1
|
Vlaic BA, Vlaic A, Russo IR, Colli L, Bruford MW, Odagiu A, Orozco-terWengel P. Analysis of Genetic Diversity in Romanian Carpatina Goats Using SNP Genotyping Data. Animals (Basel) 2024; 14:560. [PMID: 38396528 PMCID: PMC10886219 DOI: 10.3390/ani14040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Animal husbandry is one of man's oldest occupations. It began with the domestication of animals and developed continuously, in parallel with the evolution of human society. The selection and improvement of goats in Romania was not a clearly defined objective until around 1980. In recent years, with the increasing economic value given to goats, breeding programs are becoming established. In Romania, a few goat genetic studies using microsatellites and mtDNA have been carried out; however, a systematic characterization of the country's goat genomic resources remains missing. In this study, we analyzed the genetic variability of Carpatina goats from four distinct geographical areas (northern, north-eastern, eastern and southern Romania), using the Illumina OvineSNP60 (RefSeq ARS1) high-density chip for 67 goats. Heterozygosity values, inbreeding coefficients and effective population size across all autosomes were calculated for those populations that inhabit high- and low-altitude and high- and low-temperature environments. Diversity, as measured by expected heterozygosity (HE), ranged from 0.413 in the group from a low-temperature environment to 0.420 in the group from a high-temperature environment. Within studied groups, the HT (high temperature) goats were the only group with a positive but low average inbreeding coefficient value, which was 0.009. After quality control (QC) analysis, 46,965 SNPs remained for analysis (MAF < 0.01). LD was calculated for each chromosome separately. The Ne has been declining since the time of domestication, having recently reached 123, 125, 185 and 92 for the HA (high altitude), LA (low altitude), HT (high temperature) and LT (low temperature) group, respectively. Our study revealed a low impact of inbreeding in the Carpatina population, and the Ne trend also indicated a steep decline in the last hundred years. These results will contribute to the genetic improvement of the Carpatina breed.
Collapse
Affiliation(s)
- Bogdan Alin Vlaic
- Department of Animal Breeding, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Augustin Vlaic
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Isa-Rita Russo
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense n. 84, 29122 Piacenza, PC, Italy;
| | - Michael William Bruford
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | - Antonia Odagiu
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania
| | - Pablo Orozco-terWengel
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | | |
Collapse
|
2
|
L. G. S. L, Wickramasinghe S, P. A. B. D. A, Abbas K, Hussain T, Ramasamy S, Manomohan V, Tapsoba ASR, Pichler R, Babar ME, Periasamy K. Indigenous cattle of Sri Lanka: Genetic and phylogeographic relationship with Zebu of Indus Valley and South Indian origin. PLoS One 2023; 18:e0282761. [PMID: 37585485 PMCID: PMC10431622 DOI: 10.1371/journal.pone.0282761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023] Open
Abstract
The present study reports the population structure, genetic admixture and phylogeography of cattle breeds of Sri Lanka viz. Batu Harak, Thawalam and White cattle. Moderately high level of genetic diversity was observed in all the three Sri Lankan zebu cattle breeds. Estimates of inbreeding for Thawalam and White cattle breeds were relatively high with 6.1% and 7.2% respectively. Genetic differentiation of Sri Lankan Zebu (Batu Harak and White cattle) was lowest with Red Sindhi among Indus Valley Zebu while it was lowest with Hallikar among the South Indian cattle. Global F statistics showed 6.5% differences among all the investigated Zebu cattle breeds and 1.9% differences among Sri Lankan Zebu breeds. The Sri Lankan Zebu cattle breeds showed strong genetic relationships with Hallikar cattle, an ancient breed considered to be ancestor for most of the Mysore type draught cattle breeds of South India. Genetic admixture analysis revealed high levels of breed purity in Lanka White cattle with >97% Zebu ancestry. However, significant taurine admixture was observed in Batu Harak and Thawalam cattle. Two major Zebu haplogroups, I1 and I2 were observed in Sri Lankan Zebu with the former predominating the later in all the three breeds. A total of 112 haplotypes were observed in the studied breeds, of which 50 haplotypes were found in Sri Lankan Zebu cattle. Mismatch analysis revealed unimodal distribution in all the three breeds indicating population expansion. The sum of squared deviations (SSD) and raggedness index were non-significant in both the lineages of all the three breeds except for I1 lineage of Thawalam cattle (P<0.01) and I2 lineage of Batu Harak cattle (P<0.05). The results of neutrality tests revealed negative Tajima's D values for both the lineages of Batu Harak (P>0.05) and White cattle (P>0.05) indicating an excess of low frequency polymorphisms and demographic expansion. Genetic dilution of native Zebu cattle germplasm observed in the study is a cause for concern. Hence, it is imperative that national breeding organizations consider establishing conservation units for the three native cattle breeds to maintain breed purity and initiate genetic improvement programs.
Collapse
Affiliation(s)
- Lokugalappatti L. G. S.
- Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Saumya Wickramasinghe
- Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Alexander P. A. B. D.
- Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Kamran Abbas
- Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Saravanan Ramasamy
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Namakkal, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Vandana Manomohan
- Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Namakkal, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Arnaud Stephane R. Tapsoba
- Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Laboratoire de Biologie et de Santé Animale (LaBioSA), Institut de l’Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Rudolf Pichler
- Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Masroor E. Babar
- Department of Animal Sciences, The University of Agriculture, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Kathiravan Periasamy
- Animal Production and Health Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
3
|
Giontella A, Cardinali I, Sarti FM, Silvestrelli M, Lancioni H. Y-Chromosome Haplotype Report among Eight Italian Horse Breeds. Genes (Basel) 2023; 14:1602. [PMID: 37628653 PMCID: PMC10454838 DOI: 10.3390/genes14081602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Horse domestication and breed selection processes have profoundly influenced the development and transformation of human society and civilization over time. Therefore, their origin and history have always attracted much attention. In Italy, several local breeds have won prestigious awards thanks to their unique traits and socio-cultural peculiarities. Here, for the first time, we report the genetic variation of three loci of the male-specific region of the Y chromosome (MSY) of four local breeds and another one (Lipizzan, UNESCO) well-represented in the Italian Peninsula. The analysis also includes data from three Sardinian breeds and another forty-eight Eurasian and Mediterranean horse breeds retrieved from GenBank for comparison. Three haplotypes (HT1, HT2, and HT3) were found in Italian stallions, with different spatial distributions between breeds. HT1 (the ancestral haplotype) was frequent, especially in Bardigiano and Monterufolino, HT2 (Neapolitan/Oriental wave) was found in almost all local breeds, and HT3 (Thoroughbred wave) was detected in Maremmano and two Sardinian breeds (Sardinian Anglo-Arab and Sarcidano). This differential distribution is due to three paternal introgressions of imported stallions from foreign countries to improve local herds; however, further genetic analyses are essential to reconstruct the genetic history of native horse breeds, evaluate the impact of selection events, and enable conservation strategies.
