1
|
Yadav KK, Boley PA, Lee CM, Khatiwada S, Jung K, Laocharoensuk T, Hofstetter J, Wood R, Hanson J, Kenney SP. Rat hepatitis E virus cross-species infection and transmission in pigs. PNAS NEXUS 2024; 3:pgae259. [PMID: 39035038 PMCID: PMC11259135 DOI: 10.1093/pnasnexus/pgae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Strains of Rocahepevirus ratti, an emerging hepatitis E virus (HEV), have recently been found to be infectious to humans. Rats are a primary reservoir of the virus; thus, it is referred to as "rat HEV". Rats are often found on swine farms in close contact with pigs. Our goal was to determine whether swine may serve as a transmission host for zoonotic rat HEV by characterizing an infectious cDNA clone of a zoonotic rat HEV, strain LCK-3110, in vitro and in vivo. RNA transcripts of LCK-3110 were constructed and assessed for their replicative capacity in cell culture and in gnotobiotic pigs. Fecal suspension from rat HEV-positive gnotobiotic pigs was inoculated into conventional pigs co-housed with naïve pigs. Our results demonstrated that capped RNA transcripts of LCK-3110 rat HEV replicated in vitro and successfully infected conventional pigs that transmit the virus to co-housed animals. The infectious clone of rat HEV may afford an opportunity to study the genetic mechanisms of rat HEV cross-species infection and tissue tropism.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Patricia A Boley
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Carolyn M Lee
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Saroj Khatiwada
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Kwonil Jung
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Thamonpan Laocharoensuk
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Jake Hofstetter
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Ronna Wood
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | - Juliette Hanson
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Scott P Kenney
- Department of Animal Sciences, Center for Food Animal Health, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Immunohistochemical Characterization of Immune System Cells in Lymphoid Organs from Roe and Fallow Deer. Animals (Basel) 2022; 12:ani12213064. [PMID: 36359187 PMCID: PMC9654140 DOI: 10.3390/ani12213064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Diseases emerging from wildlife represent a growing public health issue. Cervids share many pathogens with domestic species and humans, representing useful spontaneous models to evaluate host-pathogen balance. Histology and immunohistochemistry can help in fully understanding the pathogenesis of infection in these species, but few studies have been conducted to characterize immune cell markers. This study highlights that lymphocytes and macrophagic subsets in roe and fallow deer lymphoid tissue can be identified by a panel of commercial antibodies developed against humans. A description of the main immune cell distribution was provided. These results may support future investigations on immune cell response and pathogenesis in roe and fallow deer diseases. Abstract Roe and Fallow deer are common wild ruminants widely distributed in Italy. Infectious diseases of these species can potentially pose health risks to domestic animals and humans. However, few studies have been conducted in which immune system cells in these species were phenotyped. The aims of this study were to determine the cross-reactivity of a wide anti-human panel of commercial antibodies on formalin-fixed and paraffin-embedded (FFPE) samples and to describe the distribution of roe and fallow deer main immune cell subsets in the lymph nodes and spleen. Twenty retromandibular lymph nodes (RLNs) and spleen samples were collected from 10 roe deer and 10 fallow deer and were tested by a panel of 12 commercial anti-human antibodies. The CD79a, CD20, CD3, Iba-1, MAC387, and AM-3K antibodies were successfully labeled cells in cervine tissue, while the Foxp3 and the CD68 did not show suitable immunostaining. This study supplies the first immunohistochemical description of immune cell subpopulations in non-pathological spleen and RLNs from roe and fallow deer and provides an easily repeatable manual IHC protocol to immunolocalize cervine B-, T-cells, and macrophages subsets in FFPE tissue samples.
Collapse
|
3
|
Current Knowledge of Hepatitis E Virus (HEV) Epidemiology in Ruminants. Pathogens 2022; 11:pathogens11101124. [PMID: 36297181 PMCID: PMC9609093 DOI: 10.3390/pathogens11101124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) infection represents an emerging public health concern worldwide. In industrialized countries, increasing numbers of autochthonous cases of human HEV infection are caused by zoonotic transmission of genotypes 3 and 4, mainly through the consumption of contaminated raw or undercooked meat of infected pigs and wild boars, which are considered the main reservoirs of HEV. However, in the last few years, accumulating evidence seems to indicate that several other animals, including different ruminant species, may harbor HEV. Understanding the impact of HEV infection in ruminants and identifying the risk factors affecting transmission among animals and to humans is critical in order to determine their role in the epidemiological cycle of HEV. In this review, we provide a summary of current knowledge on HEV ecology in ruminants. A growing body of evidence has revealed that these animal species may be potential important hosts of HEV, raising concerns about the possible implications for public health.
