1
|
Assessment of Paratuberculosis Vaccination Effect on In Vitro Formation of Neutrophil Extracellular Traps in a Sheep Model. Vaccines (Basel) 2022; 10:vaccines10091403. [PMID: 36146481 PMCID: PMC9501304 DOI: 10.3390/vaccines10091403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Vaccination of domestic ruminants against paratuberculosis has been related to homologous and heterologous protective effects that have been attributed to the establishment of a trained immune response. Recent evidence suggests that neutrophils could play a role in its development. Therefore, we propose an in vitro model for the study of the effect of paratuberculosis vaccination on the release of neutrophil extracellular traps (NETs) in sheep. Ovine neutrophils were obtained from non-vaccinated (n = 5) and vaccinated sheep (n = 5) at different times post-vaccination and infected in vitro with Mycobacterium avium subsp. paratuberculosis (Map), Staphylococcus aureus (SA), and Escherichia coli (EC). NETs release was quantified by fluorimetry and visualized by immunofluorescence microscopy. Typical NETs components (DNA, neutrophil elastase, and myeloperoxidase) were visualized extracellularly in all infected neutrophils; however, no significant percentage of extracellular DNA was detected in Map-infected neutrophils compared with SA- and EC-infected. In addition, no significant effect was detected in relation to paratuberculosis vaccination. Further assays to study NETs release in ovine neutrophils are needed. Preliminary results suggest no implication of NETs formation in the early immune response after vaccination, although other neutrophil functions should be evaluated.
Collapse
|
2
|
Paratuberculosis: The Hidden Killer of Small Ruminants. Animals (Basel) 2021; 12:ani12010012. [PMID: 35011118 PMCID: PMC8749836 DOI: 10.3390/ani12010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Paratuberculosis is a chronic disease of ruminants and many non-ruminant animals caused by the bacterium Mycobacterium avium subsp. paratuberculosis. Affected animals show diarrhoea, loss of weight, and decreased production performance with consequent economic losses. This bacterium has been detected in some humans suffering from a chronic intestinal disease known as Crohn’s disease (CD) and, therefore, some scientists believe that CD is the human form of paratuberculosis. The disease in small ruminants has been reported in all continents, with goats being more susceptible than sheep. The clinical signs of the disease in goats are not so obvious as often do not show signs of diarrhoea, and the animal may die before being finally diagnosed. In Africa and many developing countries, paratuberculosis is described as a “neglected disease” particularly in small ruminants, which play a vital role in the livelihood of poor communities. This overview attempts to highlight the current research and gaps on this disease in small ruminants to draw more attention for further studies on diagnosis, prevention and control. Abstract Paratuberculosis (PTB) is a contagious and chronic enteric disease of ruminants and many non-ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), and is characterised by diarrhoea and progressive emaciation with consequent serious economic losses due to death, early culling, and reduced productivity. In addition, indirect economic losses may arise from trade restrictions. Besides being a production limiting disease, PTB is a potential zoonosis; MAP has been isolated from Crohn’s disease patients and was associated with other human diseases, such as rheumatoid arthritis, Hashimoto’s thyroiditis, Type 1 diabetes, and multiple sclerosis. Paratuberculosis in sheep and goats may be globally distributed though information on the prevalence and economic impact in many developing countries seem to be scanty. Goats are more susceptible to infection than sheep and both species are likely to develop the clinical disease. Ingestion of feed and water contaminated with faeces of MAP-positive animals is the common route of infection, which then spreads horizontally and vertically. In African countries, PTB has been described as a “neglected disease”, and in small ruminants, which support the livelihood of people in rural areas and poor communities, the disease was rarely reported. Prevention and control of small ruminants’ PTB is difficult because diagnostic assays demonstrate poor sensitivity early in the disease process, in addition to the difficulties in identifying subclinically infected animals. Further studies are needed to provide more insight on molecular epidemiology, transmission, and impact on other animals or humans, socio-economic aspects, prevention and control of small ruminant PTB.
Collapse
|
3
|
Green AC, Plain KM, Eppleston J, Martinez E, Emery D, Dhand NK. Continuity in ovine Johne's disease vaccination practices despite a decline in clinical disease. Aust Vet J 2021; 99:392-394. [PMID: 34080178 DOI: 10.1111/avj.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022]
Abstract
The Gudair® vaccine has been commercially available in Australia for almost two decades for the control of ovine Johne's disease, but concerns have been raised about potential discontinuation of vaccination by producers after a decline in the incidence of clinical disease. An online questionnaire was distributed to Australian sheep producers to identify the proportion of respondents discontinuing the Gudair vaccine and reasons for discontinuation. Results revealed that 88% of sheep producers surveyed have continued to vaccinate their sheep with Gudair, with continuation greater for predominantly Merino sheep flocks. Reasons for discontinuing vaccination stemmed from management, economic or health concerns. These results suggest that Gudair is still widely used by Australian sheep producers and concerns about large-scale discontinuation are unfounded. These findings have implications for ovine Johne's disease control programs in Australia.
