1
|
Kang DY, Kim HC. Functional relation of agouti signaling proteins (ASIPs) to pigmentation and color change in the starry flounder, Platichthys stellatus. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111524. [PMID: 37981006 DOI: 10.1016/j.cbpa.2023.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 11/21/2023]
Abstract
We investigated the involvement of agouti-signaling proteins (ASIPs) in morphological pigmentation and physiological color change in flatfishes. We isolated ASIP1 and 2 mRNAs from the skin of starry flounder (Platichthys stellatus), and compared their amino acid (aa) structures to those of other animals. Then, we examined the mRNA expression levels of two ASIPs (Sf-ASIPs) in the pigmented ocular body and in the unpigmented blind body, as well as in the ordinary skin and in albino skin, in flatfishes. To investigate the role of Sf-ASIPs in physiological color change (color camouflage), we compared the expression of the two genes in two background colors (dark-green and white). Sf-ASIP1 cDNA had a 375-bp open reading frame (ORF) that encoded a protein consisting of 125 aa residues, and Sf-ASIP2 cDNA had a 402-bp ORF that encoded a protein consisting of 132 aa residues. RT-PCR revealed that the strongest Sf-ASIP1 and Sf-ASIP2 expression levels were observed in the eye and blind-skin, respectively. In Sf-ASIP1, the gene expression did not differ between the ocular-side skin and blind-side skin, nor between ordinary skin and abnormal skin of the fish. However, in Sf-ASIP2, the expression level was significantly higher in blind-side skin, compared to ocular-side skin, suggesting that the ASIP2 gene is related to the countershading body pigment pattern of the fish. In addition, the Sf-ASIP2 gene expression level was lower in the pigmented spot regions than in the unpigmented spot regions of the malpigmented pseudo-albino skins on the ocular side, implying that ASIP2 is responsible for the ocular-side pseudo-albino. Additionally, ASIP2 gene expression in the blind-side skin of ordinary fish was enhanced by a white tank, implying that a bright background color could inhibit hypermelanosis in the blind-side skin of cultured flounder by increasing the activity of the Sf-ASIP2 gene. However, we did not find any relationship of ASIPs with camouflage color changes. In conclusion, the ASIP2 gene is related to the morphological pigmentation (countershading and malpigmentation) of the skin in starry flounder, but not with physiological color changes (color camouflage) in the ocular-side skin.
Collapse
Affiliation(s)
- Duk-Young Kang
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, 707 Eulwang-dong, Jung-gu, Incheon, Republic of Korea.
| | - Hyo-Chan Kim
- KMS & MC, Molecular research, Haneulbyeolbit-ro, YoungJong-1 dong, Joong-gu, Incheon, Republic of Korea
| |
Collapse
|
2
|
Kalds P, Zhou S, Gao Y, Cai B, Huang S, Chen Y, Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet Sel Evol 2022; 54:61. [PMID: 36085023 PMCID: PMC9463822 DOI: 10.1186/s12711-022-00753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After domestication, the evolution of phenotypically-varied sheep breeds has generated rich biodiversity. This wide phenotypic variation arises as a result of hidden genomic changes that range from a single nucleotide to several thousands of nucleotides. Thus, it is of interest and significance to reveal and understand the genomic changes underlying the phenotypic variation of sheep breeds in order to drive selection towards economically important traits. REVIEW Various traits contribute to the emergence of variation in sheep phenotypic characteristics, including coat color, horns, tail, wool, ears, udder, vertebrae, among others. The genes that determine most of these phenotypic traits have been investigated, which has generated knowledge regarding the genetic determinism of several agriculturally-relevant traits in sheep. In this review, we discuss the genomic knowledge that has emerged in the past few decades regarding the phenotypic traits in sheep, and our ultimate aim is to encourage its practical application in sheep breeding. In addition, in order to expand the current understanding of the sheep genome, we shed light on research gaps that require further investigation. CONCLUSIONS Although significant research efforts have been conducted in the past few decades, several aspects of the sheep genome remain unexplored. For the full utilization of the current knowledge of the sheep genome, a wide practical application is still required in order to boost sheep productive performance and contribute to the generation of improved sheep breeds. The accumulated knowledge on the sheep genome will help advance and strengthen sheep breeding programs to face future challenges in the sector, such as climate change, global human population growth, and the increasing demand for products of animal origin.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511 Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| |
