1
|
Kurian ASN, Mazumder MI, Gurukandure A, Easley CJ. An electrochemical proximity assay (ECPA) for antibody detection incorporating flexible spacers for improved performance. Anal Bioanal Chem 2024; 416:6529-6539. [PMID: 39367148 PMCID: PMC11541272 DOI: 10.1007/s00216-024-05546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
A clever approach for biosensing is to leverage the concept of the proximity effect, where analyte binding to probes can be coupled to a second, controlled binding event such as short DNA strands. This analyte-dependent effect has been exploited in various sensors with optical or electrochemical readouts. Electrochemical proximity assays (ECPA) are more amenable to miniaturization and adaptation to the point-of-care, yet ECPA has been generally targeted toward protein sensing with antibody-oligonucleotide probes. Antibodies themselves are also important as biomarkers, since they are produced in bodily fluids in response to various diseases or infections, often in low amounts. In this work, by using antigen-DNA conjugates, we targeted an ECPA method for antibody sensing and showed that the assay performance can be greatly enhanced using flexible spacers in the DNA conjugates. After adding flexible polyethylene glycol (PEG) spacers at two distinct positions, the spacers ultimately increased the antibody-dependent current by a factor of 4.0 without significant background increases, similar to our recent work using thermofluorimetric analysis (TFA). The optimized ECPA was applied to anti-digoxigenin antibody quantification at concentrations ranging over two orders of magnitude, from the limit of detection of 300 pM up to 50 nM. The assay was functional in 90% human serum, where increased ionic strength was used to counteract double-layer repulsion effects at the electrode. This flexible-probe ECPA methodology should be useful for sensing other antibodies in the future with high sensitivity, and the mechanism for signal improvement with probe flexibility may be applicable to other DNA-based electrochemical sensor platforms.
Collapse
Affiliation(s)
- Amanda S N Kurian
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | | | - Asanka Gurukandure
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Christopher J Easley
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
2
|
Lind A, Freyhult E, de Jesus Cortez F, Ramelius A, Bennet R, Robinson PV, Seftel D, Gebhart D, Tandel D, Maziarz M, Larsson HE, Lundgren M, Carlsson A, Nilsson AL, Fex M, Törn C, Agardh D, Tsai CT, Lernmark Å. Childhood screening for type 1 diabetes comparing automated multiplex Antibody Detection by Agglutination-PCR (ADAP) with single plex islet autoantibody radiobinding assays. EBioMedicine 2024; 104:105144. [PMID: 38723553 PMCID: PMC11090024 DOI: 10.1016/j.ebiom.2024.105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Two or more autoantibodies against either insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A) or zinc transporter 8 (ZnT8A) denote stage 1 (normoglycemia) or stage 2 (dysglycemia) type 1 diabetes prior to stage 3 type 1 diabetes. Automated multiplex Antibody Detection by Agglutination-PCR (ADAP) assays in two laboratories were compared to single plex radiobinding assays (RBA) to define threshold levels for diagnostic specificity and sensitivity. METHODS IAA, GADA, IA-2A and ZnT8A were analysed in 1504 (54% females) population based controls (PBC), 456 (55% females) doctor's office controls (DOC) and 535 (41% females) blood donor controls (BDC) as well as in 2300 (48% females) patients newly diagnosed (1-10 years of age) with stage 3 type 1 diabetes. The thresholds for autoantibody positivity were computed in 100 10-fold cross-validations to separate patients from controls either by maximizing the χ2-statistics (chisq) or using the 98th percentile of specificity (Spec98). Mean and 95% CI for threshold, sensitivity and specificity are presented. FINDINGS The ADAP ROC curves of the four autoantibodies showed comparable AUC in the two ADAP laboratories and were higher than RBA. Detection of two or more autoantibodies using chisq showed 0.97 (0.95, 0.99) sensitivity and 0.94 (0.91, 0.97) specificity in ADAP compared to 0.90 (0.88, 0.95) sensitivity and 0.97 (0.94, 0.98) specificity in RBA. Using Spec98, ADAP showed 0.92 (0.89, 0.95) sensitivity and 0.99 (0.98, 1.00) specificity compared to 0.89 (0.77, 0.86) sensitivity and 1.00 (0.99, 1.00) specificity in the RBA. The diagnostic sensitivity and specificity were higher in PBC compared to DOC and BDC. INTERPRETATION ADAP was comparable in two laboratories, both comparable to or better than RBA, to define threshold levels for two or more autoantibodies to stage type 1 diabetes. FUNDING Supported by The Leona M. and Harry B. Helmsley Charitable Trust (grant number 2009-04078), the Swedish Foundation for Strategic Research (Dnr IRC15-0067) and the Swedish Research Council, Strategic Research Area (Dnr 2009-1039). AL was supported by the DiaUnion collaborative study, co-financed by EU Interreg ÖKS, Capital Region of Denmark, Region Skåne and the Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Anita Ramelius
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Rasmus Bennet
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | - David Seftel
- Enable Biosciences Inc., South San Francisco, CA, USA
| | - David Gebhart
- Enable Biosciences Inc., South San Francisco, CA, USA
| | | | - Marlena Maziarz
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | - Markus Lundgren
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | | | - Malin Fex
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Carina Törn
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden.