Collapse
Affiliation(s)
- A C Green
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia
| | - K M Plain
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia
| | - J Eppleston
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia
| | - E Martinez
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia
| | - D Emery
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia
| | - N K Dhand
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, 2570, Australia
| |
Collapse
|
4
|
Windsor P, Whittington R. Ovine Paratuberculosis Control in Australia Revisited. Animals (Basel) 2020; 10:ani10091623. [PMID: 32927843 PMCID: PMC7552279 DOI: 10.3390/ani10091623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Ovine Johne’s Disease (OJD) is caused by Mycobacterium avium subspecies paratuberculosis (MAP) and is a less serious animal health issue in Australia than it was 10–20 years ago, with abattoir surveillance confirming declining prevalence. Control strategies for paratuberculosis potentially include (i) test and cull programs; (ii) management interventions to reduce faecal–oral transmission; and/or (iii) vaccination to limit and suppress infection, with the decline in OJD concern in Australia mostly attributable to vaccination programs providing effective disease suppression. However, as disease spread has continued, control program extension renewal to encourage the safe and wider use of vaccination, plus address misinformation promulgated by some disaffected producers, is required. As vaccination for OJD has contributed significantly to the welfare of Australian sheep, the livelihoods of producers, and reduced risk of MAP entering the human food chain, it should be more widely adopted globally. Abstract OJD is no longer the serious animal health issue that it was for many Australian rural communities a decade and a half ago. Despite declining OJD prevalence as determined by abattoir surveillance, the disease continues to spread, with OJD extension programs required to continually address the misinformation promulgated by some disaffected producers as new areas have become affected. Improved regional and on-farm biosecurity, including the introduction of a risk-based trading system, may have contributed to improved attitudes to OJD control, although attitudinal differences between OJD endemic areas and where the disease is not well established remain. Declines in on-farm OJD prevalence are almost certainly attributable to the widespread uptake of vaccination programs, although encouraging the ongoing use of vaccination to prevent recrudescence and improved biosecurity when mortalities disappear, remains challenging. Vaccination has provided a robust strategy for managing OJD and contributed significantly to the health of Australian sheep and the lives of producers with affected properties. As vaccination offers a pathway to reduce the risk of MAP infection entering the human food chain from small ruminant products, it should be more widely adopted globally, accompanied by research efforts to improve efficacy and importantly, the safety of vaccination to both operators and livestock.
Collapse
|
5
|
The humoral immune response is essential for successful vaccine protection against paratuberculosis in sheep. BMC Vet Res 2019; 15:223. [PMID: 31266499 PMCID: PMC6604481 DOI: 10.1186/s12917-019-1972-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background The role played by the humoral immune response in animals vaccinated against a mycobacterial disease such as paratuberculosis, is not well understood. Sheep vaccinated against Mycobacterium avium subsp. paratuberculosis (MAP) can still become infected and in some cases succumb to clinical disease. The strength and location of the humoral immune response following vaccination could contribute to the ability of sheep to clear MAP infection. We examined the peripheral antibody response along with the localised humoral response at the site of paratuberculosis infection, the ileum, to better understand how this contributes to MAP infection of sheep following vaccination and exposure. Results Through assessing MAP specific serum IgG1 and IgG levels we show that the timing and strength of the humoral immune response directly relates to prevention of infection following vaccination. Vaccinated sheep that subsequently became infected had significantly reduced levels of MAP specific serum IgG1 early after vaccination. In contrast, vaccinated sheep that did not subsequently become infected had significantly elevated MAP specific serum IgG1 following vaccination. Furthermore, at 12 months post MAP exposure, vaccinated and subsequently uninfected sheep had downregulated expression of genes related to the humoral response in contrast to vaccinated infected sheep where expression levels were upregulated. Conclusions The timing and strength of the humoral immune response following vaccination against paratuberculosis in sheep directly relates to subsequent infection status. An initial strong IgG1 response following vaccination was crucial to prevent infection. Additionally, vaccinated uninfected sheep were able to modulate that response following apparent MAP clearance, unlike vaccinated infected animals where there was apparent dysregulation of the humoral response, which is associated with progression to clinical disease.