Collapse
|
3
|
Madelaine R, Ngo KJ, Skariah G, Mourrain P. Genetic deciphering of the antagonistic activities of the melanin-concentrating hormone and melanocortin pathways in skin pigmentation. PLoS Genet 2020; 16:e1009244. [PMID: 33301440 PMCID: PMC7755275 DOI: 10.1371/journal.pgen.1009244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/22/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023] Open
Abstract
The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte–stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers. Melanocytes produce melanin, a natural skin pigment, for body coloration which helps to protect and camouflage an organism and to attract mates. Melanocytes are ubiquitous pigment cells in vertebrates and the genes underlying their development are well conserved, making fishes that possess the ability to modify their pigmentation, biologically relevant and successful models for human skin disorders. Many human skin diseases including albinism, vitiligo, and melanoma are derived from mutations in conserved pigmentation genes. However, much of the conserved molecular mechanisms behind these diseases and human pigmentation remain unknown. For instance, melanin concentrating hormone (MCH) was originally identified as a peptide that when injected, could make fish paler by promoting melanin aggregation but no mutants demonstrating an endogenous function for MCH in pigmentation have been reported. Here, we use zebrafish mutants of MCH and the MCH receptor to determine their specific genetic function in pigmentation. Additionally, we demonstrate that MCH has an antagonistic pigmentation function to the melanocortin system, where MCH expression promotes lighter pigmentation and melanocortin activity promotes darkening. Thus, we find that the balance between the MCH and melanocortin system activities are likely required for skin pigmentation and dysregulation of these pathways could underlie adverse human skin conditions.
Collapse
Affiliation(s)
- Romain Madelaine
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Keri J. Ngo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Gemini Skariah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- INSERM 1024, Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
4
|
Zsolnai A, Egerszegi I, Rózsa L, Anton I. Genetic status of lowland-type Racka sheep colour variants. Animal 2020; 15:100080. [PMID: 33573966 DOI: 10.1016/j.animal.2020.100080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
Lowland-type Racka is an indigenous sheep breed that beside Hungarian Grey cattle and Mangalitza pig is one of the national symbols of Hungary. However, the genetic description of Racka sheep has not yet been conducted based on whole-genome screening. By using the Geneseek Ovine SNP50 BeadChip, we have sampled the genome of 126 Black and 128 White Racka sheep. For comparative purposes, we used 134 Hungarian Merinos and further 3345 animals from 81 different breeds have been included from an available database. Performance of a multidimensional scaling plot showed that White and Black Rackas represent well-separated groups among other sheep breeds and clustered separately from each other. However, the number and total length of Runs of Homozygosity was similar to other sheep breeds, except Soay. The inbreeding coefficients (method-of-moments relatedness F coefficient) of Black and White Racka were 0.147 and 0.133, respectively. Based on multidimensional scaling and admixture analyses and on comparisons of genetic distances of the investigated 84 populations, we suggest considering the colour variants of Racka as genetically differentiated breeds. The most differentiated markers between Black and White Racka highlight several candidate genes including 5-Hydroxytryptamine Receptor 5A, Insulin Induced Gene 1, Cyclin Dependent Kinase 5 and Melanocortin 1 Receptor. The results of this study help the recognition of Racka as a unique genetic resource among sheep and pave the way of application of genome screens to guide the resolution of questions arising among breeders.
