1
|
Simons SB, Provo M, Yanoschak A, Schmidt C, Gerrard I, Weisend M, Anderson C, Shimizu R, Connolly PM. A randomized study on the effect of a wearable device using 0.75 Hz transcranial electrical stimulation on sleep onset insomnia. Front Neurosci 2024; 18:1427462. [PMID: 39507801 PMCID: PMC11537953 DOI: 10.3389/fnins.2024.1427462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The normal transition to sleep is characterized by a reduction in higher frequency activity and an increase in lower frequency activity in frontal brain regions. In sleep onset insomnia these changes in activity are weaker and may prolong the transition to sleep. Methods Using a wearable device, we compared 30min of short duration repetitive transcranial electric stimulation (SDR-tES) at 0.75Hz, prior to going to bed, with an active control at 25Hz in the same individuals. Results Treatment with 0.75Hz significantly reduced sleep onset latency (SOL) by 53% when compared with pre-treatment baselines and was also significantly more effective than stimulation with 25Hz which reduced SOL by 30%. Reductions in SOL with 25Hz stimulation displayed order effects suggesting the possibility of placebo. No order effects were observed with 0.75Hz stimulation. The decrease in SOL with 0.75Hz treatment was proportional to an individual's baseline wherein those suffering from the longest pre-treated SOLs realized the greatest benefits. Changes in SOL were correlated with left/right frontal EEG signal coherence around the stimulation frequency, providing a possible mechanism and target for more focused treatment. Stimulation at both frequencies also decreased perceptions of insomnia symptoms measured with the Insomnia Severity Index, and comorbid anxiety measured with the State Trait Anxiety Index. Discussion Our study identifies a new potential treatment for sleep onset insomnia that is comparably effective to current state-of-practice options including pharmacotherapy and cognitive behavioral therapy and is safe, effective, and can be delivered in the home.
Collapse
Affiliation(s)
- Stephen B. Simons
- Intelligent Systems Laboratory, Teledyne Scientific & Imaging, Durham, NC, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
He J, Chan SH, Lin J, Tsang HW. Integration of tai chi and repetitive transcranial magnetic stimulation for sleep disturbances in older adults: A pilot randomized controlled trial. Sleep Med 2024; 122:35-44. [PMID: 39121822 DOI: 10.1016/j.sleep.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The arousal state has been demonstrated to be involved in the fundamental pathophysiological mechanism of sleep disturbances. Tai chi (TC) and repetitive transcranial magnetic stimulation (rTMS) have been documented to alleviate sleep disturbances by interfering with different arousal components. It is reasonable to assume that combining TC and rTMS could induce synergistic and longer-lasting benefits for sleep disturbances. METHODS Thirty-eight older community-dwelling people were randomly assigned to one of three groups: TC plus rTMS (n = 12), TC alone (n = 13), and treat-as-usual (TAU) (n = 13). The interventions were conducted three times per week for 4 weeks for the two intervention groups. The primary outcome was the insomnia severity, while the secondary outcomes were the actigraphy-assessed sleep patterns, use of hypnotic medications, mood states, and quality of life. The mediator outcomes included self-reported somatic arousal and cognitive arousal as well as electroencephalogram (EEG)-assessed cortical arousal. The assessments were conducted at baseline (T0), post-intervention (T1), and 3-month follow-up (T2). RESULTS Significant improvements in the insomnia severity were observed in the TC plus rTMS group compared with the TAU group at T1 (Cohen's d = 1.62, p = 0.003) and T2 (Cohen's d = 1.97, p < 0.001). In contrast, significant improvements in the TC alone group were found only at T2 (Cohen's d = 1.03, p = 0.010) when compared with the TAU group. Significant interaction effects were noted on the actigraphy-assessed sleep efficiency (p = 0.015) and total sleep time (p = 0.004), depression (p = 0.003) and stress scores (p = 0.002), and mental function in relation to quality of life (p = 0.042). However, none of the mediators elucidated how combining TC and rTMS could improve the insomnia severity. CONCLUSION The research findings are expected to guide further clinical practice in the management of sleep disturbances among older adults using various interventions. Future studies are needed to unravel the underlying mechanism and optimize the protocol to maximize the therapeutic benefits.
Collapse
Affiliation(s)
- Jiali He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sunny Hw Chan
- Centre for Health and Clinical Research, University of the West of England, United Kingdom
| | - Jingxia Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Mental Health Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Hector Wh Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Mental Health Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Tang SJ, Holle J, Mor S, Dadario NB, Ryan M, Teo C, Sughrue M, Yeung J. Improvements in Sleep Quality in Patients With Major Depressive and Generalized Anxiety Disorders Treated With Individualized, Parcel-Guided Transcranial Magnetic Stimulation. Brain Behav 2024; 14:e70088. [PMID: 39415644 PMCID: PMC11483549 DOI: 10.1002/brb3.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Poor quality sleep has often been cited as a cause of lowered quality of life in patients with affective disorders such as major depressive disorder (MDD) and generalized anxiety disorder (GAD). As sleep and affective disorders are affected by multi-network interactions, we hypothesize that the modulation of the central executive network (CEN), salience, and default mode networks (DMNs) through individualized repetitive transcranial magnetic stimulation (rTMS) may improve sleep and quality of life. METHODS A retrospective analysis from 2020 to 2023 was conducted in patients with affective disorders at Cingulum Health. Multiple targets were selected based on anomalies detected from individual, functional connectivity networks from a machine-learning connectivity software. rTMS was conducted with accelerated continuous or intermittent theta burst stimulation (TBS) based on the anomaly detected. Pittsburgh Sleep Quality Index (PSQI), EuroQol (EQ5D), Beck's Depression Inventory (BDI), and the General Anxiety Disorder-7 (GAD-7) questionnaires were administered prior to, after, and at follow-up of rTMS. RESULTS Twenty-seven patients were identified, and the most common diagnoses were MDD (41%) or MDD with GAD (41%). All patients had at least one rTMS target in the CEN. The most common target (19 patients) was L8Av in the dorsolateral prefrontal cortex (dlPFC). Patients experienced significant improvements in sleep, quality of life, depressive, and anxiety symptoms after rTMS and during follow-up. Improvements in sleep correlated with quality of life at follow-up. CONCLUSION This study suggests that personalized, parcel-guided rTMS is safe and may provide sustained improvements in sleep, quality of life, and affective symptoms for patients with affective disorders.