Collapse
|
4
|
Frías M, Casades-Martí L, Risalde MÁ, López-López P, Cuadrado-Matías R, Rivero-Juárez A, Rivero A, Ruiz-Fons F. The Common Mosquito ( Culex pipiens) Does Not Seem to Be a Competent Vector for Hepatitis E Virus Genotype 3. Front Vet Sci 2022; 9:874030. [PMID: 35558890 PMCID: PMC9090475 DOI: 10.3389/fvets.2022.874030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
An experimental infection approach was used to estimate the competence of the common mosquito, Culex pipiens, for hepatitis E virus replication and transmission, using an isolate of hepatitis E virus genotype 3 of human origin in varying infectious doses. The experimental approach was carried out in biosafety level 2 conditions on three batches of 120 Cx. pipiens females, each using an artificial feeding system containing the virus in aliquots of fresh avian blood. Mosquitoes from each batch were collected 1, 7, 14, and 21 days post-infection (dpi) and dissected. The proboscis was subjected to forced excretion of saliva to estimate potential virus transmission. HEV RNA presence in abdomen, thorax, and saliva samples was analyzed by PCR at the selected post-infection times. HEV RNA was detected in the abdomens of Cx. pipiens females collected 1 dpi in the two experimentally-infected batches, but not in the saliva or thorax. None of the samples collected 7-21 dpi were positive. Our results show that Cx. pipiens is not a competent vector for HEV, at least for zoonotic genotype 3.
Collapse
Affiliation(s)
- Mario Frías
- Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Laia Casades-Martí
- Grupo Sanidad y Biotecnología, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - María Á. Risalde
- Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Investigación en Sanidad Animal y Zoonosis, Departamento de Anatomía y Anatomía Patología Comparada y Toxicología, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Pedro López-López
- Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Cuadrado-Matías
- Grupo Sanidad y Biotecnología, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Antonio Rivero-Juárez
- Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rivero
- Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Ruiz-Fons
- Grupo Sanidad y Biotecnología, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| |
Collapse
|
5
|
Fonti N, Pacini MI, Forzan M, Parisi F, Periccioli M, Mazzei M, Poli A. Molecular and Pathological Detection of Hepatitis E Virus in Roe Deer (Capreolus capreolus) and Fallow Deer (Dama dama) in Central Italy. Vet Sci 2022; 9:vetsci9030100. [PMID: 35324829 PMCID: PMC8950858 DOI: 10.3390/vetsci9030100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV) is a common causative agent of acute hepatitis in the world, with a serious public health burden in both developing and industrialized countries. Cervids, along with wild boars and lagomorphs, are the main wild hosts of HEV in Europe and constitute a documented source of infection for humans. The aim of this study was to evaluate the presence of HEV in roe deer (Capreolus capreolus) and fallow deer (Dama dama) living in Tuscany, Central Italy. Liver samples from 48 roe deer and 60 fallow deer were collected from carcasses during the hunting seasons. Following the results obtained from molecular and histopathologic studies, 5/48 (10.4%) roe deer and 1/60 (1.7%) fallow deer liver samples were positive for the presence of HEV RNA. All PCR-positive livers were also IHC-positive for viral antigen presence, associated with degenerative and inflammatory lesions with predominantly CD3+ cellular infiltrates. This study represents the first identification in Italy of HEV RNA in roe and fallow deer and the first study in literature describing liver alterations associated with HEV infection in cervids. These results demonstrate that HEV is present in wild cervid populations in Italy and confirm the potential zoonotic role of these species.