Collapse
Affiliation(s)
- A Zsolnai
- NAIK-Research Institute for Animal Breeding, Nutrition and Food Science, Herceghalom, Hungary; National Centre for Biodivertsity and Gene Conservation, Gödöllő, Hungary.
| | | | - L Rózsa
- NAIK-Research Institute for Animal Breeding, Nutrition and Food Science, Herceghalom, Hungary
| | - I Anton
- NAIK-Research Institute for Animal Breeding, Nutrition and Food Science, Herceghalom, Hungary
| |
Collapse
|
5
|
Reiner G, Weber T, Nietfeld F, Fischer D, Wurmser C, Fries R, Willems H. A genome-wide scan study identifies a single nucleotide substitution in MC1R gene associated with white coat colour in fallow deer (Dama dama). BMC Genet 2020; 21:126. [PMID: 33213385 PMCID: PMC7678172 DOI: 10.1186/s12863-020-00950-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background The coat colour of fallow deer is highly variable and even white animals can regularly be observed in game farming and in the wild. Affected animals do not show complete albinism but rather some residual pigmentation resembling a very pale beige dilution of coat colour. The eyes and claws of the animals are pigmented. To facilitate the conservation and management of such animals, it would be helpful to know the responsible gene and causative variant. We collected 102 samples from 22 white animals and from 80 animals with wildtype coat colour. The samples came from 12 different wild flocks or game conservations located in different regions of Germany, at the border to Luxembourg and in Poland. The genomes of one white hind and her brown calf were sequenced. Results Based on a list of colour genes of the International Federation of Pigment Cell Societies (http://www.ifpcs.org/albinism/), a variant in the MC1R gene (NM_174108.2:c.143 T > C) resulting in an amino acid exchange from leucine to proline at position 48 of the MC1R receptor protein (NP_776533.1:p.L48P) was identified as a likely cause of coat colour dilution. A gene test revealed that all animals of the white phenotype were of genotype CC whereas all pigmented animals were of genotype TT or TC. The study showed that 14% of the pigmented (brown or dark pigmented) animals carried the white allele. Conclusions A genome-wide scan study led to a molecular test to determine the coat colour of fallow deer. Identification of the MC1R gene provides a deeper insight into the mechanism of dilution. The gene marker is now available for the conservation of white fallow deer in wild and farmed animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00950-3.
Collapse
Affiliation(s)
- Gerald Reiner
- Department for Veterinary Clinical Science, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany. .,Arbeitskreis Wildbiologie e.V., Justus-Liebig-University, Giessen, Germany.
| | - Tim Weber
- Department for Veterinary Clinical Science, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany
| | - Florian Nietfeld
- Department for Veterinary Clinical Science, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany
| | - Dominik Fischer
- Arbeitskreis Wildbiologie e.V., Justus-Liebig-University, Giessen, Germany
| | - Christine Wurmser
- Department of Animal Breeding, Technical University of Munich, Liesel-Beckmann-Strasse 1, D-85354, Freising-Weihenstephan, Germany
| | - Ruedi Fries
- Department of Animal Breeding, Technical University of Munich, Liesel-Beckmann-Strasse 1, D-85354, Freising-Weihenstephan, Germany
| | - Hermann Willems
- Department for Veterinary Clinical Science, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany
| |
Collapse
|
6
|
Gebreselassie G, Liang B, Berihulay H, Islam R, Abied A, Jiang L, Zhao Z, Ma Y. Genomic mapping identifies two genetic variants in the MC1R gene for coat colour variation in Chinese Tan sheep. PLoS One 2020; 15:e0235426. [PMID: 32817695 PMCID: PMC7444486 DOI: 10.1371/journal.pone.0235426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
Coat colour is one of the most important economic traits of sheep and is mainly used for breed identification and characterization. This trait is determined by the biochemical function, availability and distribution of phaeomelanin and eumelanin pigments. In our study, we conducted a genome-wide association study to identify candidate genes and genetic variants associated with coat colour in 75 Chinese Tan sheep using the ovine 600K SNP BeadChip. Accordingly, we identified two significant SNPs (rs409651063 at 14.232 Mb and rs408511664 at 14.228 Mb) associated with coat colour in the MC1R gene on chromosome 14 with −log10(P) = 2.47E-14 and 1.00E-13, respectively. The consequence of rs409651063 was a missense variant (g.14231948 G>A) that caused an amino acid change (Asp105Asn); however, the second SNP (rs408511664) was a synonymous substitution and is an upstream variant (g.14228343G>A). Moreover, our PCR analysis revealed that the genotype of white sheep was exclusively homozygous (GG), whereas the genotypes of black-head sheep were mainly heterozygous (GA). Interestingly, allele-specific expression analysis (using the missense variant for the skin cDNA samples from black-head sheep) revealed that only the G allele was expressed in the skin covered with white hair, while both the G and A alleles were expressed in the skin covered with black hair. This finding indicated that the missense mutation that we identified is probably responsible for white coat colour in Tan sheep. Furthermore, qPCR analysis of MC1R mRNA level in the skin samples was significantly higher in black-head than white sheep and very significantly higher in GA than GG individuals. Taken together, these results help to elucidate the genetic mechanism underlying coat colour variation in Chinese indigenous sheep.
