1
|
Yenigun S, Basar Y, Ipek Y, Behcet L, Demirtas I, Ozen T. DNA protection, molecular docking, molecular dynamic, enzyme inhibition, and kinetics studies of apigenin isolated from Nepeta baytopii Hedge & Lamond by bioactivity-guided fractionation. J Biomol Struct Dyn 2024:1-12. [PMID: 39692135 DOI: 10.1080/07391102.2024.2442753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 12/19/2024]
Abstract
Plant-derived bioactive substances have demonstrated significant qualities that suggest they may be crucial in preventing various chronic diseases. Flavonoids, which include apigenin, are the biggest group of polyphenols. In our study, we aimed to obtain the methanol-chloroform (1:1) extract from the aerial parts of Nepeta baytopii Hedge & Lamond and purify the apigenin using bioactivity-guided isolation to separate the active fraction. The current in vitro study provides updated knowledge on apigenin regarding its previously unresearched DNA protection activity and enzyme inhibition, enzyme inhibition kinetics, and enzyme-apigenin interactions. In this context, these studies will be the first and will contribute to the literature. Apigenin had high urease (IC50-5.00 ± 0.00 µM), butyrlcholinesterase (BChE:IC50-10.48 ± 0.00 µM), and tyrosinase (IC50-177.82 ± 14.40 µM) inhibition activities, while inhibition binding constants were high in urease (Ki-0.05 mM), tyrosinase (Ki-0.06 mM), and carbonic anhydrase (Ki-0.08 mM). The binding affinities and constants of the interaction were also ascertained to be high for BChE (-9.50 kcal/mol, and Ki-0.11 µM), and tyrosinase (-8.80 kcal/mol, and Ki, 0.62 µM) with apigenin. In summary, apigenin can be used as an inhibitor for five enzymes. These results will give priority to further studies. Apigenin showed high DNA protection activity with a Form I value of 67.37%. These data demonstrated that the interaction formed by BChE-apigenin gave the best results regarding enzyme inhibition and enzyme-molecule interaction. The stability of this complex was evaluated using molecular dynamics modeling.
Collapse
Affiliation(s)
- Semiha Yenigun
- Department of Chemistry, Faculty of Science, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| | - Yunus Basar
- Department of Biochemistry, Faculty of Arts and Sciences, Iğdır University, Iğdır, Turkey
| | - Yasar Ipek
- Department of Chemistry, Faculty of Science, Uluyazı Campus, Çankırı Karatekin University, Çankırı, Turkey
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingöl University, Bingöl, Turkey
| | - Ibrahim Demirtas
- Department of Biochemistry, Faculty of Arts and Sciences, Iğdır University, Iğdır, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
2
|
Lou X, Shao W, Wu Y, Ma H, Chen H, Zheng N, Zhao Y. Peptidomic Analysis of Potential Bioactive Peptides in Mare Milk Under Different Heat Treatment Conditions. Foods 2024; 13:3592. [PMID: 39594008 PMCID: PMC11592959 DOI: 10.3390/foods13223592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Active peptides in mare milk have unique biological activities, but how the bioactive protein in mare's milk changes under the influence of temperature has not been fully studied. Therefore, in this study, the differential expression of bioactive peptides potentially present in horse milk under different heat treatment conditions was investigated for the first time using peptidomic and bioinformatic techniques. We collected a total of 15 samples. In this study, we divided the samples into five groups, specifically, 65 °C, 30 min; 72 °C, 15 min; 83 °C; 10 min; 95 °C, 5 min; and an untreated group as a control, which involved four different temperature treatments, in order to understand changes in bioactive peptides and to identify the sequence of bioactive peptides. In the experiment, a total of 2341 active peptides were identified. The amino acid composition of the potential active peptides remained stable across different temperatures, but their abundance varied with temperature. In all, 23 peptides from 20 different proteins were identified, with the highest number of active peptides identified at 72 °C. Through database searches, we found that a majority of these peptides were within β-lactoglobulin and immunoglobulin domain proteins, which are known for their potential biological activities. These findings provide a theoretical foundation for the development of peptides with different bioactivities as potential functional foods.