Collapse
Affiliation(s)
- Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.G.); (M.S.)
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
| | - Maurizio Silvestrelli
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.G.); (M.S.)
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
4
|
Consortium VG, Nijman IJ, Rosen BD, Bardou P, Faraut T, Cumer T, Daly KG, Zheng Z, Cai Y, Asadollahpour H, Kul BÇ, Zhang WY, Guangxin E, Ayin A, Baird H, Bakhtin M, Bâlteanu VA, Barfield D, Berger B, Blichfeldt T, Boink G, Bugiwati SRA, Cai Z, Carolan S, Clark E, Cubric-Curik V, Dagong MIA, Dorji T, Drew L, Guo J, Hallsson J, Horvat S, Kantanen J, Kawaguchi F, Kazymbet P, Khayatzadeh N, Kim N, Shah MK, Liao Y, Martínez A, Masangkay JS, Masaoka M, Mazza R, McEwan J, Milanesi M, Faruque MO, Nomura Y, Ouchene-Khelifi NA, Pereira F, Sahana G, Salavati M, Sasazaki S, Da Silva A, Simčič M, Sölkner J, Sutherland A, Tigchelaar J, Zhang H, Consortium E, Ajmone-Marsan P, Bradley DG, Colli L, Drögemüller C, Jiang Y, Lei C, Mannen H, Pompanon F, Tosser-Klopp G, Lenstra JA. Geographical contrasts of Y-chromosomal haplogroups from wild and domestic goats reveal ancient migrations and recent introgressions. Mol Ecol 2022; 31:4364-4380. [PMID: 35751552 DOI: 10.1111/mec.16579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
By their paternal transmission, Y-chromosomal haplotypes are sensitive markers of population history and male-mediated introgression. Previous studies identified biallelic single-nucleotide variants in the SRY, ZFY, DDX3Y genes, which in domestic goats identified four major Y-chromosomal haplotypes Y1A, Y1B, Y2A and Y2B with a marked geographic partitioning. Here, we extracted goat Y-chromosomal variants from whole-genome sequences of 386 domestic goats (75 breeds) and 7 wild goat species, which were generated by the VarGoats goat genome project. Phylogenetic analyses indicated domestic haplogroups corresponding to Y1B, Y2A and Y2B, respectively, whereas Y1A is split into Y1AA and Y1AB. All five haplogroups were detected in 26 ancient DNA samples from southeast Europe or Asia. Haplotypes from present-day bezoars are not shared with domestic goats and are attached to deep nodes of the trees and networks. Haplogroup distributions for 186 domestic breeds indicate ancient paternal population bottlenecks and expansions during the migrations into northern Europe, eastern and southern Asia and Africa south of the Sahara. In addition, sharing of haplogroups indicates male-mediated introgressions, most notably an early gene flow from Asian goats into Madagascar and the crossbreeding that in the 19th century resulted in the popular Boer and Anglo-Nubian breeds. More recent introgressions are those from European goats into the native Korean goat population and from Boer goat into Uganda, Kenya, Tanzania, Malawi and Zimbabwe. This study illustrates the power of the Y-chromosomal variants for reconstructing the history of domestic species with a wide geographic range.
Collapse
Affiliation(s)
| | - Isaäc J Nijman
- Utrecht Univ., Netherlands.,Univ. Medical Center Utrecht, Utrecht Univ, The Netherlands
| | | | - Philippe Bardou
- GenPhySE, Univ. Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Thomas Faraut
- GenPhySE, Univ. Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Tristan Cumer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | - Zhuqing Zheng
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | - Yudong Cai
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | | | | | | | | | | | - Hayley Baird
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | - Valentin A Bâlteanu
- Inst. of Life SciencesUniv. Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | | | - Beate Berger
- Univ. Natural Resources and Life Sciences Vienna (BOKU)
| | - Thor Blichfeldt
- Norwegian Association of Sheep and Goat Breeders, Aas, Norway
| | - Geert Boink
- Stichting Zeldzame Huisdierrassen, Wageningen, The Netherlands
| | | | | | | | | | | | | | - Tashi Dorji
- International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | | | | | | | - Simon Horvat
- Univ. Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | | | | | | | - Namshin Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | | | - Yuying Liao
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi, China
| | | | | | | | - Raffaele Mazza
- Laboratorio Genetica e Servizi, Agrotis srl, Cremona, Italy
| | - John McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | | | | | | | - Filipe Pereira
- IDENTIFICA Genetic Testing Maia & Centre for Functional Ecology, Porto, Portugal
| | | | | | | | | | - Mojca Simčič
- Univ. Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | | | | | | | | | | | - Paolo Ajmone-Marsan
- Univ. Cattolica del S. Cuore di Piacenza and BioDNA Biodiversity and Ancient DNA Res. Centre, Piacenza, Italy.,UCSC PRONUTRIGEN Nutrigenomics Res. Centre, Piacenza, Italy
| | | | - Licia Colli
- Univ. Cattolica del S. Cuore di Piacenza and BioDNA Biodiversity and Ancient DNA Res. Centre, Piacenza, Italy.,UCSC BioDNA Biodiversity and Ancient DNA Res. Centre, Piacenza, Italy
| | | | - Yu Jiang
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | - Chuzhao Lei
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | | | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | | |
Collapse
|
5
|
Hall SJG. Genetic Differentiation among Livestock Breeds-Values for F st. Animals (Basel) 2022; 12:1115. [PMID: 35565543 PMCID: PMC9103131 DOI: 10.3390/ani12091115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: The Fst statistic is widely used to characterize between-breed relationships. Fst = 0.1 has frequently been taken as indicating genetic distinctiveness between breeds. This study investigates whether this is justified. (2) Methods: A database was created of 35,080 breed pairs and their corresponding Fst values, deduced from microsatellite and SNP studies covering cattle, sheep, goats, pigs, horses, and chickens. Overall, 6560 (19%) of breed pairs were between breeds located in the same country, 7395 (21%) between breeds of different countries within the same region, 20,563 (59%) between breeds located far apart, and 562 (1%) between a breed and the supposed wild ancestor of the species. (3) Results: General values for between-breed Fst were as follows, cattle: microsatellite 0.06-0.12, SNP 0.08-0.15; sheep: microsatellite 0.06-0.10, SNP 0.06-0.17; horses: microsatellite 0.04-0.11, SNP 0.08-0.12; goats: microsatellite 0.04-0.14, SNP 0.08-0.16; pigs: microsatellite 0.06-0.27, SNP 0.15-0.22; chickens: microsatellite 0.05-0.28, SNP 0.08-0.26. (4) Conclusions: (1) Large amounts of Fst data are available for a substantial proportion of the world's livestock breeds, (2) the value for between-breed Fst of 0.1 is not appropriate owing to its considerable variability, and (3) accumulated Fst data may have value for interdisciplinary research.