| |
Collapse
|
3
|
Torres-Acosta MA, Olivares-Molina A, Kent R, Leitão N, Gershater M, Parker B, Lye GJ, Dikicioglu D. Practical deployment of automation to expedite aqueous two-phase extraction. J Biotechnol 2024; 387:32-43. [PMID: 38555021 DOI: 10.1016/j.jbiotec.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The feasibility of bioprocess development relies heavily on the successful application of primary recovery and purification techniques. Aqueous two-phase extraction (ATPE) disrupts the definition of "unit operation" by serving as an integrative and intensive technique that combines different objectives such as the removal of biomass and integrated recovery and purification of the product of interest. The relative simplicity of processing large samples renders this technique an attractive alternative for industrial bioprocessing applications. However, process development is hindered by the lack of easily predictable partition behaviours, the elucidation of which necessitates a large number of experiments to be conducted. Liquid handling devices can assist to address this problem; however, they are configured to operate using low viscosity fluids such as water and water-based solutions as opposed to highly viscous polymeric solutions, which are typically required in ATPE. In this work, an automated high throughput ATPE process development framework is presented by constructing phase diagrams and identifying the binodal curves for PEG6000, PEG3000, and PEG2000. Models were built to determine viscosity- and volume-independent transfer parameters. The framework provided an appropriate strategy to develop a very precise and accurate operation by exploiting the relationship between different liquid transfer parameters and process error. Process accuracy, measured by mean absolute error, and device precision, evaluated by the coefficient of variation, were both shown to be affected by the mechanical properties, particularly viscosity, of the fluids employed. For PEG6000, the mean absolute error improved by six-fold (from 4.82% to 0.75%) and the coefficient of variation improved by three-fold (from 0.027 to 0.008) upon optimisation of the liquid transfer parameters accounting for the viscosity effect on the PEG-salt buffer utilising ATPE operations. As demonstrated here, automated liquid handling devices can serve to streamline process development for APTE enabling wide adoption of this technique in large scale bioprocess applications.
Collapse
Affiliation(s)
- Mario A Torres-Acosta
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom; Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, N.L. 64849, México
| | - Alex Olivares-Molina
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ross Kent
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Nuno Leitão
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Markus Gershater
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Brenda Parker
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Gary J Lye
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Duygu Dikicioglu
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
4
|
Tandel D, Hinton B, de Jesus Cortez F, Seftel D, Robinson P, Tsai CT. Advances in risk predictive performance of pre-symptomatic type 1 diabetes via the multiplex Antibody-Detection-by-Agglutination-PCR assay. Front Endocrinol (Lausanne) 2024; 15:1340436. [PMID: 38390205 PMCID: PMC10882067 DOI: 10.3389/fendo.2024.1340436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Achieving early diagnosis of pre-symptomatic type 1 diabetes is critical to reduce potentially life-threatening diabetic ketoacidosis (DKA) at symptom onset, link patients to FDA approved therapeutics that can delay disease progression and support novel interventional drugs development. The presence of two or more islet autoantibodies in pre-symptomatic type 1 diabetes patients indicates high-risk of progression to clinical manifestation. Method Herein, we characterized the capability of multiplex ADAP assay to predict type 1 diabetes progression. We obtained retrospective coded sera from a cohort of 48 progressors and 44 non-progressors from the NIDDK DPT-1 study. Result The multiplex ADAP assay and radiobinding assays had positive predictive value (PPV)/negative predictive value (NPV) of 68%/92% and 67%/66% respectively. The improved NPV stemmed from 12 progressors tested positive for multiple islet autoantibodies by multiplex ADAP assay but not by RBA. Furthermore, 6 out of these 12 patients tested positive for multiple islet autoantibodies by RBA in subsequent sampling events with a median delay of 2.8 years compared to multiplex ADAP assay. Discussion In summary, multiplex ADAP assay could be an ideal tool for type 1 diabetes risk testing due to its sample-sparing nature (4µL), non-radioactiveness, compatibility with widely available real-time qPCR instruments and favorable risk prediction capability.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng-ting Tsai