Collapse
Affiliation(s)
- Si Jie Tang
- School of MedicineUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| | | | - Sirjan Mor
- School of MedicineUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| | - Nicholas B. Dadario
- Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | | | - Jacky Yeung
- Cingulum HealthRoseberyAustralia
- Department of NeurosurgeryYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
4
|
Tamasauskas A, Silva-Passadouro B, Fallon N, Frank B, Laurinaviciute S, Keller S, Marshall A. Management of Central Post-Stroke Pain: Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2024:104666. [PMID: 39260808 DOI: 10.1016/j.jpain.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Central post stroke pain (CPSP) is a neuropathic pain condition prevalent in 8% to 35% of stroke patients. This systematic review and meta-analysis aimed to provide insight in the effectiveness of available pharmacological, physical, psychological, and neuromodulation intervention in reducing pain in CPSP patients (PROSPERO Registration: CRD42022371835). Secondary outcomes included mood, sleep, global impression of change, and physical responses. Data extraction included participant demographics, stroke aetiology, pain characteristics, pain reduction scores, and secondary outcome metrics. Forty two original studies were included with a total of 1451 participants. No studies providing psychological therapy to CPSP patients were identified. Twelve studies met requirements for a random-effects meta-analyses that found: pharmacological therapy to have a small effect on mean pain score (SMD = -0.36, 96.0% Confidence Interval [-0.68, -0.03], physical interventions did not show a significant effect (SMD = -0.55, [-1.28, 0.18]), and neuromodulation treatments had a moderate effect (SMD -0.64, [-1.08, -0.19]). Fourteen studies were included in proportional meta-analysis with pharmacological studies having a moderate effect (58.3% mean pain reduction, [-36.51, -80.15]), and neuromodulation studies a small effect (31.1% mean pain reduction, [-43.45, -18.76]). Sixteen studies were included in the narrative review, findings from which largely supported meta-analyses results. Duloxetine, Amitriptyline and repetitive Transcranial Magnetic Stimulation (rTMS) had the most robust evidence for their effectiveness in alleviating CPSP induced pain. Further multi-centre placebo-controlled research is needed to ascertain the effectiveness of physical therapies, such as acupuncture and virtual reality, and invasive and non-invasive neuromodulation treatments. PERSPECTIVE: This article presents a top-down and bottom-up overview of evidence for the effectiveness of different pharmacological, physical, and neuromodulation treatments of CPSP. This review could provide clinicians with a comprehensive understanding of the effectiveness and tolerability of different treatment types.
Collapse
|
5
|
Wu J, Zhuang S, Zhang X, Wang L, Ma X, Jin H, Mao C, Chen J, Liu CF. Objective sleep enhancement in Parkinson's disease: A sham-controlled trial of low-frequency repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex. Parkinsonism Relat Disord 2024; 126:107050. [PMID: 38986305 DOI: 10.1016/j.parkreldis.2024.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is often accompanied by sleep disturbances, impacting patients' quality of life. While repetitive transcranial magnetic stimulation (rTMS) shows promise in improving self-reported sleep quality, its effects on objective sleep architecture in PD remain understudied. Sleep disturbances, including rapid eye movement (REM) and slow-wave sleep disturbances, correlate with cognitive decline and motor symptoms. This study investigated the effect of low-frequency rTMS targeting the right dorsolateral prefrontal cortex (DLPFC) modifying objective sleep architecture and explored symptom improvement mechanisms in PD patients. METHODS In this randomized, double-blind, sham-controlled trial, 67 PD patients received 10 consecutive days of 1-Hz rTMS over the right DLPFC. Polysomnography assessed sleep microstructure, while electroencephalogram recordings evaluated power spectral density and sleep spindle activity. Clinical scales measured sleep quality, motor symptoms, and cognition at baseline, post-treatment, and 3 months post-rTMS. RESULTS The rTMS group exhibited improvements in sleep quality, motor symptoms, and cognition post-treatment, persisting at the 3-month follow-up. There was a notable increase in the REM sleep proportion post-rTMS. The rTMS group exhibited elevated low-frequency (0.5-2 Hz) slow-wave electroencephalogram spectral density during non-REM sleep. Cognitive enhancement correlated with increased lower delta power, while motor symptom progression correlated with spindle frequency and slow-wave sleep percentage changes. CONCLUSION Low-frequency rTMS targeting the right DLPFC holds promise for improving clinical symptoms and modulating sleep architecture in PD. These findings suggest a link between symptom improvement and sleep structure enhancement, highlighting the need for further investigation into the therapeutic potential of rTMS in PD management.
Collapse
Affiliation(s)
- Jiajing Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Zhuang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoying Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lanxiang Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinmiao Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Jin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China; Department of Neurology, Xiongan Xuanwu Hospital, Xiongan, China.
| |
Collapse
|
6
|
Yan J, Zhang Y, Wang J, Zhu G, Fang K. Effects of transcranial magnetic stimulation on sleep structure and quality in children with autism. Front Psychiatry 2024; 15:1413961. [PMID: 39006818 PMCID: PMC11239541 DOI: 10.3389/fpsyt.2024.1413961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Sleep disorders are common in children with autism spectrum disorder (ASD). Transcranial magnetic stimulation (TMS) can influence the excitability of neuronal cells in stimulated areas, leading to improvements in sleep and other autistic symptoms. However, studies on clinical mechanisms of TMS in treating sleep disorders associated with ASD are limited. Therefore, we aimed to explore the effects of TMS on sleep structure and quality in children with ASD. Methods Between January 2020 and December 2021, recruitment was advertised through child and adolescent outpatient clinics and online platforms by the Hangzhou Seventh People's Hospital and Lishui Second People's Hospital. Sixty children with ASD who met the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, were selected and randomly divided into the active TMS and sham TMS treatment groups. Thirty healthy children of the same age were recruited as controls. The active TMS group received bilateral low-frequency (0.5 Hz) TMS targeting the dorsolateral prefrontal cortex on both sides in children with ASD, whereas the sham TMS group received sham stimulation with the same stimulation time and location as the experimental group. Both groups were treated for 6 weeks, and the participants were assessed using the Sleep Disturbance Scale for Children (SDSC) before treatment, at 3 weeks, and at 6 weeks of intervention. Independent sample t-tests and difference t-tests were used for statistical analysis of the data. Results No significant differences were observed in general demographic variables, such as age and sex, between the ASD and control groups (P>0.05). Independent sample t-test analysis showed that the total SDSC score, difficulty falling asleep, sleep maintenance, awakening disorders, sleep-wake transition disorders, excessive daytime sleepiness, and nocturnal hyperhidrosis scores were significantly higher in the ASD group than in the control group (P<0.05). Before treatment, no significant differences were observed in the factor or total SDSC scores between the sham TMS group and the active TMS group (P>0.05). After 15 and 30 treatment sessions, the total SDSC score, difficulty falling asleep, sleep maintenance, sleep-wake transition disorders, and excessive daytime sleepiness scores were significantly higher in the sham TMS group than in the active TMS group (P<0.05). The difference t-test analysis showed that after 30 treatment sessions, the reduction rates of the total SDSC score, difficulty falling asleep, sleep maintenance, awakening disorders, sleep-wake transition disorders, excessive daytime sleepiness, and nocturnal hyperhidrosis dimensions were significantly higher in the active TMS group than in the sham TMS group (P<0.05). Conclusion Low-frequency TMS targeting the dorsolateral prefrontal cortex in children with ASD can effectively improve their sleep status, and significant improvement can be achieved after 6 weeks (30 sessions) of treatment.