Collapse
Affiliation(s)
- Stephen J G Hall
- Department of Environmental Protection and Landscape, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
| |
Collapse
|
6
|
Suyadi S, Murtika I, Susilorini T, Septian W, Saputra F, Furqon A. Genetic diversity of goats in East Java through analysis of the cytochrome B and cytochrome oxidase I genes in mitochondrial DNA. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Population structure and genetic relatedness of Sri Lankan Jaffna Local sheep with major South Indian breeds. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2021.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Exploring genetic diversity and population structure of Punjab goat breeds using Illumina 50 K SNP bead chip. Trop Anim Health Prod 2021; 53:368. [PMID: 34169364 DOI: 10.1007/s11250-021-02825-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Pakistan has 35 goat breeds. Moreover, the province of Punjab has highest goat population constituting 37% of country's total population with seven goat breeds including Beetal, Daira Deen Panah, Nachi, Barbari, Teddi, Pahari, and Pothwari. The diversity study of breeds warrants the documentation of breeds particularly using genome wide panel of markers, i.e., SNP chip. The objective of the current study was to fill this gap of information. Therefore, in current study we collected total of 879 unrelated goat blood samples along with data on body weight measurements; genomic DNA was extracted, and genotyping was carried out using 50 K SNP bead chip. Quality control measures were performed in Plink 1.07. Genetic diversity was observed among studied populations using heterozygosity and pairwise FST estimates, principal component analysis, admixture analysis in Plink software with visualization in Clumpak, and constructing phylogenetic tree in Mega 7 software. Moderate to high level of heterozygosity was observed among the studied populations. Coefficient of inbreeding varied from 0.0186 ± 0.0327 in Pahari to 0.183 ± 0.0715 in Barbari. Barbari and Daira Deen Panah had quite higher level of inbreeding coefficient as compared to all other breeds with value of 0.183 ± 0.0715 and 0.1378 ± 0.0741, respectively. PCA identified three steps of subdividing the seven goat breeds at various levels of K. All the seven breeds made independent clusters at various levels of PCA. Admixture analysis revealed the distinctness of Teddi and Barbari breeds. Genetic sub-structuring was observed in the admixture patterns of Beetal breed. Moreover, high level of genetic admixture was observed in Nachi, Pahari, Pothwari, and Daira Deen Panah breeds. Admixture results were further interpreted by calculating pairwise FST values. Our results provided first insights about genetic diversity of Pakistani goat breeds based on genomic data. To conclude, the enriched goat breed diversity in Pakistan could provide valuable genetic reservoir for national breeding schemes.
Collapse
|
9
|
Persichilli C, Senczuk G, Pasqualino L, Anzalone DA, Negrini R, Ajmone Marsan P, Colli L, Pilla F, Mastrangelo S. Genome-wide diversity of Pagliarola sheep residual population and its conservation implication. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1970033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Christian Persichilli
- Dipartimento di Agraria, Ambientale e Scienze dell’alimentazione, University of Molise, Campobasso, Italy
| | - Gabriele Senczuk
- Dipartimento di Agraria, Ambientale e Scienze dell’alimentazione, University of Molise, Campobasso, Italy
| | - Loi Pasqualino
- Facoltà di Veterinaria, University of Teramo, Campobasso, Italy
| | | | - Riccardo Negrini
- Department of Animal Science Food and Nutrition, Nutrigenomics and Proteomics Research Centre – PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Ajmone Marsan
- Department of Animal Science Food and Nutrition, Nutrigenomics and Proteomics Research Centre – PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Licia Colli
- Department of Animal Science Food and Nutrition, Nutrigenomics and Proteomics Research Centre – PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabio Pilla
- Dipartimento di Agraria, Ambientale e Scienze dell’alimentazione, University of Molise, Campobasso, Italy
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Aguirre-Riofrio L, Maza-Tandazo T, Quezada-Padilla M, Albito-Balcazar O, Flores-Gonzalez A, Camacho-Enriquez O, Martinez-Martinez A, Consortium B, Delgado-Bermejo JV. Genetic Characterization of the "Chusca Lojana", a Creole Goat Reared in Ecuador, and Its Relationship with Other Goat Breeds. Animals (Basel) 2020; 10:E1026. [PMID: 32545665 PMCID: PMC7341184 DOI: 10.3390/ani10061026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
The largest population of goats (62%) in Ecuador is in the dry forest region in the south of the country. A Creole goat, named "Chusca Lojana", has adapted to the dry forest region where environmental conditions are warm-dry, with sparse vegetation. Knowledge of the genetic information of the Creole goat is important to determine intra-racial diversity, the degree of genetic distance among other breeds of goats, and the possible substructure of the population, which is valuable for the conservation of such a species' genetic resources. A total of 145 samples of the Creole goat was taken from the four biotypes previously identified. Genetic analyses were performed using 38 microsatellites recommended for studies of goat genetic diversity (FAO-ISAG). The results of within-breed genetic diversity showed a mean number of alleles per locus (MNA) of 8, an effective number of alleles (Ae) of 4.3, an expected heterozygosity (He) of 0.71, an observed heterozygosity (Ho) of 0.63, polymorphic information content (PIC) of 0.67, and an FIS value of 0.11. Between-breed genetic diversity among 43 goat populations (native of Spain, American Creole, Europeans, and Africans) showed the following values: FIS = 0.087, FIT = 0.176, and FST = 0.098. Regarding the analysis of the population structure, the results showed that the Creole Chusca Lojana goat population is homogeneous and no genetic separation was observed between the different biotypes (FST = 0.0073). In conclusion, the Chusca Lojana goat has a high genetic diversity, without exhibiting a genetic substructure. Therefore, it should be considered as a distinct population because crossbreeding with other breeds was not detected.