Collapse
Affiliation(s)
- Gebremedhin Gebreselassie
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Agricultural Biotechnology, Biotechnology Center, Ethiopian Biotechnology Institute, Ministry of Innovation and Technology, Addis Ababa, Ethiopia
| | - Benmeng Liang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haile Berihulay
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Rabul Islam
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Adam Abied
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lin Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhengwei Zhao
- Institute of animal science, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia, Yinchuan, China
- * E-mail: (YM); (ZZ)
| | - Yuehui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * E-mail: (YM); (ZZ)
| |
Collapse
|
7
|
A genome-wide scan study identifies a single nucleotide substitution in the tyrosinase gene associated with white coat colour in a red deer (Cervus elaphus) population. BMC Genet 2020; 21:14. [PMID: 32041521 PMCID: PMC7011275 DOI: 10.1186/s12863-020-0814-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background Red deer with very pale coat colour are observed sporadically. In the red deer (Cervus elaphus) population of Reinhardswald in Germany, about 5% of animals have a white coat colour that is not associated with albinism. In order to facilitate the conservation of the animals, it should be determined whether and to what extent brown animals carry the white gene. For this purpose, samples of one white hind and her brown calf were available for whole genome sequencing to identify the single nucleotide polymorphism(s) responsible for the white phenotype. Subsequently, samples from 194 brown and 11 white animals were genotyped. Results Based on a list of colour genes of the International Federation of Pigment Cell Societies, a non-synonymous mutation with exchange of a glycine residue at position 291 of the tyrosinase protein by arginine was identified as the cause of dilution of the coat colour. A gene test led to exactly matching genotypes in all examined animals. The study showed that 14% of the brown animals carry the white gene. This provides a simple and reliable way of conservation for the white animals. However, results could not be transferred to another, unrelated red deer population with white animals. Although no brown animals with a white tyrosinase genotype were detected, the cause for the white colouring in this population was different. Conclusions A gene test for the conservation of white red deer is available for the population of the Reinhardswald. While mutations in the tyrosinase are commonly associated with oculocutaneous albinism type 1, the amino acid exchange at position 291 was found to be associated with coat colour dilution in Cervus elaphus.
Collapse
|
8
|
Gebreselassie G, Berihulay H, Jiang L, Ma Y. Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep ( Ovies aries). Animals (Basel) 2019; 10:E33. [PMID: 31877963 PMCID: PMC7022721 DOI: 10.3390/ani10010033] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Sheep (Ovis aries) is one of the most economically, culturally, and socially important domestic animals. They are reared primarily for meat, milk, wool, and fur production. Sheep were reared using natural selection for a long period of time to offer these traits. In fact, this production system has been slowing the productivity and production potential of the sheep. To improve production efficiency and productivity of this animal through genetic improvement technologies, understanding the genetic background of traits such as body growth, weight, carcass quality, fat percent, fertility, milk yield, wool quality, horn type, and coat color is essential. With the development and utilization of animal genotyping technologies and gene identification methods, many functional genes and genetic variants associated with economically important phenotypic traits have been identified and annotated. This is useful and presented an opportunity to increase the pace of animal genetic gain. Quantitative trait loci and genome wide association study have been playing an important role in identifying candidate genes and animal characterization. This review provides comprehensive information on the identified genomic regions and candidate genes associated with production and reproduction traits, and gene function in sheep.