- Research & Product Development, Enable Biosciences, South San Francisco, CA, United States
| |
Collapse
|
5
|
Sing ABE, Naselli G, Huang D, Watson K, Colman PG, Harrison LC, Wentworth JM. Feasibility and Validity of In-Home Self-Collected Capillary Blood Spot Screening for Type 1 Diabetes Risk. Diabetes Technol Ther 2024; 26:87-94. [PMID: 37976038 DOI: 10.1089/dia.2023.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Aims: Self-collection of a blood sample for autoantibody testing has potential to facilitate screening for type 1 diabetes risk. We sought to determine the feasibility and acceptability of this approach and the performance of downstream antibody assays. Methods: People living with type 1 diabetes and their family members (N = 97) provided paired capillary blood spot and serum samples collected, respectively, by themselves and a health worker. They provided feedback on the ease, convenience, and painfulness of blood spot collection. Islet antibodies were measured in blood spots by antibody detection by agglutination PCR (ADAP) or multiplex enzyme-linked immunoassay (ELISA), and in serum by radioimmunoassay (RIA) or ELISA. Results: Using serum RIA and ELISA to define antibody status, 50 antibody-negative (Abneg) and 47 antibody-positive (Abpos) participants enrolled, of whom 43 and 47, respectively, returned testable blood spot samples. The majority indicated that self-collection was easier, more convenient, and less painful than formal venesection. The sensitivity and specificity for detection of Abpos by blood spot were, respectively, 85% and 98% for ADAP and 87% and 100% for multiplex ELISA. The specificities by ADAP for each of the four antigen specificities ranged from 98% to 100% and areas under the receiver operator curve from 0.841 to 0.986. Conclusions: Self-collected blood spot sampling is preferred over venesection by research participants. ADAP and multiplex ELISA are highly specific assays for islet antibodies in blood spots with acceptable performance for use alone or in combination to facilitate screening for type 1 diabetes risk. Clinical Trial Registration number: ACTRN12620000510943.
Collapse
Affiliation(s)
- Anna B E Sing
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Gaetano Naselli
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Dexing Huang
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kelly Watson
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Parkville, Australia
| | - Peter G Colman
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Parkville, Australia
- University of Melbourne Department of Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Leonard C Harrison
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - John M Wentworth
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Parkville, Australia
- University of Melbourne Department of Medicine, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
6
|
Park YS, Choi S, Jang HJ, Yoo TH. Assay methods based on proximity-enhanced reactions for detecting non-nucleic acid molecules. Front Bioeng Biotechnol 2023; 11:1188313. [PMID: 37456730 PMCID: PMC10343955 DOI: 10.3389/fbioe.2023.1188313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Accurate and reliable detection of biological molecules such as nucleic acids, proteins, and small molecules is essential for the diagnosis and treatment of diseases. While simple homogeneous assays have been developed and are widely used for detecting nucleic acids, non-nucleic acid molecules such as proteins and small molecules are usually analyzed using methods that require time-consuming procedures and highly trained personnel. Recently, methods using proximity-enhanced reactions (PERs) have been developed for detecting non-nucleic acids. These reactions can be conducted in a homogeneous liquid phase via a single-step procedure. Herein, we review three assays based on PERs for the detection of non-nucleic acid molecules: proximity ligation assay, proximity extension assay, and proximity proteolysis assay.
Collapse
Affiliation(s)
- Ye Seop Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sunjoo Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hee Ju Jang
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
7
|
Torres-Acosta MA, Lye GJ, Dikicioglu D. Automated liquid-handling operations for robust, resilient, and efficient bio-based laboratory practices. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|