Collapse
Affiliation(s)
- Lenin Aguirre-Riofrio
- Agricultural Faculty, Veterinary Medicine and Zootechnics School, National University of Loja, Loja 110110, Ecuador; (T.M.-T.); (M.Q.-P.); (O.A.-B.)
| | - Teddy Maza-Tandazo
- Agricultural Faculty, Veterinary Medicine and Zootechnics School, National University of Loja, Loja 110110, Ecuador; (T.M.-T.); (M.Q.-P.); (O.A.-B.)
| | - Manuel Quezada-Padilla
- Agricultural Faculty, Veterinary Medicine and Zootechnics School, National University of Loja, Loja 110110, Ecuador; (T.M.-T.); (M.Q.-P.); (O.A.-B.)
| | - Oscar Albito-Balcazar
- Agricultural Faculty, Veterinary Medicine and Zootechnics School, National University of Loja, Loja 110110, Ecuador; (T.M.-T.); (M.Q.-P.); (O.A.-B.)
| | - Alex Flores-Gonzalez
- Graduation Students in Veterinary Medicine and Zootechnics, National University of Loja, Zapotillo 110901, Ecuador; (A.F.-G); (O.C.-E.)
| | - Osvaldo Camacho-Enriquez
- Graduation Students in Veterinary Medicine and Zootechnics, National University of Loja, Zapotillo 110901, Ecuador; (A.F.-G); (O.C.-E.)
| | | | - BioGoat Consortium
- Latin American Goat Biodiversity Project, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain;
| | | |
Collapse
|
11
|
M VANDANAC, R SARAVANAN, N MURALI, N RAJAK, K MISHRAA, PICHLE RUDOLFR, PERIASAMY KATHIRAVAN. Short Tandem Repeat (STR) based assessment of genetic diversity of Alambadi - A draught cattle breed of Tamil Nadu. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i1.98209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alambadi is one of the five indigenous draught type cattle breeds of Tamil Nadu. The present study was undertaken to establish baseline genetic diversity information and evaluate its genetic relationship with Bargur cattle. The results suggested moderate levels of allelic diversity and observed heterozygosity with an overall mean of 6.52 and 0.666 respectively. Estimates of FIS showed significant heterozygosity deficit (0.056) indicating relatively higher levels of inbreeding in Alambadi cattle. The test for Hardy-Weinberg equilibrium revealed 11.1% (3 out of 27) of the investigated loci showing significant deviations due to heterozygosity deficit. Estimation of global F statistics revealed low genetic differentiation between Alambadi and Bargur cattle. The global FST indicated only 3% of the total variation being explained by between breed differences, while the remaining 97% was explained by within breed variability. Principal components analysis revealed separate clustering of Alambadi and Bargur cattle, although admixture was observed among few animals from both the breeds. The test for mutation drift equilibrium revealed no evidences for the occurrence of genetic bottleneck in Alambadi and Bargur cattle in the recent past. Considering the rapid decline in the population of Alambadi cattle, the results of the present study is expected to help planning the strategy for genetic conservation and breed improvement.
Collapse
|
12
|
Organization and Management of Conservation Programs and Research in Domestic Animal Genetic Resources. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11120235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Creating national committees for domestic animal genetic resources within genetic resource national commissions is recommended to organize in situ and ex situ conservation initiatives. In situ conservation is a high priority because it retains traditional zootechnical contexts and locations to ensure the long-term survival of breeds. In situ actions can be based on subsidies, technical support, structure creation, or trademark definition. Provisional or permanent relocation of breeds may prevent immediate extinction when catastrophes, epizootics, or social conflicts compromise in situ conservation. Ex situ in vivo (animal preservation in rescue or quarantine centers) and in vitro methods (germplasm, tissues/cells, DNA/genes storage) are also potential options. Alert systems must detect emergencies and summon the national committee to implement appropriate procedures. Ex situ coordinated centers must be prepared to permanently or provisionally receive extremely endangered collections. National germplasm banks must maintain sufficient samples of national breeds (duplicated) in their collections to restore extinct populations at levels that guarantee the survival of biodiversity. A conservation management survey, describing national and international governmental and non-governmental structures, was developed. Conservation research initiatives for international domestic animal genetic resources from consortia centralize the efforts of studies on molecular, genomic or geo-evolutionary breed characterization, breed distinction, and functional gene identification. Several consortia also consider ex situ conservation relying on socioeconomic or cultural aspects. The CONBIAND network (Conservation for the Biodiversity of Local Domestic Animals for Sustainable Rural Development) exemplifies conservation efficiency maximization in a low-funding setting, integrating several Latin American consortia with international cooperation where limited human, material, and economic resources are available.
Collapse
|
13
|
Gipson TA. Recent advances in breeding and genetics for dairy goats. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1275-1283. [PMID: 31357268 PMCID: PMC6668855 DOI: 10.5713/ajas.19.0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
Abstract
Goats (Capra hircus) were domesticated during the late Neolithic, approximately 10,500 years ago, and humans exerted minor selection pressure until fairly recently. Probably the largest genetic change occurring over the millennia happened via natural selection and random genetic drift, the latter causing genes to be fixed in small and isolated populations. Recent human-influenced genetic changes have occurred through biometrics and genomics. For the most part, biometrics has concentrated upon the refining of estimates of heritabilities and genetic correlations. Heritabilities are instrumental in the calculation of estimated breeding values and genetic correlations are necessary in the construction of selection indices that account for changes in multiple traits under selection at one time. Early genomic studies focused upon microsatellite markers, which are short tandem repeats of nucleic acids and which are detected using polymerase chain reaction primers flanking the microsatellite. Microsatellite markers have been very important in parentage verification, which can impact genetic progress. Additionally, microsatellite markers have been a useful tool in assessing genetic diversity between and among breeds, which is important in the conservation of minor breeds. Single nucleotide polymorphisms are a new genomic tool that have refined classical BLUP methodology (biometric) to provide more accurate genomic estimated breeding values, provided a large reference population is available.
Collapse
Affiliation(s)
- Terry A Gipson
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
| |
Collapse
|
14
|
New world goat populations are a genetically diverse reservoir for future use. Sci Rep 2019; 9:1476. [PMID: 30728441 PMCID: PMC6365549 DOI: 10.1038/s41598-019-38812-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 01/02/2023] Open
Abstract
Western hemisphere goats have European, African and Central Asian origins, and some local or rare breeds are reported to be adapted to their environments and economically important. By-in-large these genetic resources have not been quantified. Using 50 K SNP genotypes of 244 animals from 12 goat populations in United States, Costa Rica, Brazil and Argentina, we evaluated the genetic diversity, population structure and selective sweeps documenting goat migration to the "New World". Our findings suggest the concept of breed, particularly among "locally adapted" breeds, is not a meaningful way to characterize goat populations. The USA Spanish goats were found to be an important genetic reservoir, sharing genomic composition with the wild ancestor and with specialized breeds (e.g. Angora, Lamancha and Saanen). Results suggest goats in the Americas have substantial genetic diversity to use in selection and promote environmental adaptation or product driven specialization. These findings highlight the importance of maintaining goat conservation programs and suggest an awaiting reservoir of genetic diversity for breeding and research while simultaneously discarding concerns about breed designations.