Collapse
Affiliation(s)
- Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Maria Irene Pacini
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Mario Forzan
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Marcello Periccioli
- Unità Funzionale di Sanità Pubblica Veterinaria e Sicurezza Alimentare Zona Distretto Grossetana, Dipartimento di Prevenzione, Azienda USL Toscana Sud Est, Amiata Grossetana e Colline Metallifere, Viale Cimabue, 109-58100 Grosseto, Italy;
| | - Maurizio Mazzei
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
- Correspondence:
| |
Collapse
|
6
|
Serological Evidence of Hepatitis E Virus Infection in Semi-Domesticated Eurasian Tundra Reindeer ( Rangifer tarandus tarandus) in Norway. Pathogens 2021; 10:pathogens10121542. [PMID: 34959497 PMCID: PMC8709481 DOI: 10.3390/pathogens10121542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/23/2023] Open
Abstract
Hepatitis E virus (HEV) is a common cause of viral hepatitis in humans. In developing countries, HEV-infections seem to be mainly associated with pigs, but other animal species may be involved in viral transmission. Recently, anti-HEV antibodies were detected in Norwegian wild reindeer. Here, we investigated anti-HEV seroprevalence in Norwegian semi-domesticated reindeer, animals in closer contact with humans than their wild counterparts. Blood samples (n = 516) were obtained from eight reindeer herds during the period 2013–2017 and analysed with a commercial enzyme-linked immunosorbent assay designed for detecting anti-HEV antibodies in livestock. Antibodies were found in all herds and for all sampling seasons. The overall seroprevalence was 15.7% (81/516), with adults showing a slightly higher seroprevalence (18.0%, 46/256) than calves (13.5%, 35/260, p = 0.11). The seroprevalence was not influenced by gender or latitude, and there was no temporal trend (p > 0.15). A positive association between the presence of anti-HEV antibodies and antibodies against alphaherpesvirus and pestivirus, detected in a previous screening, was found (p < 0.05). We conclude that Norwegian semi-domesticated reindeer are exposed to HEV or an antigenically similar virus. Whether the virus is affecting reindeer health or infects humans and poses a threat for human health remains unknown and warrants further investigations.
Collapse
|
7
|
Low Serologic Prevalences Suggest Sporadic Infections of Hepatitis E Virus in Chamois ( Rupicapra rupicapra) and Red Deer ( Cervus elaphus) in the Italian Alps. J Wildl Dis 2019. [PMID: 31658433 DOI: 10.7589/2019-02-036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hepatitis E virus (HEV) is a worldwide public health concern, with an increase in human autochthonous cases in Europe. Although domestic pigs and wild boar (Sus scrofa) are the main reservoirs of HEV, the constant expansion of wild ruminants increases the potential for HEV transmission. We investigated HEV infection in chamois (Rupicapra rupicapra) and red deer (Cervus elaphus) in the Italian Alps using an enzyme-linked immunosorbent assay (ELISA). We detected HEV antibodies from 2013 to 2015 in both host species, with seroprevalences of 1.2% and 0.8% in chamois and red deer, respectively. All serum samples that were positive to HEV antibodies by ELISA were negative when tested by real-time reverse-transcriptase PCR to detect HEV RNA. The observed low seroprevalence of HEV suggested a sporadic circulation of HEV in the alpine environment, and it was consistent with the low seroprevalence observed in wild boar in the Alps. Our observations supported the role of chamois and red deer as spillover hosts of HEV infections in the Italian Alps.
Collapse
|
8
|
Abstract
Wild boar populations around the world have increased dramatically over past decades. Climate change, generating milder winters with less snow, may affect their spread into northern regions. Wild boars can serve as reservoirs for a number of bacteria, viruses, and parasites, which are transmissible to humans and domestic animals through direct interaction with wild boars, through contaminated food or indirectly through contaminated environment. Disease transmission between wild boars, domestic animals, and humans is an increasing threat to human and animal health, especially in areas with high wild boar densities. This article reviews important foodborne zoonoses, including bacterial diseases (brucellosis, salmonellosis, tuberculosis, and yersiniosis), parasitic diseases (toxoplasmosis and trichinellosis), and the viral hepatitis E. The focus is on the prevalence of these diseases and the causative microbes in wild boars. The role of wild boars in transmitting these pathogens to humans and livestock is also briefly discussed.