Collapse
Affiliation(s)
- Juan Yan
- Quality Control Office, Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang, China
| | - Yan Zhang
- Administration Office, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Junjie Wang
- Quality Control Office, Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang, China
| | - Guidong Zhu
- Administration Office, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Kaijie Fang
- Quality Control Office, Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Sun J, Zhang B, Xu W, Li P, Zhang D, Zhao B, Wang Z, Wang B. Effectiveness of repetitive transcranial magnetic stimulation for insomnia disorder on fear memory extinction: study protocol for a randomised controlled trial. Trials 2024; 25:396. [PMID: 38898471 PMCID: PMC11186137 DOI: 10.1186/s13063-024-08198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Fear memory extinction is closely related to insomnia. Repetitive transcranial magnetic stimulation (rTMS) is safe and effective for treating insomnia disorder (ID), and it has been shown to be an efficient method for modulating fear extinction. However, whether rTMS can improve fear extinction memory in ID patients remains to be studied. In this study, we specifically aim to (1) show that 1 Hz rTMS stimulation could improve fear extinction memory in ID patients and (2) examine whether changes in sleep mediate this impact. METHODS AND DESIGN We propose a parallel group randomised controlled trial of 62 ID participants who meet the inclusion criteria. Participants will be assigned to a real rTMS group or a sham rTMS group. The allocation ratio will be 1:1, with 31 subjects in each group. Interventions will be administered five times per week over a 4-week period. The assessments will take place at baseline (week 0), post-intervention (week 4), and 8-week follow-up (week 8). The primary outcome measure of this study will be the mean change in the Pittsburgh Sleep Quality Index (PSQI) scores from baseline to post-intervention at week 4. The secondary outcome measures include the mean change in skin conductance response (SCR), fear expectation during fear extinction, Insomnia Severity Index (ISI), Zung Self-Rating Anxiety Scale (SAS), and the Zung Self-Rating Depression Scale (SDS). DISCUSSION This study will be the first examination of the impact of rTMS on fear memory extinction in ID patients. TRIAL REGISTRATION Chinese Clinical Trials Register ChiCTR2300076097. Registered on 25 September 2021.
Collapse
Affiliation(s)
- Jingjing Sun
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, 212001, China
| | - Bidan Zhang
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, 212001, China
| | - Wenyue Xu
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, 212001, China
| | - Panpan Li
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, 212001, China
| | - Danwei Zhang
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, 212001, China
| | - Bei Zhao
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, 212001, China
| | - Zhoubing Wang
- Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, 212001, China
| | - Bin Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100191, China.
| |
Collapse
|
8
|
Wang M, Lu S, Hao L, Xia Y, Shi Z, Su L. Placebo effects of repetitive transcranial magnetic stimulation on negative symptoms and cognition in patients with schizophrenia spectrum disorders: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1377257. [PMID: 38863608 PMCID: PMC11165700 DOI: 10.3389/fpsyt.2024.1377257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Background Negative symptoms and cognitive impairments are highly frequent in schizophrenia spectrum disorders (SSD), associated with adverse functional outcomes and quality of life. Repetitive transcranial magnetic stimulation (rTMS) has been considered a promising therapeutic option in SSD. However, placebo effects of rTMS on these symptoms remained unclear. Objective To investigate placebo effects of rTMS on alleviating negative symptoms and cognitive impairment in patients with SSD and to explore potential moderators. Methods We systematically searched five electronic databases up to 15 July 2023. Randomized, double-blind, sham-controlled trials investigating effects of rTMS on negative symptoms or cognition in patients with SSD were included. The pooled placebo effect sizes, represented by Hedges' g, were estimated using the random-effects model. Potential moderators were explored through subgroup analysis and meta-regression. Results Forty-four randomized controlled trials with 961 patients (mean age 37.53 years; 28.1% female) in the sham group were included. Significant low-to-moderate pooled placebo effect sizes were observed for negative symptoms (g=0.44, p<0.001), memory (g=0.31, p=0.010), executive function (g=0.35, p<0.001), working memory (g=0.26, p=0.004), and processing speed (g=0.36, p=0.004). Subgroup analysis indicated that placebo effects were affected by sham stimulation methods, rTMS targeting approaches, and stimulation frequency. Conclusions Placebo effects of rTMS on negative symptoms and cognition in patients with SSD are significant in a small-to-moderate magnitude, which might be mediated by rTMS parameters. Our findings will provide new insights for practitioners to further optimize and establish standardized rTMS protocols for future RCTs tackling cardinal symptoms in SSD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023390138.
Collapse
Affiliation(s)
- Mingqi Wang
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Shensen Lu
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Lu Hao
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Yifei Xia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenchun Shi
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Lei Su
- Department of Rehabilitation Medicine, Shandong Mental Health Center, Shandong University, Jinan, China
| |
Collapse
|
9
|
Cheung T, Yee BK, Chau B, Lam JYT, Fong KH, Lo H, Li TMH, Li AM, Sun L, Beisteiner R, Cheng CPW. Efficacy and safety of transcranial pulse stimulation in young adolescents with attention-deficit/hyperactivity disorder: a pilot, randomized, double-blind, sham-controlled trial. Front Neurol 2024; 15:1364270. [PMID: 38784916 PMCID: PMC11112118 DOI: 10.3389/fneur.2024.1364270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background This is the first study to evaluate the efficacy and safety of transcranial pulse stimulation (TPS) for the treatment of attention-deficit/hyperactivity disorder (ADHD) among young adolescents in Hong Kong. Methods This double-blind, randomized, sham-controlled trial included a TPS group and a sham TPS group, encompassing a total of 30 subjects aged 12-17 years who were diagnosed with ADHD. Baseline measurements SNAP-IV, ADHD RS-IV, CGI and executive functions (Stroop tests, Digit Span) and post-TPS evaluation were collected. Both groups were assessed at baseline, immediately after intervention, and at 1-month and 3-month follow-ups. Repeated-measures ANOVAs were used to analyze data. Results The TPS group exhibited a 30% reduction in the mean SNAP-IV score at postintervention that was maintained at 1- and 3-month follow-ups. Conclusion TPS is an effective and safe adjunct treatment for the clinical management of ADHD. Clinical trial registration ClinicalTrials.Gov, identifier NCT05422274.