Collapse
|
15
|
Colli L, Milanesi M, Talenti A, Bertolini F, Chen M, Crisà A, Daly KG, Del Corvo M, Guldbrandtsen B, Lenstra JA, Rosen BD, Vajana E, Catillo G, Joost S, Nicolazzi EL, Rochat E, Rothschild MF, Servin B, Sonstegard TS, Steri R, Van Tassell CP, Ajmone-Marsan P, Crepaldi P, Stella A. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet Sel Evol 2018; 50:58. [PMID: 30449284 PMCID: PMC6240949 DOI: 10.1186/s12711-018-0422-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Goat populations that are characterized within the AdaptMap project cover a large part of the worldwide distribution of this species and provide the opportunity to assess their diversity at a global scale. We analysed genome-wide 50 K single nucleotide polymorphism (SNP) data from 144 populations to describe the global patterns of molecular variation, compare them to those observed in other livestock species, and identify the drivers that led to the current distribution of goats. RESULTS A high degree of genetic variability exists among the goat populations studied. Our results highlight a strong partitioning of molecular diversity between and within continents. Three major gene pools correspond to goats from Europe, Africa and West Asia. Dissection of sub-structures disclosed regional gene pools, which reflect the main post-domestication migration routes. We also identified several exchanges, mainly in African populations, and which often involve admixed and cosmopolitan breeds. Extensive gene flow has taken place within specific areas (e.g., south Europe, Morocco and Mali-Burkina Faso-Nigeria), whereas elsewhere isolation due to geographical barriers (e.g., seas or mountains) or human management has decreased local gene flows. CONCLUSIONS After domestication in the Fertile Crescent in the early Neolithic era (ca. 12,000 YBP), domestic goats that already carried differentiated gene pools spread to Europe, Africa and Asia. The spread of these populations determined the major genomic background of the continental populations, which currently have a more marked subdivision than that observed in other ruminant livestock species. Subsequently, further diversification occurred at the regional level due to geographical and reproductive isolation, which was accompanied by additional migrations and/or importations, the traces of which are still detectable today. The effects of breed formation were clearly detected, particularly in Central and North Europe. Overall, our results highlight a remarkable diversity that occurs at the global scale and is locally partitioned and often affected by introgression from cosmopolitan breeds. These findings support the importance of long-term preservation of goat diversity, and provide a useful framework for investigating adaptive introgression, directing genetic improvement and choosing breeding targets.
Collapse
Affiliation(s)
- Licia Colli
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy. .,BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, Piacenza, Italy.
| | - Marco Milanesi
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy.,School of Veterinary Medicine, Department of Support, Production and Animal Health, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Andrea Talenti
- Dipartimento di Medicina Veterinaria, University of Milan, Milan, Italy
| | - Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA, USA.,National Institute of Aquatic Resources, Technical University of Denmark, DTU, Lyngby, Denmark
| | - Minhui Chen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Århus, Denmark.,Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alessandra Crisà
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Kevin Gerard Daly
- Population Genetics Lab, Smurfit Institute of Genetics, Trinity College of Dublin, Dublin, Ireland
| | - Marcello Del Corvo
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Århus, Denmark
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Elia Vajana
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy.,Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gennaro Catillo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Bertrand Servin
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326, Castanet Tolosan, France
| | | | - Roberto Steri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Paolo Ajmone-Marsan
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, Piacenza, Italy.,BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Paola Crepaldi
- Dipartimento di Medicina Veterinaria, University of Milan, Milan, Italy
| | - Alessandra Stella
- Fondazione Parco Tecnologico Padano, Lodi, Italy.,Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | |
Collapse
|
16
|
El Moutchou N, González A, Chentouf M, Lairini K, Muñoz-Mejías ME, Rodero E. Exploring the genetic diversity and relationships between Spanish and Moroccan goats using microsatellite markers. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Ducrocq V, Laloe D, Swaminathan M, Rognon X, Tixier-Boichard M, Zerjal T. Genomics for Ruminants in Developing Countries: From Principles to Practice. Front Genet 2018; 9:251. [PMID: 30057590 PMCID: PMC6053532 DOI: 10.3389/fgene.2018.00251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 12/03/2022] Open
Abstract
Using genomic information, local ruminant populations can be better characterized and compared to selected ones. Genetic relationships between animals can be established even without systematic pedigree recording, provided a budget is available for genotyping. Genomic selection (GS) can rely on a subset of the total population and does not require a costly national infrastructure, e.g., based on progeny testing. Yet, the use of genomic tools for animal breeding in developing countries is still limited. We identify three main reasons for this: (i) the instruments for cheap recording of phenotypes and data management are still limiting. (ii) many developing countries are recurrently exposed to unfavorable conditions (heat, diseases, poor nutrition) requiring special attention to fitness traits, (iii) a high level of expertise in quantitative genetics, modeling, and data manipulation is needed to perform genomic analyses. Yet, the potential outcomes go much beyond genetic improvements and can improve the resilience of the whole farming system. They include a better management of genetic diversity of local populations, a more balanced genetic progress and the possibility to unravel the genetic basis of adaptation of local breeds through whole genome approaches. A GS program being developed by BAIF, a large Indian NGO, is analyzed as a pilot case. It relies on the creation of a female reference population of Bos indicus and crossbreds, recorded with modern technology (e.g., smartphones) to collect performances at low cost in tiny herds on production and fertility. Finally, recommendations for the implementation of GS in developing countries are proposed.
Collapse
Affiliation(s)
- Vincent Ducrocq
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Denis Laloe
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Xavier Rognon
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Michèle Tixier-Boichard
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tatiana Zerjal
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
18
|
Onzima RB, Upadhyay MR, Mukiibi R, Kanis E, Groenen MAM, Crooijmans RPMA. Genome-wide population structure and admixture analysis reveals weak differentiation among Ugandan goat breeds. Anim Genet 2018; 49:59-70. [PMID: 29344947 PMCID: PMC5838551 DOI: 10.1111/age.12631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2017] [Indexed: 12/18/2022]
Abstract
Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium‐density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (HO) and expected (HE) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub‐structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within‐breed diversity and heterozygote advantage in crossbreeding schemes.