Collapse
Affiliation(s)
- Gebremedhin Gebreselassie
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (G.G.); (H.B.); (L.J.)
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Department of Agricultural Biotechnology, Biotechnology Center, Ethiopian Biotechnology Institute, Ministry of Innovation and Technology, Addis Ababa 1000, Ethiopia
| | - Haile Berihulay
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (G.G.); (H.B.); (L.J.)
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lin Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (G.G.); (H.B.); (L.J.)
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuehui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (G.G.); (H.B.); (L.J.)
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
9
|
Si Y, Zhang L, Zhang L, Zhao F, Wang Q, Qian G, Yin S. Transcriptome analysis provides insight into the role of the melanin pathway in two differently pigmented strains of the turtle Pelodiscus sinensis. Dev Genes Evol 2019; 229:10.1007/s00427-019-00639-3. [PMID: 31712893 DOI: 10.1007/s00427-019-00639-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
Abstract
Pelodiscus sinensis is the most common turtle species raised in East and Southeast Asia. The Japanese strain and the Qingxi black strain are important aquatic breeds of P. sinensis in China with unique characteristics in terms of production performance and appearance, including skin color. In this study, melanin content measure and histological analysis on skin samples of these two strains were carried out to compare their color characteristics. The results showed that Qingxi black turtles clearly have a greater ability to deposit melanin than the Japanese strain especially in the abdomen. Then, de novo transcriptome assembly and differential expression profiling analyses on the ventral skin from the two strains were performed to identify the genes responsible for the differences in skin color using the Illumina RNA-Seq system with three biological replicates. A total of 19,331 annotated unigenes were found by aligning to the reference genome of P. sinensis using TopHat v2.0.12. Differential expression analysis revealed that 670 genes were expressed differently, including 185 upregulated genes and 485 downregulated genes in Qingxi black strain using the DESeq R package (|log2FoldChange| ≥ 1, padj < 0.05). Sixteen differentially expressed genes (DEGs), which were randomly selected, were confirmed by quantitative real-time PCR (qRT-PCR). GO and KEGG analyses revealed four DEGs (agouti signaling protein, frizzled family receptor 1, phospholipase C, and protein kinase C) were related to melanogenesis pathway. Gene expression levels of the four DEGs as well as three genes from the tyrosinase gene family were measured by qRT-PCR. The results indicated that agouti signaling protein, tyrosinase-related protein, and dopachrome tautomerase could be the main genes responsible for the difference in abdominal skin color between the two turtle strains. This study provided valuable information for further analysis of the melanogenesis mechanisms in different varieties of P. sinensis.
Collapse
Affiliation(s)
- Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
| | - Lili Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Linmeng Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Feng Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Qian Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Shangjun Yin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
| |
Collapse
|
10
|
Coetzer WG, Grobler JP. Genetic variation among different springbok (Antidorcas marsupialis) colour variants. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Rochus CM, Westberg Sunesson K, Jonas E, Mikko S, Johansson AM. Mutations in ASIP and MC1R: dominant black and recessive black alleles segregate in native Swedish sheep populations. Anim Genet 2019; 50:712-717. [PMID: 31475378 DOI: 10.1111/age.12837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 01/03/2023]
Abstract
By studying genes associated with coat colour, we can understand the role of these genes in pigmentation but also gain insight into selection history. North European short-tailed sheep, including Swedish breeds, have variation in their coat colour, making them good models to expand current knowledge of mutations associated with coat colour in sheep. We studied ASIP and MC1R, two genes with known roles in pigmentation, and their association with black coat colour. We did this by sequencing the coding regions of ASIP in 149 animals and MC1R in 129 animals from seven native Swedish sheep breeds in individuals with black, white or grey fleece. Previously known mutations in ASIP [recessive black allele: g.100_105del (D5 ) and/or g.5172T>A] were associated with black coat colour in Klövsjö and Roslag sheep breeds and mutations in both ASIP and MC1R (dominant black allele: c.218T>A and/or c.361G>A) were associated with black coat colour in Swedish Finewool. In Gotland, Gute, Värmland and Helsinge sheep breeds, coat colour inheritance was more complex: only 11 of 16 individuals with black fleece had genotypes that could explain their black colour. These breeds have grey individuals in their populations, and grey is believed to be a result of mutations and allelic copy number variation within the ASIP duplication, which could be a possible explanation for the lack of a clear inheritance pattern in these breeds. Finally, we found a novel missense mutation in MC1R (c.452G>A) in Gotland, Gute and Värmland sheep and evidence of a duplication of MC1R in Gotland sheep.