Collapse
Affiliation(s)
- Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Benjamin K. Yee
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bolton Chau
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Joyce Yuen Ting Lam
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- The Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kwan Hin Fong
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Herman Lo
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tim Man Ho Li
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Albert Martin Li
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | | | - Calvin Pak Wing Cheng
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
10
|
Osou S, Radjenovic S, Bender L, Gaal M, Zettl A, Dörl G, Matt E, Beisteiner R. Novel ultrasound neuromodulation therapy with transcranial pulse stimulation (TPS) in Parkinson's disease: a first retrospective analysis. J Neurol 2024; 271:1462-1468. [PMID: 38032371 PMCID: PMC10896933 DOI: 10.1007/s00415-023-12114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Transcranial Pulse Stimulation (TPS) has been recently introduced as a novel ultrasound neuromodulation therapy with the potential to stimulate the human brain in a focal and targeted manner. Here, we present a first retrospective analysis of TPS as an add-on therapy for Parkinson's disease (PD), focusing on feasibility, safety, and clinical effects. We also discuss the placebo response in non-invasive brain stimulation studies as an important context. METHODS This retrospective clinical data analysis included 20 PD patients who received ten sessions of TPS intervention focused on the individual motor network. Safety evaluations were conducted throughout the intervention period. We analyzed changes in motor symptoms before and after TPS treatment using Unified Parkinson's Disease Rating Scale part III (UPDRS-III). RESULTS We found significant improvement in UPDRS-III scores after treatment compared to baseline (pre-TPS: 16.70 ± 8.85, post-TPS: 12.95 ± 8.55; p < 0.001; Cohen's d = 1.38). Adverse events monitoring revealed no major side effects. CONCLUSION These preliminary findings suggest that TPS can further improve motor symptoms in PD patients already on optimized standard therapy. Findings have to be evaluated in context with the current literature on placebo effects.
Collapse
Affiliation(s)
- Sarah Osou
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sonja Radjenovic
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Lena Bender
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin Gaal
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anna Zettl
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gregor Dörl
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Eva Matt
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Roland Beisteiner
- Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
11
|
Zhu L, Pei Z, Dang G, Shi X, Su X, Lan X, Lian C, Yan N, Guo Y. Predicting response to repetitive transcranial magnetic stimulation in patients with chronic insomnia disorder using electroencephalography: A pilot study. Brain Res Bull 2024; 206:110851. [PMID: 38141788 DOI: 10.1016/j.brainresbull.2023.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Predicting responsvienss to repetitive transcranial magnetic stimulation (rTMS) can facilitate personalized treatments with improved efficacy; however, predictive features related to this response are still lacking. We explored whether resting-state electroencephalography (rsEEG) functional connectivity measured at baseline or during treatment could predict the response to 10-day rTMS targeted to the right dorsolateral prefrontal cortex (DLPFC) in 36 patients with chronic insomnia disorder (CID). Pre- and post-treatment rsEEG scans and the Pittsburgh Sleep Quality Index (PSQI) were evaluated, with an additional rsEEG scan conducted after four rTMS sessions. Machine-learning approaches were employed to assess the ability of each connectivity measure to distinguish between responders (PSQI improvement > 25%) and non-responders (PSQI improvement ≤ 25%). Furthermore, we analyzed the connectivity trends of the two subgroups throughout the treatment. Our results revealed that the machine learning model based on baseline theta connectivity achieved the highest accuracy (AUC = 0.843) in predicting treatment response. Decreased baseline connectivity at the stimulated site was associated with higher responsiveness to TMS, emphasizing the significance of functional connectivity characteristics in rTMS treatment. These findings enhance the clinical application of EEG functional connectivity markers in predicting treatment outcomes.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Zian Pei
- Shenzhen Bay Laboratory, Shenzhen 518020, Guangdong, China
| | - Ge Dang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xue Shi
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xiaolin Su
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xiaoyong Lan
- Shenzhen Bay Laboratory, Shenzhen 518020, Guangdong, China
| | - Chongyuan Lian
- Shenzhen Bay Laboratory, Shenzhen 518020, Guangdong, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
12
|
Holbert RC, Carr BR, Bussing R. An open label pilot trial of sequential bifrontal low frequency r-TMS in the treatment of primary insomnia. Psychiatry Res 2023; 324:115194. [PMID: 37054553 DOI: 10.1016/j.psychres.2023.115194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
This pilot study examines the therapeutic effects of bifrontal low frequency (LF) TMS on primary insomnia. In this prospective, open-label study 20 patients with primary insomnia and without major depressive disorder received 15 sequential bifrontal LF rTMS stimulation sessions. By week 3, PSQI scores declined from baseline score of 12.57(sd 2.74) to 9.50 (sd 4.27), a large effects size (0.80 (CI 0.29, 1.36)), and CGI-I scores improved for 52.6% of participants. Results of this pilot indicate that the novel bifrontal LF rTMS benefitted this group of patients suffering from primary insomnia, with absence of sham control a significant study limitation.
Collapse
Affiliation(s)
- Richard C Holbert
- Department of Psychiatry, University of Florida College of Medicine, 4037 NW 86 Terrace, Gainesville, FL 32606, USA
| | - Brent R Carr
- Department of Psychiatry, University of Florida, College of Medicine, 4037 NW 86th Terrace, Gainesville, FL, USA
| | - Regina Bussing
- Department of Psychiatry, University of Florida College of Medicine, 4197 NW 86 Terrace, Gainesville, FL 32606, USA.
| |
Collapse
|
13
|
Lanza G, Fisicaro F, Cantone M, Pennisi M, Cosentino FII, Lanuzza B, Tripodi M, Bella R, Paulus W, Ferri R. Repetitive transcranial magnetic stimulation in primary sleep disorders. Sleep Med Rev 2023; 67:101735. [PMID: 36563570 DOI: 10.1016/j.smrv.2022.101735] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely used non-invasive neuromodulatory technique. When applied in sleep medicine, the main hypothesis explaining its effects concerns the modulation of synaptic plasticity and the strength of connections between the brain areas involved in sleep disorders. Recently, there has been a significant increase in the publication of rTMS studies in primary sleep disorders. A multi-database-based search converges on the evidence that rTMS is safe and feasible in chronic insomnia, obstructive sleep apnea syndrome (OSAS), restless legs syndrome (RLS), and sleep deprivation-related cognitive deficits, whereas limited or no data are available for narcolepsy, sleep bruxism, and REM sleep behavior disorder. Regarding efficacy, the stimulation of the dorsolateral prefrontal cortex bilaterally, right parietal cortex, and dominant primary motor cortex (M1) in insomnia, as well as the stimulation of M1 leg area bilaterally, left primary somatosensory cortex, and left M1 in RLS reduced subjective symptoms and severity scale scores, with effects lasting for up to weeks; conversely, no relevant effect was observed in OSAS and narcolepsy. Nevertheless, several limitations especially regarding the stimulation protocols need to be considered. This review should be viewed as a step towards the further contribution of individually tailored neuromodulatory techniques for sleep disorders.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy.