Collapse
Affiliation(s)
- R B Onzima
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands.,National Agricultural Research Organization (NARO), P O Box 295, Entebbe, Uganda
| | - M R Upadhyay
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - R Mukiibi
- Department of Agriculture, Food and Nutritional Sciences (AFNS), Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, 1416 College Plaza Edmonton, T6G 2C8, Alberta, Canada
| | - E Kanis
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands
| | - M A M Groenen
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands
| | - R P M A Crooijmans
- Wageningen University & Research, Animal Breeding and Genomics, P O Box 338, 6700AH, Wageningen, The Netherlands
| |
Collapse
|
19
|
Amills M, Capote J, Tosser-Klopp G. Goat domestication and breeding: a jigsaw of historical, biological and molecular data with missing pieces. Anim Genet 2017; 48:631-644. [PMID: 28872195 DOI: 10.1111/age.12598] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/23/2022]
Abstract
Domestic goats (Capra hircus) are spread across the five continents with a census of 1 billion individuals. The worldwide population of goats descends from a limited number of bezoars (Capra aegagrus) domesticated 10 000 YBP (years before the present) in the Fertile Crescent. The extraordinary adaptability and hardiness of goats favoured their rapid spread over the Old World, reaching the Iberian Peninsula and Southern Africa 7000 YBP and 2000 YBP respectively. Molecular studies have revealed one major mitochondrial haplogroup A and five less frequent haplogroups B, C, D, F and G. Moreover, the analysis of autosomal and Y-chromosome markers has evidenced an appreciable geographic differentiation. The implementation of new molecular technologies, such as whole-genome sequencing and genome-wide genotyping, allows for the exploration of caprine diversity at an unprecedented scale, thus providing new insights into the evolutionary history of goats. In spite of a number of pitfalls, the characterization of the functional elements of the goat genome is expected to play a key role in understanding the genetic determination of economically relevant traits. Genomic selection and genome editing also hold great potential, particularly for improving traits that cannot be modified easily by traditional selection.
Collapse
Affiliation(s)
- M Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - J Capote
- Instituto Canario de Investigaciones Agrarias, La Laguna, 38108, Tenerife, Spain
| | - G Tosser-Klopp
- INRA-GenPhySE-Génétique, Physiologie et Systèmes d'Elevage-UMR1388, 24 Chemin de Borde Rouge-Auzeville CS 52627, 31326, Castanet Tolosan Cedex, France
| |
Collapse
|
20
|
Brito LF, Kijas JW, Ventura RV, Sargolzaei M, Porto-Neto LR, Cánovas A, Feng Z, Jafarikia M, Schenkel FS. Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genomics 2017; 18:229. [PMID: 28288562 PMCID: PMC5348779 DOI: 10.1186/s12864-017-3610-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
Background The detection of signatures of selection has the potential to elucidate the identities of genes and mutations associated with phenotypic traits important for livestock species. It is also very relevant to investigate the levels of genetic diversity of a population, as genetic diversity represents the raw material essential for breeding and has practical implications for implementation of genomic selection. A total of 1151 animals from nine goat populations selected for different breeding goals and genotyped with the Illumina Goat 50K single nucleotide polymorphisms (SNP) Beadchip were included in this investigation. Results The proportion of polymorphic SNPs ranged from 0.902 (Nubian) to 0.995 (Rangeland). The overall mean HO and HE was 0.374 ± 0.021 and 0.369 ± 0.023, respectively. The average pairwise genetic distance (D) ranged from 0.263 (Toggenburg) to 0.323 (Rangeland). The overall average for the inbreeding measures FEH, FVR, FLEUT, FROH and FPED was 0.129, −0.012, −0.010, 0.038 and 0.030, respectively. Several regions located on 19 chromosomes were potentially under selection in at least one of the goat breeds. The genomic population tree constructed using all SNPs differentiated breeds based on selection purpose, while genomic population tree built using only SNPs in the most significant region showed a great differentiation between LaMancha and the other breeds. We hypothesized that this region is related to ear morphogenesis. Furthermore, we identified genes potentially related to reproduction traits, adult body mass, efficiency of food conversion, abdominal fat deposition, conformation traits, liver fat metabolism, milk fatty acids, somatic cells score, milk protein, thermo-tolerance and ear morphogenesis. Conclusions In general, moderate to high levels of genetic variability were observed for all the breeds and a characterization of runs of homozygosity gave insights into the breeds’ development history. The information reported here will be useful for the implementation of genomic selection and other genomic studies in goats. We also identified various genome regions under positive selection using smoothed FST and hapFLK statistics and suggested genes, which are potentially under selection. These results can now provide a foundation to formulate biological hypotheses related to selection processes in goats. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3610-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luiz F Brito
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada.
| | - James W Kijas
- CSIRO Agriculture & Food, Brisbane, Queensland, Australia
| | - Ricardo V Ventura
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada.,Beef Improvement Opportunities, Guelph, Ontario, Canada
| | - Mehdi Sargolzaei
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada.,The Semex Alliance, Guelph, Ontario, Canada
| | | | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| | - Zeny Feng
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | - Mohsen Jafarikia
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada.,Canadian Centre for Swine Improvement Inc., Ottawa, Ontario, Canada
| | - Flávio S Schenkel
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
21
|
Microsatellite based genetic diversity and mitochondrial DNA D-Loop variation in economically important goat breeds of Pakistan. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2016.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
|
23
|
Periasamy K, Vahidi S, Silva P, Faruque M, Naqvi A, Basar M, Cao J, Zhao S, Thuy LT, Pichler R, Podesta MG, Shamsuddin M, Boettcher P, Garcia JF, Han JL, Marsan PA, Diallo A, Viljoen GJ. Mapping molecular diversity of indigenous goat genetic resources of Asia. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2016.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Ginja C, Gama LT, Martínez A, Sevane N, Martin-Burriel I, Lanari MR, Revidatti MA, Aranguren-Méndez JA, Bedotti DO, Ribeiro MN, Sponenberg P, Aguirre EL, Alvarez-Franco LA, Menezes MPC, Chacón E, Galarza A, Gómez-Urviola N, Martínez-López OR, Pimenta-Filho EC, da Rocha LL, Stemmer A, Landi V, Delgado-Bermejo JV. Genetic diversity and patterns of population structure in Creole goats from the Americas. Anim Genet 2017; 48:315-329. [PMID: 28094449 DOI: 10.1111/age.12529] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 01/03/2023]
Abstract
Biodiversity studies are more efficient when large numbers of breeds belonging to several countries are involved, as they allow for an in-depth analysis of the within- and between-breed components of genetic diversity. A set of 21 microsatellites was used to investigate the genetic composition of 24 Creole goat breeds (910 animals) from 10 countries to estimate levels of genetic variability, infer population structure and understand genetic relationships among populations across the American continent. Three commercial transboundary breeds were included in the analyses to investigate admixture with Creole goats. Overall, the genetic diversity of Creole populations (mean number of alleles = 5.82 ± 1.14, observed heterozygosity = 0.585 ± 0.074) was moderate and slightly lower than what was detected in other studies with breeds from other regions. The Bayesian clustering analysis without prior information on source populations identified 22 breed clusters. Three groups comprised more than one population, namely from Brazil (Azul and Graúna; Moxotó and Repartida) and Argentina (Long and shorthair Chilluda, Pampeana Colorada and Angora-type goat). Substructure was found in Criolla Paraguaya. When prior information on sample origin was considered, 92% of the individuals were assigned to the source population (threshold q ≥ 0.700). Creole breeds are well-differentiated entities (mean coefficient of genetic differentiation = 0.111 ± 0.048, with the exception of isolated island populations). Dilution from admixture with commercial transboundary breeds appears to be negligible. Significant levels of inbreeding were detected (inbreeding coefficient > 0 in most Creole goat populations, P < 0.05). Our results provide a broad perspective on the extant genetic diversity of Creole goats, however further studies are needed to understand whether the observed geographical patterns of population structure may reflect the mode of goat colonization in the Americas.