Collapse
|
6
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Zancanaro G, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): paratuberculosis. EFSA J 2017; 15:e04960. [PMID: 32625604 PMCID: PMC7010113 DOI: 10.2903/j.efsa.2017.4960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Paratuberculosis has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of paratuberculosis to be listed, Article 9 for the categorisation of paratuberculosis according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to paratuberculosis. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, paratuberculosis can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria in Sections 3, 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (c), (d) and (e) of Article 9(1). The animal species to be listed for paratuberculosis according to Article 8(3) criteria are several species of mammals and birds as susceptible species and some species of the families Bovidae, Cervidae and Leporidae as reservoirs.
Collapse
|
7
|
Mycobacterium avium subsp. paratuberculosis – An Overview of the Publications from 2011 to 2016. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0054-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Lacasta D, Ferrer L, Ramos J, González J, Ortín A, Fthenakis G. Vaccination schedules in small ruminant farms. Vet Microbiol 2015. [DOI: 10.1016/j.vetmic.2015.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Windsor PA, Eppleston J, Dhand NK, Whittington RJ. Effectiveness of Gudair™ vaccine for the control of ovine Johne's disease in flocks vaccinating for at least 5 years. Aust Vet J 2015; 92:263-8. [PMID: 24964836 DOI: 10.1111/avj.12194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Examine the prevalence of shedding of Mycobacterium avium subsp. paratuberculosis (Mptb) at least 5 years after starting vaccination with Gudair™ in flocks of varying initial prevalence of ovine Johne's disease (OJD) and identify risk factors for variation in vaccine efficacy. METHODS Pooled faecal culture (PFC) was conducted for 41 flocks from southern NSW and Victoria to determine estimates of current OJD prevalence. The data were compared to estimates of prevalence at or prior to commencement of vaccination at least 5 years earlier, based on available serological or PFC tests when vaccination commenced. A cross-sectional study was conducted to identify risk factors for differing prevalence levels in 36 of the flocks. RESULTS Historical data enabled classification of 37 flocks as high (13; 35.1%), medium (10; 27.0%) or low (14; 37.8%) estimated initial OJD prevalence. Results of PFC in 2008-09 identified that 81.1% (30/37) of flocks had detectable shedders, with 48.6% (18/37) flocks still classified as medium or high OJD prevalence, including 50% (7/14) of flocks initially classified as low prevalence. Shedding was not detected in 18.9% (7/37) flocks. Flocks with OJD prevalence exceeding 1% at 5 years or more following the commencement of vaccination were associated with reports of sheep straying and introduction of new sheep. CONCLUSION Despite significant declines in estimated OJD prevalence following vaccination for ≥5 years, 81.1% of flocks were shedding Mptb and considered at risk of spreading the disease or suffering recrudescence of losses if vaccination were to cease. Flock managers are advised to persist with vaccination.
Collapse
Affiliation(s)
- P A Windsor
- Faculty of Veterinary Science, University of Sydney, PMB 3, Camden, New South Wales, 2570, Australia.
| | | | | | | |
Collapse
|
10
|
Abstract
Paratuberculosis is a chronic insidious, often serious, disease of the global small ruminant industries, mainly causing losses from mortalities and reduced productivity on-farm, interference in trading and, in Australia, profound socio-economic impacts that have periodically compromised harmony of rural communities. The pathogenesis, diagnosis, impacts and disease management options for ovine and caprine paratuberculosis are reviewed, comparing current controls in the extensive management system for sheep in wool flocks in Australia with the semi-intensive system of dairy flocks/herds in Greece. Improved understanding of the immune and cellular profiles of sheep with varying paratuberculosis outcomes and the recognition of the need for prolonged vaccination and biosecurity is considered of relevance to future control strategies. Paratuberculosis in goats is also of global distribution although the prevalence, economic impact and strategic control options are less well recognized, possibly due to the relatively meagre resources available for goat industry research. Although there have been some recent advances, more work is required on developing control strategies for goats, particularly in dairy situations where there is an important need for validation of improved diagnostic assays and the recognition of the potential impacts for vaccination. For all species, a research priority remains the identification of tests that can detect latent and subclinical infections to enhance removal of future sources of infectious material from flocks/herds and the food chain, plus predict the likely outcomes of animals exposed to the organism at an early age. Improving national paratuberculosis control programs should also be a priority to manage disease risk from trade. The importance of strong leadership and communication, building trust within rural communities confused by the difficulties in managing this insidious disease, reflects the importance of change management considerations for animal health authorities. Although concerns of vaccine efficacy, safety and issues with diagnosis and administration persist, vaccination is increasingly recognized as providing a robust strategy for managing paratuberculosis, having made important contributions to the health of Australian sheep and the lives of producers with affected properties, and offering a mechanism to reduce risk of infection entering the food chain in ovine and caprine products.
Collapse
Affiliation(s)
- P A Windsor
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia.
| |
Collapse
|