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico "G. Rodolico-San Marco", Catania, Italy; Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Bartolo Lanuzza
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Mariangela Tripodi
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
14
|
Sun J, Li G, Zhang D, Ding K, Zhu J, Luo S, Xu W, Wang Z. mPFC-rTMS for patients with insomnia disorder using resting-state functional magnetic resonance imaging: a protocol for a randomized controlled trial. Trials 2022; 23:1005. [PMID: 36510305 PMCID: PMC9746182 DOI: 10.1186/s13063-022-06934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Insomnia is the most common sleep disorder. Repetitive transcranial magnetic stimulation (rTMS) is safe and effective for insomnia disorder (ID). Convergent evidence show that the medial prefrontal cortex (mPFC) may be involved in the regulation of sleep and awakening at the cortical level and may serve as a potential target of rTMS in the treatment of ID. The purpose of this clinical trial is to study the efficacy of mPFC-rTMS in the treatment ID and explore the neural mechanism using resting-state functional magnetic resonance imaging (fMRI). METHODS AND DESIGN This will be a parallel-group randomized, patient- and assessor-blinded trial. The study will recruit 60 ID patients assigned to a real mPFC-rTMS group or a sham mPFC-rTMS group. The allocation ratio is 1:1, with 30 subjects in each group. Interventions will be administered five times per week over a 4-week period, with an 8-week follow-up period. All participants will undergo neuropsychological and fMRI evaluations. The primary outcome measure of this study is the change scores of the Pittsburgh Sleep Quality Index (PSQI). The secondary outcome measures include the fMRI measurements, the Hamilton Depression Scale (HAMD), the Hamilton Anxiety Scale (HAMA), a sleep diary, and a polysomnography. Assessment of all parameters will be performed at baseline, post-treatment, and during follow-up. DISCUSSION It is expected that the study results will provide strong evidence of the effectiveness and the neural mechanism by which mPFC-rTMS improves sleep quality in ID patients. TRIAL REGISTRATION Chinese Clinical Trials Register ChiCTR2100054154. Registered on 10 December 2021.
Collapse
Affiliation(s)
- Jingjing Sun
- Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu China
| | - Guohai Li
- Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu China
| | - Danwei Zhang
- Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu China
| | - Kaimo Ding
- Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu China
| | - Jun Zhu
- Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu China
| | - Si Luo
- Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu China
| | - Wenyue Xu
- Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu China
| | - Zhoubing Wang
- Zhenjiang Mental Health Center, No. 199 Tuanshan Road, Zhenjiang, Jiangsu China
| |
Collapse
|
15
|
Guo J, Chen X, Lyu Z, Xiu H, Lin S, Liu F. Repetitive transcranial magnetic stimulation (rTMS) for post-stroke sleep disorders: a systematic review of randomized controlled trials. Neurol Sci 2022; 43:6783-6794. [PMID: 35980480 DOI: 10.1007/s10072-022-06349-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Survivors of stroke often experience post-stroke sleep disorders (PSSDs), but pharmacotherapy risks adverse side effects. Transcranial magnetic stimulation (TMS) is potentially a nonpharmacotherapeutic option. This meta-analysis investigated the effects of rTMS to treat PSSD. METHODS Databases were searched for randomized controlled trials (RCTs) of rTMS to treat PSSD, conducted in accordance with the PRISMA 2020 guidelines. Risk-of-bias assessments were performed using the Cochrane risk-of-bias tool. A meta-analysis of the following indexes was performed using RevMan 5.4 software: Pittsburgh sleep quality index; effective rate of sleep improvement; Hamilton Anxiety Rating Scale (for mood); and National Institute of Health Stroke Scale (NIHSS, stroke severity). Mean differences (MDs) and confidence intervals (CIs) were calculated. RESULTS The meta-analysis included 17 RCTs, with 1411 patients overall. The indexes indicated that rTMS could improve the sleep quality, mood, and stroke severity of patients with PSSD: Pittsburgh sleep quality index (12 studies; MD = - 2.51, 95% CI [- 3.24, - 1.79], P < 0.00001); effective rate of sleep improvement (7 studies; MD = 4.03, 95% CI [2.43, 6.68], P < 0.0001); Hamilton Anxiety Rating Scale (2 studies; MD = - 4.05, 95% CI [- 4.77, - 3.32], P < 0.00001); and NIHSS (2 studies; MD = -2.71, 95% CI [- 3.36, - 2.06], P < 0.00001). CONCLUSION The results suggest that rTMS may have positive effects on the sleep quality, mood, and stroke severity of patients with PSSD.
Collapse
Affiliation(s)
- Jiaying Guo
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Xin Chen
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Zecai Lyu
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Huoqin Xiu
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Shaohong Lin
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Fang Liu
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China.