Collapse
Affiliation(s)
- C Ginja
- CIBIO-InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas n. 7, 4485-661, Vairão, Portugal
| | - L T Gama
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - A Martínez
- Departamento de Genética, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Córdoba, Spain
| | - N Sevane
- Departamento de Producción Animal, Universidad Complutense de Madrid, Madrid, Spain
| | - I Martin-Burriel
- Martin-Burriel, Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - M R Lanari
- Area de Producción Animal, Instituto Nacional de Tecnología Agropecuaria EEA, Bariloche, Argentina
| | - M A Revidatti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - J A Aranguren-Méndez
- Facultad de Ciencias Veterinarias, Universidad de Zulia, Maracaibo-Zulia, Venezuela
| | - D O Bedotti
- Instituto Nacional de Tecnología Agropecuaria EEA Anguil "Ing. Agr. Guillermo Covas", Bariloche, Argentina
| | - M N Ribeiro
- Departamento de Zootecnia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - P Sponenberg
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - E L Aguirre
- Universidad Nacional de Loja, Loja, Ecuador.,Grupo de Melhoramento Animal e Biotecnologias GMAB-FZEA-USP, Brazil
| | | | | | - E Chacón
- Universidad Técnica de Cotopaxi, La Maná, Ecuador
| | - A Galarza
- Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - N Gómez-Urviola
- Universidad Nacional Micaela Bastidas de Apurímac, Abancay, Perú
| | - O R Martínez-López
- Centro Multidisciplinario de Investigaciones Tecnológicas, Dirección General de Investigación Científica y Tecnológica, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - L L da Rocha
- Departamento de Zootecnia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - A Stemmer
- Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - V Landi
- Departamento de Genética, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Córdoba, Spain
| | - J V Delgado-Bermejo
- Departamento de Genética, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Córdoba, Spain
| |
Collapse
|
25
|
Bruford MW, Ginja C, Hoffmann I, Joost S, Orozco-terWengel P, Alberto FJ, Amaral AJ, Barbato M, Biscarini F, Colli L, Costa M, Curik I, Duruz S, Ferenčaković M, Fischer D, Fitak R, Groeneveld LF, Hall SJG, Hanotte O, Hassan FU, Helsen P, Iacolina L, Kantanen J, Leempoel K, Lenstra JA, Ajmone-Marsan P, Masembe C, Megens HJ, Miele M, Neuditschko M, Nicolazzi EL, Pompanon F, Roosen J, Sevane N, Smetko A, Štambuk A, Streeter I, Stucki S, Supakorn C, Telo Da Gama L, Tixier-Boichard M, Wegmann D, Zhan X. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025. Front Genet 2015; 6:314. [PMID: 26539210 PMCID: PMC4612686 DOI: 10.3389/fgene.2015.00314] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that “…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity.” However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are societal in origin and are predicated on the value (e.g., socio-economic and cultural) of these resources to farmers, rural communities and society as a whole. The overall conclusion is that despite the fact that the livestock sector has been relatively well-organized in the application of genetic methodologies to date, there is still a large gap between the current state-of-the-art in the use of tools to characterize genomic resources and its application to many non-commercial and local breeds, hampering the consistent utilization of genetic and genomic data as indicators of genetic erosion and diversity. The livestock genomic sector therefore needs to make a concerted effort in the coming decade to enable to the democratization of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.