Collapse
Affiliation(s)
- Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki , Helsinki, Finland
| |
Collapse
|
9
|
King NJ, Hewitt J, Perchec-Merien AM. Hiding in Plain Sight? It's Time to Investigate Other Possible Transmission Routes for Hepatitis E Virus (HEV) in Developed Countries. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:225-252. [PMID: 29623595 DOI: 10.1007/s12560-018-9342-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Historically in developed countries, reported hepatitis E cases were typically travellers returning from countries where hepatitis E virus (HEV) is endemic, but now there are increasing numbers of non-travel-related ("autochthonous") cases being reported. Data for HEV in New Zealand remain limited and the transmission routes unproven. We critically reviewed the scientific evidence supporting HEV transmission routes in other developed countries to inform how people in New Zealand may be exposed to this virus. A substantial body of indirect evidence shows domesticated pigs are a source of zoonotic human HEV infection, but there is an information bias towards this established reservoir. The increasing range of animals in which HEV has been detected makes it important to consider other possible animal reservoirs of HEV genotypes that can or could infect humans. Foodborne transmission of HEV from swine and deer products has been proven, and a large body of indirect evidence (e.g. food surveys, epidemiological studies and phylogenetic analyses) support pig products as vehicles of HEV infection. Scarce data from other foods suggest we are neglecting other potential sources of foodborne HEV infection. Moreover, other transmission routes are scarcely investigated in developed countries; the role of infected food handlers, person-to-person transmission via the faecal-oral route, and waterborne transmission from recreational contact or drinking untreated or inadequately treated water. People have become symptomatic after receiving transfusions of HEV-contaminated blood, but it is unclear how important this is in the overall hepatitis E disease burden. There is need for broader research efforts to support establishing risk-based controls.
Collapse
Affiliation(s)
- Nicola J King
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand.
| | - Anne-Marie Perchec-Merien
- New Zealand Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington, New Zealand
| |
Collapse
|
10
|
Spancerniene U, Grigas J, Buitkuviene J, Zymantiene J, Juozaitiene V, Stankeviciute M, Razukevicius D, Zienius D, Stankevicius A. Prevalence and phylogenetic analysis of hepatitis E virus in pigs, wild boars, roe deer, red deer and moose in Lithuania. Acta Vet Scand 2018; 60:13. [PMID: 29471843 PMCID: PMC5824565 DOI: 10.1186/s13028-018-0367-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/15/2018] [Indexed: 01/02/2023] Open
Abstract
Background Hepatitis E virus (HEV) is one of the major causes of acute viral hepatitis worldwide. In Europe, food-borne zoonotic transmission of HEV genotype 3 has been associated with domestic pigs and wild boar. Controversial data are available on the circulation of the virus in animals that are used for human consumption, and to date, no gold standard has yet been defined for the diagnosis of HEV-associated hepatitis. To investigate the current HEV infection status in Lithuanian pigs and wild ungulates, the presence of viral RNA was analyzed by nested reverse transcription polymerase chain reaction (RT-nPCR) in randomly selected samples, and the viral RNA was subsequently genotyped. Results In total, 32.98 and 22.55% of the domestic pig samples were HEV-positive using RT-nPCR targeting the ORF1 and ORF2 fragments, respectively. Among ungulates, 25.94% of the wild boar samples, 22.58% of the roe deer samples, 6.67% of the red deer samples and 7.69% of the moose samples were positive for HEV RNA using primers targeting the ORF1 fragment. Using primers targeting the ORF2 fragment of the HEV genome, viral RNA was only detected in 17.03% of the wild boar samples and 12.90% of the roe deer samples. Phylogenetic analysis based on a 348-nucleotide-long region of the HEV ORF2 showed that all obtained sequences detected in Lithuanian domestic pigs and wildlife belonged to genotype 3. In this study, the sequences identified from pigs, wild boars and roe deer clustered within the 3i subtype reference sequences from the GenBank database. The sequences obtained from pig farms located in two different counties of Lithuania were of the HEV 3f subtype. The wild boar sequences clustered within subtypes 3i and 3h, clearly indicating that wild boars can harbor additional subtypes of HEV. For the first time, the ORF2 nucleotide sequences obtained from roe deer proved that HEV subtype 3i can be found in a novel host. Conclusion The results of the viral prevalence and phylogenetic analyses clearly demonstrated viral infection in Lithuanian pigs and wild ungulates, thus highlighting a significant concern for zoonotic virus transmission through both the food chain and direct contact with animals. Unexpected HEV genotype 3 subtype diversity in Lithuania and neighboring countries revealed that further studies are necessary to understand the mode of HEV transmission between animals and humans in the Baltic States region.
Collapse
|