| |
Collapse
|
16
|
Lu Q, Zhang W, Yan H, Mansouri N, Tanglay O, Osipowicz K, Joyce AW, Young IM, Zhang X, Doyen S, Sughrue ME, He C. Connectomic disturbances underlying insomnia disorder and predictors of treatment response. Front Hum Neurosci 2022; 16:960350. [PMID: 36034119 PMCID: PMC9399490 DOI: 10.3389/fnhum.2022.960350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/19/2022] [Indexed: 01/23/2023] Open
Abstract
ObjectiveDespite its prevalence, insomnia disorder (ID) remains poorly understood. In this study, we used machine learning to analyze the functional connectivity (FC) disturbances underlying ID, and identify potential predictors of treatment response through recurrent transcranial magnetic stimulation (rTMS) and pharmacotherapy.Materials and methods51 adult patients with chronic insomnia and 42 healthy age and education matched controls underwent baseline anatomical T1 magnetic resonance imaging (MRI), resting-stage functional MRI (rsfMRI), and diffusion weighted imaging (DWI). Imaging was repeated for 24 ID patients following four weeks of treatment with pharmacotherapy, with or without rTMS. A recently developed machine learning technique, Hollow Tree Super (HoTS) was used to classify subjects into ID and control groups based on their FC, and derive network and parcel-based FC features contributing to each model. The number of FC anomalies within each network was also compared between responders and non-responders using median absolute deviation at baseline and follow-up.ResultsSubjects were classified into ID and control with an area under the receiver operating characteristic curve (AUC-ROC) of 0.828. Baseline FC anomaly counts were higher in responders than non-responders. Response as measured by the Insomnia Severity Index (ISI) was associated with a decrease in anomaly counts across all networks, while all networks showed an increase in anomaly counts when response was measured using the Pittsburgh Sleep Quality Index. Overall, responders also showed greater change in all networks, with the Default Mode Network demonstrating the greatest change.ConclusionMachine learning analysis into the functional connectome in ID may provide useful insight into diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Wentong Zhang
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hailang Yan
- Department of Radiology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, Australia
| | | | | | | | - Xia Zhang
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi’an, China
- Shenzhen Xijia Medical Technology Company, Shenzhen, China
| | | | - Michael E. Sughrue
- Omniscient Neurotechnology, Sydney, NSW, Australia
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi’an, China
- Michael E. Sughrue,
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Chuan He,
| |
Collapse
|
17
|
Zhang H, Huang X, Wang C, Liang K. Alteration of gamma-aminobutyric acid in the left dorsolateral prefrontal cortex of individuals with chronic insomnia: a combined transcranial magnetic stimulation-magnetic resonance spectroscopy study. Sleep Med 2022; 92:34-40. [DOI: 10.1016/j.sleep.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
|
18
|
Pizem D, Novakova L, Gajdos M, Rektorova I. Is the vertex a good control stimulation site? Theta burst stimulation in healthy controls. J Neural Transm (Vienna) 2022; 129:319-329. [DOI: 10.1007/s00702-022-02466-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 01/02/2023]
|
19
|
Gao L, Wang C, Song XR, Tian L, Qu ZY, Han Y, Zhang X. The Sensory Abnormality Mediated Partially the Efficacy of Repetitive Transcranial Magnetic Stimulation on Treating Comorbid Sleep Disorder in Autism Spectrum Disorder Children. Front Psychiatry 2022; 12:820598. [PMID: 35140641 PMCID: PMC8818693 DOI: 10.3389/fpsyt.2021.820598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Sleep disorder emerges as a common comorbidity in children with autism spectrum disorder (ASD), and the interaction between the core symptoms of ASD and its sleep disorder remains unclear. Repetitive transcranial magnetic stimulation (rTMS) was used on the bilateral dorsolateral prefrontal cortex (DLPFC) to investigate the efficacy of rTMS on the core symptoms of ASD and comorbid sleep problems as well as the mediation role of the ASD symptoms between rTMS intervention and sleep improvement. A total of 41 Chinese children with ASD and who met the criteria in the fifth edition of the American Diagnostic and Statistical Manual of Mental Disorders were recruited, and 39 of them (mean age: 9.0 ± 4.4 years old; the male-female ratio was 3.9: 1) completed the study with the stimulating protocol of high frequency on the left DLPFC and low frequency on the right DLPFC. They were all assessed three times (before, at 4 weeks after, and at 8 weeks after the stimulation) by the Children's Sleep Habits Questionnaire (CSHQ), Strengths and Difficulties Questionnaire (SDQ), Childhood Autism Rating Scale, Repetitive Behavior Questionnaire-2, and Short Sensory Profile (SSP). The repeated-measures ANOVA showed that the main effect of "intervention time" of CSHQ (F = 25.103, P < 0.001), SSP (F = 6.345, P = 0.003), and SDQ (F = 9.975, P < 0.001) was statistically significant. By Bayesian mediation analysis, we only found that the total score of SSP mediated the treating efficacy of rTMS on CSHQ (αβ = 5.11 ± 1.51, 95% CI: 2.50-8.41). The percentage of mediation effect in total effect was 37.94%. Our results indicated the treating efficacy of rTMS modulation on bilateral DLPFC for both autistic symptoms and sleep disturbances. The sensory abnormality of ASD mediated the improvement of rTMS on sleep problems of ASD.
Collapse
Affiliation(s)
- Lei Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chen Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-rong Song
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Li Tian
- Department of Cerebral Functional Therapy, Tianjin Anding Hospital (Tianjin Mental Health Center), Tianjin, China
| | - Zhi-yi Qu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Collins AR, Cheung J, Croarkin PE, Kolla BP, Kung S. Effects of transcranial magnetic stimulation on sleep quality and mood in patients with major depressive disorder. J Clin Sleep Med 2021; 18:1297-1305. [PMID: 34931606 PMCID: PMC9059593 DOI: 10.5664/jcsm.9846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES It is unknown whether sleep quality improvements after repetitive transcranial magnetic stimulation (rTMS) are inherent to the intervention or related to improvements in depressive symptoms. This retrospective study examined sleep quality in patients with major depressive disorder (MDD) before and after treatment with rTMS, adjusting for age, sex, sedative-hypnotic use, number of rTMS treatments, depression severity and changes in depressive symptoms. METHODS Adults with MDD underwent a six-week course of 10 Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC). Patients completed the Patient Health Questionnaire-9 (PHQ-9) depression rating scale and Pittsburgh Sleep Quality Index (PSQI) before and after treatment. To limit confounding, analysis of depressive symptoms occurred without item 3 (the sleep item) of the PHQ-9. RESULTS Twenty-one patients completed the study, with a mean (± standard deviation) baseline PSQI score of 12.0 (±3.8), compared to 10.5 (±4.3) post-treatment (p = 0.01). The mean baseline PHQ-9 score without item 3 was 17.3 (±3.0), compared to 12.2 (±4.9) post-treatment (p = 0.0001). PSQI and modified PHQ-9 changes were uncorrelated in non-adjusted and adjusted linear regression models, as well as in Spearman's rank-order correlation. CONCLUSIONS Mood and sleep quality improved independently following rTMS treatment, even after adjusting for age, sex, sedative-hypnotic use, number of rTMS treatments and depression severity. These findings suggest that rTMS exerts direct effects on both mood and sleep in patients with MDD.
Collapse
Affiliation(s)
| | - Joseph Cheung
- Mayo Clinic Division of Pulmonary and Sleep Medicine, Jacksonville, FL
| | - Paul E Croarkin
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN
| | - Bhanu Prakash Kolla
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN.,Center for Sleep Medicine, Mayo Clinic, Rochester, MN
| | - Simon Kung
- Mayo Clinic Department of Psychiatry and Psychology, Rochester, MN
| |
Collapse
|
21
|
The Role of Expectation and Beliefs on the Effects of Non-Invasive Brain Stimulation. Brain Sci 2021; 11:brainsci11111526. [PMID: 34827526 PMCID: PMC8615662 DOI: 10.3390/brainsci11111526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) techniques are used in clinical and cognitive neuroscience to induce a mild magnetic or electric field in the brain to modulate behavior and cortical activation. Despite the great body of literature demonstrating promising results, unexpected or even paradoxical outcomes are sometimes observed. This might be due either to technical and methodological issues (e.g., stimulation parameters, stimulated brain area), or to participants’ expectations and beliefs before and during the stimulation sessions. In this narrative review, we present some studies showing that placebo and nocebo effects, associated with positive and negative expectations, respectively, could be present in NIBS trials, both in experimental and in clinical settings. The lack of systematic evaluation of subjective expectations and beliefs before and after stimulation could represent a caveat that overshadows the potential contribution of placebo and nocebo effects in the outcome of NIBS trials.