Collapse
Affiliation(s)
- Michael W Bruford
- School of Biosciences, Cardiff University Cardiff, UK ; Sustainable Places Research Institute, Cardiff University Cardiff, UK
| | - Catarina Ginja
- Faculdade de Ciências, Centro de Ecologia, Evolução e Alterações Ambientais (CE3C), Universidade de Lisboa Lisboa, Portugal ; Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Campus Agrário de Vairão Portugal
| | - Irene Hoffmann
- Food and Agriculture Organization of the United Nations, Animal Genetic Resources Branch, Animal Production and Health Division Rome, Italy
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Florian J Alberto
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes Grenoble, France
| | - Andreia J Amaral
- Faculty of Sciences, BioISI- Biosystems and Integrative Sciences Institute, University of Lisbon Campo Grande, Portugal
| | - Mario Barbato
- School of Biosciences, Cardiff University Cardiff, UK
| | | | - Licia Colli
- BioDNA Centro di Ricerca sulla Biodiversità a sul DNA Antico, Istituto di Zootecnica, Università Cattolica del Sacro Cuore di Piacenza Italy
| | - Mafalda Costa
- School of Biosciences, Cardiff University Cardiff, UK
| | - Ino Curik
- Faculty of Agriculture, University of Zagreb Zagreb, Croatia
| | - Solange Duruz
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Daniel Fischer
- Natural Resources Institute Finland (Luke), Green Technology Jokioinen, Finland
| | - Robert Fitak
- Institut für Populationsgenetik Vetmeduni, Vienna, Austria
| | | | | | - Olivier Hanotte
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Faiz-Ul Hassan
- School of Life Sciences, University of Nottingham Nottingham, UK ; Department of Animal Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
| | - Philippe Helsen
- Centre for Research and Conservation, Royal Zoological Society of Antwerp Antwerp, Belgium
| | - Laura Iacolina
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Green Technology Jokioinen, Finland ; Department of Biology, University of Eastern Finland Kuopio, Finland
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Paolo Ajmone-Marsan
- BioDNA Centro di Ricerca sulla Biodiversità a sul DNA Antico, Istituto di Zootecnica, Università Cattolica del Sacro Cuore di Piacenza Italy
| | - Charles Masembe
- Institute of the Environment and Natural Resources, Makerere University Kampala, Uganda
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | - Mara Miele
- School of Planning and Geography, Cardiff University Cardiff, UK
| | | | | | - François Pompanon
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes Grenoble, France
| | - Jutta Roosen
- TUM School of Management, Technische Universität München Munich, Germany
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Universidad Complutense de Madrid Madrid, Spain
| | | | - Anamaria Štambuk
- Department of Biology, Faculty of Science, University of Zagreb Zagreb, Croatia
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus Hinxton, Cambridge, UK
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - China Supakorn
- School of Life Sciences, University of Nottingham Nottingham, UK ; School of Agricultural Technology, Walailak University Tha Sala, Thailand
| | - Luis Telo Da Gama
- Centre of Research in Animal Health (CIISA) - Faculty of Veterinary Medicine, University of Lisbon Lisbon, Portugal
| | | | - Daniel Wegmann
- Department of Biology, University of Fribourg Fribourg, Switzerland
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences Beijing, China ; Cardiff University - Institute of Zoology, Joint Laboratory for Biocomplexity Research Beijing, China
| |
Collapse
|
26
|
Al-Atiyat RM, Alobre MM, Aljumaah RS, Alshaikh MA. Microsatellite based genetic diversity and population structure of three Saudi goat breeds. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Nicoloso L, Bomba L, Colli L, Negrini R, Milanesi M, Mazza R, Sechi T, Frattini S, Talenti A, Coizet B, Chessa S, Marletta D, D'Andrea M, Bordonaro S, Ptak G, Carta A, Pagnacco G, Valentini A, Pilla F, Ajmone-Marsan P, Crepaldi P. Genetic diversity of Italian goat breeds assessed with a medium-density SNP chip. Genet Sel Evol 2015; 47:62. [PMID: 26239391 PMCID: PMC4523021 DOI: 10.1186/s12711-015-0140-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/09/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Among the European countries, Italy counts the largest number of local goat breeds. Thanks to the recent availability of a medium-density SNP (single nucleotide polymorphism) chip for goat, the genetic diversity of Italian goat populations was characterized by genotyping samples from 14 Italian goat breeds that originate from different geographical areas with more than 50 000 SNPs evenly distributed on the genome. RESULTS Analysis of the genotyping data revealed high levels of genetic polymorphism and an underlying North-south geographic pattern of genetic diversity that was highlighted by both the first dimension of the multi-dimensional scaling plot and the Neighbour network reconstruction. We observed a moderate and weak population structure in Northern and Central-Southern breeds, respectively, with pairwise FST values between breeds ranging from 0.013 to 0.164 and 7.49 % of the total variance assigned to the between-breed level. Only 2.11 % of the variance explained the clustering of breeds into geographical groups (Northern, Central and Southern Italy and Islands). CONCLUSIONS Our results indicate that the present-day genetic diversity of Italian goat populations was shaped by the combined effects of drift, presence or lack of gene flow and, to some extent, by the consequences of traditional management systems and recent demographic history. Our findings may constitute the starting point for the development of marker-assisted approaches, to better address future breeding and management policies in a species that is particularly relevant for the medium- and long-term sustainability of marginal regions.
Collapse
Affiliation(s)
- Letizia Nicoloso
- DIVET, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| | - Lorenzo Bomba
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, via Emilia Parmense, 84, 29122, Piacenza, Italy.
| | - Licia Colli
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, via Emilia Parmense, 84, 29122, Piacenza, Italy.
| | - Riccardo Negrini
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, via Emilia Parmense, 84, 29122, Piacenza, Italy. .,Associazione Nazionale della Pastorizia, via Palmiro Togliatti 1587, 00155, Rome, Italy.
| | - Marco Milanesi
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, via Emilia Parmense, 84, 29122, Piacenza, Italy.
| | - Raffaele Mazza
- Laboratorio Genetica e Servizi (LGS) - Associazione Italiana Allevatori (AIA), via Bergamo, 292, 26100, Cremona, Italy.
| | - Tiziana Sechi
- Agris Sardegna, Unità di Ricerca di Genetica e Biotecnologie, Sassari, Italy.
| | - Stefano Frattini
- DIVET, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| | - Andrea Talenti
- DIVET, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| | - Beatrice Coizet
- DIVET, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| | - Stefania Chessa
- CNR - IBBA, UOS di Lodi, via Einstein, Località Cascina Codazza, 26900, Lodi, Italy.
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente Di3A, Università degli Studi di Catania, via Valdisavoia 5, 95123, Catania, Italy.
| | - Mariasilvia D'Andrea
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via Francesco De Sanctis s.n.c., 86100, Campobasso, Italy.
| | - Salvatore Bordonaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente Di3A, Università degli Studi di Catania, via Valdisavoia 5, 95123, Catania, Italy.
| | - Grazyna Ptak
- Dipartimento Scienze Biomediche Comparate, Università di Teramo, Piazza Aldo Moro 45, Teramo, Italy.
| | - Antonello Carta
- Agris Sardegna, Unità di Ricerca di Genetica e Biotecnologie, Sassari, Italy.
| | - Giulio Pagnacco
- DIVET, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| | - Alessio Valentini
- Dipartimento per l'Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, via de Lellis, 01100, Viterbo, Italy.
| | - Fabio Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via Francesco De Sanctis s.n.c., 86100, Campobasso, Italy.
| | - Paolo Ajmone-Marsan
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, via Emilia Parmense, 84, 29122, Piacenza, Italy.
| | - Paola Crepaldi
- DIVET, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| | | |
Collapse
|
28
|
Tang Q, Huang W, Guan J, Jin L, Che T, Fu Y, Hu Y, Tian S, Wang D, Jiang Z, Li X, Li M. Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats. Gene 2015; 567:208-16. [PMID: 25958351 DOI: 10.1016/j.gene.2015.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation.
Collapse
Affiliation(s)
- Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenyao Huang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Science, Chengdu 611731, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiandong Che
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhua Fu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaodong Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Dawei Wang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|