Collapse
Affiliation(s)
- Xiaoxiao Lou
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
- Xinjiang Meat and Milk Herbivore Nutrition Laboratory, College of Animal Science, Urumqi 830052, China;
| | - Wei Shao
- Xinjiang Meat and Milk Herbivore Nutrition Laboratory, College of Animal Science, Urumqi 830052, China;
| | - Yating Wu
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
| | - Hongpeng Ma
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
- Xinjiang Meat and Milk Herbivore Nutrition Laboratory, College of Animal Science, Urumqi 830052, China;
| | - He Chen
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
| | - Nan Zheng
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
- Key Laboratory for Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Yankun Zhao
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
- Key Laboratory for Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, China
| |
Collapse
|
3
|
Başar Y, Yenigün S, İpek Y, Behçet L, Gül F, Özen T, Demirtaş İ. DNA protection, molecular docking, enzyme inhibition and enzyme kinetic studies of 1,5,9-epideoxyloganic acid isolated from Nepeta aristata with bio-guided fractionation. J Biomol Struct Dyn 2024; 42:9235-9248. [PMID: 37615429 DOI: 10.1080/07391102.2023.2250461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
1,5,9-epideoxyloganic acid (ELA) was isolated from the aerial parts of endemic Nepeta aristata Boiss Et Kotschy Ex Boiss crude extract (methanol:chloroform) using silica gel (hexane, chloroform, ethyl acetate, and methanol) and sephadex LH-20 (65% methanol-35% chloroform) columns. Activity-guided isolation was performed on methanol sub-fractions with DNA protection and enzyme inhibitory activities, and then the ELA was purified by prep-HPLC. The ELA structure, bio-guided isolate, was determined via 1H NMR, 13C NMR, and MS spectrometry. ELA's enzyme inhibition and DNA protection activities were investigated and compared with standard drugs. The inhibition capacity of ELA against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), urease, carbonic anhydrase (CA), α-glucosidase, α-amylase, lipase, and tyrosinase enzymes was evaluated by kinetic and molecular docking results. The ELA displayed the best inhibitory activity on AChE, BChE, α-glucosidase, urease, α-amylase, and tyrosinase with IC50 values of 2.53 ± 0.27, 3.75 ± 0.11, 3.98 ± 0.07, 4.40 ± 0.01, 6.43 ± 0.54 and 7.39 ± 0.00 µg/mL, respectively. ELA acted as a competitive inhibitor against BChE and α-glucosidase and a non-competitive inhibitor against AChE. The ELA's binding affinity values on AChE, BChE, and α-glucosidase were -7.70, -8.50, and -8.30 kcal/mol, respectively. DNA protection activity of the ELA molecule was determined as 57.53% for form I and 53.57% for form II. In conclusion, the inhibitory activity of ELA demonstrated its effectiveness in terms of its suitability in the pharmaceutical industry.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yunus Başar
- Research Laboratories Application and Research Center (ALUM), Igdir University, Igdir, Turkey
| | - Semiha Yenigün
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Yaşar İpek
- Department of Chemistry, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
| | - Lütfi Behçet
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingöl University, Bingol, Turkey
| | - Fatih Gül
- Research Laboratories Application and Research Center (ALUM), Igdir University, Igdir, Turkey
| | - Tevfik Özen
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - İbrahim Demirtaş
- Research Laboratories Application and Research Center (ALUM), Igdir University, Igdir, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
4
|
Errante F, Sforzi L, Supuran CT, Papini AM, Rovero P. Peptide and peptidomimetic tyrosinase inhibitors. Enzymes 2024; 56:135-189. [PMID: 39304286 DOI: 10.1016/bs.enz.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Melanin, which is produced by melanocytes and spread over keratinocytes, is responsible for human skin browning. There are several processes involved in melanogenesis, mostly prompted by enzymatic activities. Tyrosinase (TYR), a copper containing metalloenzyme, is considered the main actor in melanin production, as it catalyzes two crucial steps that modify tyrosine residues in dopaquinone. For this reason, TYR inhibition has been exploited as a possible mechanism of modulation of hyper melanogenesis. There are various types of molecules used to block TYR activity, principally used as skin whitening agents in cosmetic products, e.g., tretinoin, hydroquinone, azelaic acid, kojic acid, arbutin and peptides. Peptides are highly valued for their versatile nature, making them promising candidates for various functions. Their specificity often leads to excellent safety, tolerability, and efficacy in humans, which can be considered their primary advantage over traditional small molecules. There are several examples of tyrosinase inhibitor peptides (TIPs) operating as possible hypo-pigmenting agents, which can be classified according to their origin: natural, hybrid or synthetically produced. Moreover, the possibility of variating their backbones, introducing non-canonical amino acids or modifying one or more peptide bond(s), to obtain peptidomimetic molecules, is an added value to avoid or delay proteolytic activity, while the possibility of conjugation with other bioactive peptides or organic moieties can bring other specific activity leading to dual-functional peptides.