Collapse
|
22
|
Ma H, Lin J, He J, Lo DHT, Tsang HWH. Effectiveness of TES and rTMS for the Treatment of Insomnia: Meta-Analysis and Meta-Regression of Randomized Sham-Controlled Trials. Front Psychiatry 2021; 12:744475. [PMID: 34744835 PMCID: PMC8569107 DOI: 10.3389/fpsyt.2021.744475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: Transcranial electric stimulation (TES) and repetitive transcranial magnetic stimulation (rTMS) have experienced significant development in treating insomnia. This review aims to examine the effectiveness of randomized sham-controlled trials of TES and rTMS in improving insomnia and examine potential moderators associated with the effect of the treatment. Methods: Nine electronic databases were searched for studies comparing the effects of TES/rTMS with sham group on insomnia from the inception of these databases to June 25, 2021, namely, Medline, Embase, PsycINFO, CINAHL, Cochrane Library, Web of Science, PubMed, ProQuest Dissertation and Thesis, and CNKI. Meta-analyses were conducted to examine the effect of TES and rTMS in treating insomnia. Univariate meta-regression was performed to explore potential treatment moderators that may influence the pooled results. Risk of bias was assessed by using the Cochrane Risk of Bias Tool. Results: A total of 16 TES studies and 27 rTMS studies were included in this review. The pooled results indicated that there was no significant difference between the TES group and the sham group in improving objective measures of sleep. rTMS was superior to its sham group in improving sleep efficiency, total sleep time, sleep onset latency, wake up after sleep onset, and number of awakenings (all p < 0.05). Both TES and rTMS were superior to their sham counterparts in improving sleep quality as measured by the Pittsburgh Sleep Quality Index at post-intervention. The weighted mean difference for TES and rTMS were -1.17 (95% CI: -1.98, -0.36) and -4.08 (95% CI: -4.86, -3.30), respectively. Gender, total treatment sessions, number of pulses per session, and length of treatment per session were associated with rTMS efficacy. No significant relationship was observed between TES efficacy and the stimulation parameters. Conclusions: It seems that TES and rTMS have a chance to play a decisive role in the therapy of insomnia. Possible dose-dependent and gender difference effects of rTMS are suggested.
Collapse
Affiliation(s)
- Haixia Ma
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Jingxia Lin
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Jiali He
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Dilys Hoi Ting Lo
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Hector W. H. Tsang
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| |
Collapse
|
23
|
Um YH, Wang SM, Kang DW, Kim NY, Lim HK. Impact of transdermal trigeminal electrical neuromodulation on subjective and objective sleep parameters in patients with insomnia: a pilot study. Sleep Breath 2021; 26:865-870. [PMID: 34383274 DOI: 10.1007/s11325-021-02459-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Transcutaneous trigeminal electrical neuromodulation (TTEN) is a new treatment modality that has a potential to improve sleep through the suppression of noradrenergic activity. This study aimed to explore the changes of subjective and objective sleep parameters after 4-weeks of daily session of transcutaneous trigeminal electrical neuromodulation in a group of patients with insomnia. METHODS In a group of patients with insomnia, TTEN targeting the ophthalmic division of the trigeminal nerve was utilized to test the effects of transcutaneous trigeminal electrical neuromodulation. Patients went through daily 20-min sessions of TTEN for 4 weeks. Polysomnography parameters, Pittsburgh sleep quality index, insomnia severity index, and Epworth sleepiness scale were obtained pre- and post-intervention. Changes in these parameters were compared and analyzed. RESULTS Among 13 patients with insomnia there was a statistically significant reduction in Pittsburgh sleep quality index, insomnia severity index, and Epworth sleepiness scale scores after 4-week daily sessions of TTEN. There were no differences in polysomnography parameters pre- and post-intervention. CONCLUSION This is the first study to demonstrate the effects of TTEN in a group of insomnia patients. TTEN may improve subjective parameters in patients with insomnia. Further replication studies are needed to support this finding. TRIAL REGISTRATION The data presented in the study are from a study exploring the effect of TTEN on insomnia ( www.clinicaltrials.gov , registration number: NCT04838067, date of registration: April 8, 2021, "retrospectively registered").
Collapse
Affiliation(s)
- Yoo Hyun Um
- Department of Psychiatry, St.Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nak-Young Kim
- Department of Psychiatry, Keyo Hospital, Keyo Medical Foundation, Uiwang, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Oroz R, Kung S, Croarkin PE, Cheung J. Transcranial magnetic stimulation therapeutic applications on sleep and insomnia: a review. SLEEP SCIENCE AND PRACTICE 2021. [DOI: 10.1186/s41606-020-00057-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractRepetitive transcranial magnetic stimulation (rTMS) is a neuromodulatory technique approved by the US Food and Drug Administration for use in treatment-resistant major depressive disorder. It works by generating localized magnetic fields that create depolarizing electrical currents in neurons a few centimeters below the scalp. This localized effect is believed to stimulate neural plasticity, activate compensatory processes, and influence cortical excitability. Additionally, rTMS has been used in a variety of clinical trials for neurological and psychiatric conditions such as anxiety, post-traumatic stress disorder and epilepsy. Beneficial effects in sleep parameters have been documented in these trials, as well as in major depressive disorder, and have led to an interest in using rTMS in the field of sleep medicine for specific disorders such as insomnia, hypersomnia, and restless legs syndrome. It is unknown whether rTMS has intrinsically beneficial properties when applied to primary sleep disorders, or if it only acts on sleep through mood disorders. This narrative review sought to examine available literature regarding the application of rTMS for sleep disorder to identify knowledge gaps and inform future study design. The literature in this area remains scarce, with few randomized clinical trials on rTMS and insomnia. Available studies have found mixed results, with some studies reporting subjective sleep improvement while objective improvement is less consistent. Due to the heterogeneity of results and the variations in rTMS protocols, no definitive conclusions have been reached, signaling the need for further research.
