methods A total of 50 male mice aged 4 weeks old were treated for 90 days with different concentrations either of ACR or ACR and vitamin C or ACR and 5- ASA or ACR, vitamin C, and 5- ASA. Key results ACR significantly reduced serum testosterone level (p = 0.0037), sperm concentration (p = 0.0004), and percentage of sperm motility (p = 0.003), as well as increased sperm abnormality; head (p = 0.0058), tail (p = 0.001), and midpiece (p = 0.0339). Besides, the weight (p = 0.0006) and length (p = 0.0105) of testes, as well as weight (p = 0.0001) and length (p = 0.0021) of epididymis were decreased along with atrophy of seminiferous tubules of the testis, and disintegration of the tubular epithelium of epididymis on ACR exposed mice which were improved by vitamin C and 5-ASA administration. Conclusions Vitamin C and 5-ASA can potentially mitigate the negative effects of ACR on male reproduction; however, combined application is recommended for better performance. Implications In Bangladesh, this work is anticipated to address the health benefits of vitamin C and 5-ASA, particularly in improving the reproductive health of males against ACR toxicity.
Collapse
Affiliation(s)
| | - Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Amit Saha
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Kamrul Islam
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Farida Yeasmin Bari
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | | | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
9
|
Martel J, Chang SH, Chevalier G, Ojcius DM, Young JD. Influence of electromagnetic fields on the circadian rhythm: Implications for human health and disease. Biomed J 2023; 46:48-59. [PMID: 36681118 PMCID: PMC10105029 DOI: 10.1016/j.bj.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Living organisms have evolved within the natural electromagnetic fields (EMFs) of the earth which comprise the global atmospheric electrical circuit, Schumann resonances (SRs) and the geomagnetic field. Research suggests that the circadian rhythm, which controls several physiological functions in the human body, can be influenced by light but also by the earth's EMFs. Cyclic solar disturbances, including sunspots and seasonal weakening of the geomagnetic field, can affect human health, possibly by disrupting the circadian rhythm and downstream physiological functions. Severe disruption of the circadian rhythm increases inflammation which can induce fatigue, fever and flu-like symptoms in a fraction of the population and worsen existing symptoms in old and diseased individuals, leading to periodic spikes of infectious and chronic diseases. Possible mechanisms underlying sensing of the earth's EMFs involve entrainment via electrons and electromagnetic waves, light-dependent radical pair formation in retina cryptochromes, and paramagnetic magnetite nanoparticles. Factors such as electromagnetic pollution from wireless devices, base antennas and low orbit internet satellites, shielding by non-conductive materials used in shoes and buildings, and local geomagnetic anomalies may also affect sensing of the earth's EMFs by the human body and contribute to circadian rhythm disruption and disease development.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Gaétan Chevalier
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - David M Ojcius
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan.
| |
Collapse
|
10
|
Acute radiofrequency electromagnetic radiation exposure impairs neurogenesis and causes neuronal DNA damage in the young rat brain. Neurotoxicology 2023; 94:46-58. [PMID: 36336097 DOI: 10.1016/j.neuro.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
A mobile phone is now a commonly used device for digital media and communication among all age groups. Young adolescents use it for longer durations, which exposes them to radiofrequency electromagnetic radiation (RF-EMR). This exposure can lead to neuropsychiatric changes. The underlying cellular mechanism behind these changes requires detailed investigation. In the present study, we investigated the effect of RF-EMR emitted from mobile phones on young adolescent rat brains. Wistar rats (5 weeks, male) were exposed to RF-EMR signal (2115 MHz) at a head average specific absorption rate (SAR) of 1.51 W/kg continuously for 8 h. Higher level of lipid peroxidation, carbon-centered lipid radicals, and single-strand DNA damage was observed in the brain of rat exposed to RF-EMR. The number of BrdU-positive cells in the dentate gyrus (DG) decreased in RF-EMR-exposed rats, indicating reduced neurogenesis. RF-EMR exposure also induced degenerative changes and neuronal loss in DG neurons but had no effect on the CA3 and CA1 neurons of the hippocampus and cerebral cortex. The activity of Pro-caspase3 did not increase upon exposure in any of the brain regions, pointing out that degeneration observed in the DG region is not dependent on caspase activation. Results indicate that short-term acute exposure to RF-EMR induced the generation of carbon-centered lipid radicals and nuclear DNA damage, both of which likely played a role in the impaired neurogenesis and neuronal degeneration seen in the young brain's hippocampus region. The understanding of RF-EMR-induced alteration in the brain at the cellular level will help develop appropriate interventions for reducing its adverse impact.
Collapse
|
11
|
Changes in the histopathology and in the proteins related to the MAPK pathway in the brains of rats exposed to pre and postnatal radiofrequency radiation over four generations. J Chem Neuroanat 2022; 126:102187. [DOI: 10.1016/j.jchemneu.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
|
12
|
Bektas H, Algul S, Altindag F, Yegin K, Akdag MZ, Dasdag S. Effects of 3.5 GHz radiofrequency radiation on ghrelin, nesfatin-1, and irisin level in diabetic and healthy brains. J Chem Neuroanat 2022; 126:102168. [PMID: 36220504 DOI: 10.1016/j.jchemneu.2022.102168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Diabetes, mobile phone use, and obesity have increased simultaneously in recent years. The radiofrequency radiation (RFR) emitted from mobile phones is largely absorbed in the heads of users. With 5 G, which has started to be used in some countries without the necessary precautions being taken, the amount of RFR to which living things are exposed will increase. In this study, the changes in energy homeostasis and redox balance caused by 5 G (3.5 GHz, GSM-modulated) were explored. The effects of RFR on the brains of diabetic and healthy rats were investigated and histopathological analysis was performed. Twenty-eight Wistar albino rats weighing 200-250 g were divided into 4 groups as sham, RFR, diabetes, and RFR+diabetes groups (n = 7). The rats in each group were kept in a plexiglass carousel for 2 h a day for 30 days. While the rats in the experimental groups were exposed to RFR for 2 h a day, the rats in the sham group were kept under the same experimental conditions but with the radiofrequency generator turned off. At the end of the experiment, brain tissues were collected from euthanized rats. Total antioxidant (TAS), total oxidant (TOS), hydrogen peroxide (H2O2), ghrelin, nesfatin-1, and irisin levels were determined. In addition, histopathological analyses of the brain tissues were performed. The specific absorption rate in the gray matter of the brain was calculated as 323 mW/kg and 195 mW/kg for 1 g and 10 g averaging, respectively. After RFR exposure among diabetic and healthy rats, decreased TAS levels and increased TOS and H2O2 levels were observed in brain tissues. RFR caused increases in ghrelin and irisin and a decrease in nesfatin-1 in the brain. It was also observed that RFR increased the number of degenerated neurons in the hippocampus. Our results indicate that 3.5 GHz RFR causes changes in the energy metabolism and appetite of both healthy and diabetic rats. Thus, 5 G may not be innocent in terms of its biological effects, especially in the presence of diabetes.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Sermin Algul
- Department of Physiology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Ege University, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakır, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
13
|
Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int J Mol Sci 2022; 23:ijms23169288. [PMID: 36012552 PMCID: PMC9409438 DOI: 10.3390/ijms23169288] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.
Collapse
|