Collapse
Affiliation(s)
- C M Rochus
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden.,UFR Génétique, Élevage et Reproduction, Sciences de la Vie et Santé, AgroParisTech, Université Paris Saclay, 16 rue Claude Bernard, F-75231, Paris Cedex 05, France.,Génétique Physiologie Systèmes d'Elevage, Animal Genetics Division, INRA, 24 chemin de Borde-Rouge-Auzeville Tolosane, F-31326 Castanet-Tolosan, France
| | - K Westberg Sunesson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden
| | - E Jonas
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden
| | - S Mikko
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden
| | - A M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7923, SE-75007, Uppsala, Sweden
| |
Collapse
|
12
|
Amin M, Masoudi AA, Amirinia C, Emrani H. Molecular Study of the Extension Locus in Association with Coat Colour Variation of Iranian Indigenous Sheep Breeds. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Cal L, Suarez-Bregua P, Cerdá-Reverter JM, Braasch I, Rotllant J. Fish pigmentation and the melanocortin system. Comp Biochem Physiol A Mol Integr Physiol 2017; 211:26-33. [DOI: 10.1016/j.cbpa.2017.06.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 01/10/2023]
|
14
|
Hepp D, Gonçalves GL, Moreira GRP, de Freitas TRO. Epistatic Interaction of the Melanocortin 1 Receptor and Agouti Signaling Protein Genes Modulates Wool Color in the Brazilian Creole Sheep. J Hered 2016; 107:544-52. [PMID: 27288530 DOI: 10.1093/jhered/esw037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/29/2016] [Indexed: 02/01/2023] Open
Abstract
Different pigmentation genes have been associated with color diversity in domestic animal species. The melanocortin 1 receptor (MC1R), agouti signaling protein (ASIP), tyrosinase-related protein 1 (TYRP1), and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) genes are candidate genes responsible for variation in wool color among breeds of sheep. Although the influence of these genes has been described in some breeds, in many others the effect of interactions among genes underlying wool color has not been investigated. The Brazilian Creole sheep is a local breed with a wide variety of wool color, ranging from black to white with several intermediate hues. We analyzed in this study the influence of the genes MC1R, ASIP, TYRP1, and KIT on the control of wool color in this breed. A total of 410 samples were analyzed, including 148 white and 262 colored individuals. The MC1R and ASIP polymorphisms were significantly associated with the segregation of either white or colored wool. The dominant MC1R allele (E(D) p.M73K and p.D121N) was present only in colored animals. All white individuals were homozygous for the MC1R recessive allele (E(+)) and carriers of the duplicated copy of ASIP A gene expression assay showed that only the carrier of the duplicated copy of ASIP produces increased levels in skin, not detectable in the single homozygous copy. These results demonstrate that the epistatic interaction of the genotypes in the MC1R and ASIP gene is responsible for the striking color variation in the Creole breed.
Collapse
Affiliation(s)
- Diego Hepp
- From the Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp, Gonçalves, and de Freitas); Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile (Gonçalves); Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Moreira); and Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp).
| | - Gislene Lopes Gonçalves
- From the Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp, Gonçalves, and de Freitas); Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile (Gonçalves); Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Moreira); and Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp)
| | - Gilson Rudinei Pires Moreira
- From the Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp, Gonçalves, and de Freitas); Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile (Gonçalves); Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Moreira); and Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp)
| | - Thales Renato Ochotorena de Freitas
- From the Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp, Gonçalves, and de Freitas); Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile (Gonçalves); Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Moreira); and Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Hepp)
| |
Collapse
|