Collapse
|
25
|
The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: A systematic review. Sleep Med Rev 2021; 55:101381. [DOI: 10.1016/j.smrv.2020.101381] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
|
26
|
Chen T, Su H, Jiang H, Li X, Zhong N, Du J, Meng Y, Duan C, Zhang C, Xiao K, Xu D, Song W, Zhao M. Cognitive and emotional predictors of real versus sham repetitive transcranial magnetic stimulation treatment response in methamphetamine use disorder. J Psychiatr Res 2020; 126:73-80. [PMID: 32422456 DOI: 10.1016/j.jpsychires.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) can effectively reduce cravings in methamphetamine use disorder (MUD). However, a considerable group still fails to respond. Cognitive and emotional disturbance, as well as impulsive features, are widespread in patients with MUD and might mediate the treatment response of rTMS. The purpose of this study is to figure out whether these variables can help predicting patients' responses to rTMS treatment. METHODS Ninety-seven patients with severe MUD and thirty-one gender- and age-matched healthy subjects were included. Patients were randomized to receive 20 sessions of real or sham rTMS. Intermittent theta burst protocols (iTBS) or sham iTBS were applied every weekday over the DLPFC for 20 daily sessions. Both groups received regular treatment. Craving induced by drug-related cue was measured before and after stimulation. Cognition was evaluated by using the CogState Battery. Baseline characteristics were collected through the Addiction Severity Index, Patient Health Questionnaire-9, General Anxiety Disorder Scale-7, and Barrett Impulsivity Scale-11. RESULTS Results showed that patients with MUD have worse spatial working memory, problem-solving ability, as well as depression and anxiety symptoms compared with healthy controls. Cognition and emotion differed between responders (craving decrease ≥60%) and non-responders in real rTMS group but not in the sham group. Better cognitive and emotional functions means that patients have higher possibility for better response to real rTMS treatment. CONCLUSIONS This study suggests that cognitive, emotional and impulsive features could be used to predict the prospective treatment responses of rTMS in patients with MUD.
Collapse
Affiliation(s)
- Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Meng
- Yunnan Institute on Drug Dependence, Yunnan, China
| | - Chunmei Duan
- Yunnan Institute on Drug Dependence, Yunnan, China
| | | | - Ke Xiao
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Weidong Song
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
27
|
Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders. Sleep Med 2020; 71:113-121. [DOI: 10.1016/j.sleep.2020.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 01/08/2023]
|
28
|
Li S, Zhou H, Yu Y, Lyu H, Mou T, Shi G, Hu S, Huang M, Hu J, Xu Y. Effect of repetitive transcranial magnetic stimulation on the cognitive impairment induced by sleep deprivation: a randomized trial. Sleep Med 2020; 77:270-278. [PMID: 32843299 DOI: 10.1016/j.sleep.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Currently, an efficient method for improving cognitive impairment due to sleep deprivation (SD) is lacking. The aim of this study is to evaluate the effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) during SD on reversing the adverse effects of SD. METHODS A total of 66 healthy people were randomized into the rTMS group and sham group. Both groups were deprived of sleep for 24 h. During SD, participants were asked to complete several cognitive tasks and underwent mood assessments. Saliva cortisol levels, plasma concentrations of brain-derived neurotrophic factor (BDNF), precursor BDNF (proBDNF), and tissue-type plasminogen activator (tPA), and frontal blood activation were detected before and after SD. The rTMS group received real rTMS stimulation for 2 sessions of 10 Hz rTMS (40 trains of 50 pulses with a 20-second intertrain interval) to the left dorsolateral prefrontal cortex and the sham group received sham stimulation during SD. RESULTS Twenty-four hours of SD induced a reduced accuracy in the n-back task, increases in both anxiety and depression, increased cortisol levels, decreased frontal blood activation and decreased BDNF levels in healthy people. Notably, rTMS improved the hyperactivity of the hypothalamic-pituitary-adrenal axis and decreased frontal blood activation induced by SD, and reduced the consumption of plasma proBDNF. CONCLUSIONS Twenty-four hours of SD induced a cognitive impairment. The administration of high-frequency rTMS during sleep deprivation exerted positive effects on HPA axis and frontal activation and might help alleviate cognitive impairment in the long term.
Collapse
Affiliation(s)
- Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Hetong Zhou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Yueran Yu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hailong Lyu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Gongde Shi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jianbo Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.
| |
Collapse
|
29
|
Sun N, He Y, Wang Z, Zou W, Liu X. The effect of repetitive transcranial magnetic stimulation for insomnia: a systematic review and meta-analysis. Sleep Med 2020; 77:226-237. [PMID: 32830052 DOI: 10.1016/j.sleep.2020.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) might be a promising technique in treating insomnia. A comprehensive meta-analysis of the available literature is conducted to offer evidence. OBJECTIVE To evaluate the efficacy and safety of rTMS for insomnia, either as monotherapy or as a complementary strategy. METHODS CENTRAL, PubMed, EMBASE, PsycINFO, CINAHL, PEDro, CBM, CNKI, WANFANG, and VIP were searched from earliest record to August 2019. Randomized control trials (RCTs) published in English and Chinese examining effects of rTMS on patients with insomnia were included. Two authors independently completed the article selection, data extraction and rating. Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. The RevMan software was used for meta-analysis. The quality of the evidence was assessed by Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS A total of 36 trials from 28 eligible studies were included, involving a total of 2357 adult participants (mean age, 48.80 years; 45.33% males). Compared with sham rTMS, rTMS was associated with improved PSQI total score (SMD -2.31, 95% CI -2.95 to -1.66; Z = 7.01, P < 0.00001) and scores of seven subscales. Compared to other treatment, rTMS as an adjunct to other treatment was associated with improved PSQI total score (SMD -1.44, 95% CI -2.00 to -0.88; Z = 5.01, P < 0.00001), and may have effects on scores of seven subscales. Compared with other treatment, rTMS was associated with improved Pittsburgh sleep quality index (PSQI) total score (SMD -0.63, 95% CI -1.22 to -0.04; Z = 2.08, P = 0.04), and may have a better score in sleep latency, sleep disturbance and hypnotic using of seven subscales. In the three pair of comparisons, the results for polysomnography (PSG) outcomes were varied. In general, rTMS may improve sleep quality through increasing slow wave and rapid eye movement (REM) sleep. The rTMS group was more prone to headache than the sham or blank control group (RR 1.71, 95% CI 1.03 to 2.85; Z = 2.07, P = 0.04). No severe adverse events were reported. Reporting biases and low and very low grade of some evidences should be considered when interpreting the results of this meta-analysis. CONCLUSIONS Our findings indicate that rTMS may be a safe and effective option for insomnia. Further international, multicenter, high-quality RCTs with more objective, quality of life related and follow-up assessments are needed.
Collapse
Affiliation(s)
- Nianyi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China
| | - Zhiqiang Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China
| | - Wenchen Zou
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|