Collapse
Affiliation(s)
- Fosca Errante
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Lucrezia Sforzi
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Anna Maria Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
5
|
Yenigün S, Başar Y, İpek Y, Behçet L, Özen T, Demirtaş İ. Determination of antioxidant, DNA protection, enzyme inhibition potential and molecular docking studies of a biomarker ursolic acid in Nepeta species. J Biomol Struct Dyn 2024; 42:5799-5816. [PMID: 37394807 DOI: 10.1080/07391102.2023.2229440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Ursolic acid (UA), which has many biological properties such as anti-cancer, anti-inflammatory and antioxidant, and regulates some pharmacological processes, has been isolated from the flowers, leaves, berries and fruits of many plant species. In this work, UA was purified from the methanol-chloroform crude extract of Nepeta species (N. aristata, N. baytopii, N. italica, N. trachonitica, N. stenantha) using a silica gel column with chloroform or ethyl acetate solvents via bioactivity-guided isolation. The most active sub-fractions were determined under bioactivities using antioxidant and DNA protection activities and enzyme inhibitions. UA was purified from these fractions and its structure was elucidated by NMR spectroscopy techniques. The highest amount of UA was found in N. stenantha (8.53 mg UA/g), while the lowest amount of UA was found in N. trachonitica (1.92 mg UA/g). The bioactivities of UA were evaluated with antioxidant and DNA protection activities, enzyme inhibitions, kinetics and interactions. The inhibition values (IC50) of α-amylase, α-glucosidase, urease, CA, tyrosinase, lipase, AChE, and BChE were determined between 5.08 and 181.96 µM. In contrast, Ki values of enzyme inhibition kinetics were observed between 0.04 and 0.20 mM. In addition, Ki values of these enzymes for enzyme-UA interactions were calculated as 0.38, 0.86, 0.45, 1.01, 0.23, 0.41, 0.01 and 2.24 µM, respectively. It is supported that UA can be widely used as a good antioxidant against oxidative damage, an effective DNA protector against genetic diseases, and a suitable inhibitor for metabolizing enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Semiha Yenigün
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Yunus Başar
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
| | - Yaşar İpek
- Faculty of Science, Department of Chemistry, Çankırı Karatekin University, Çankırı, Turkey
| | - Lütfi Behçet
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bingöl University, Bingöl, Turkey
| | - Tevfik Özen
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - İbrahim Demirtaş
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
6
|
Gökçimen SŞ, İpek Y, Behçet L, Demirtaş İ, Özen T. Isolation, characterization and evaluation of oxypeucedanin and osthol from local endemic Prangos aricakensis Behçet and Yapar root as antioxidant, enzyme inhibitory, antibacterial and DNA protection: molecular docking and DFT approaches. J Biomol Struct Dyn 2024:1-18. [PMID: 38214506 DOI: 10.1080/07391102.2024.2303387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Prangos species were previously used against many disorders due to their chemical component. Prangos aricakensis Behçet & Yapar is a newly discovered local endemic species in Turkey's eastern region, and there is no research on P. aricakensis in the literature. In this work, oxypeucedanin and osthol molecules have been isolated from the root part of P. aricakensis for the first time. Oxypeucedanin and osthol structures were elucidated by 1D and 2D NMR analysis. For the bioactivities determination, antioxidant (DPPH· and ABTS·+ scavenging), enzyme inhibition (AChE, BChE, tyrosinase, and urease), antibacterial and DNA protection activity studies were applied for both molecules and compared with standard drug molecules, after applying enzyme kinetic assays and in silico approaches to clarify the mechanism of action for both molecules with enzymes, using molecular docking and density functional theory (DFT). Oxypeucedanin (2.19 ± 0.38 µg/mL) and osthol (4.57 ± 1.28 µg/mL) exhibited better activity than standards in DPPH∙ scavenging activity. Osthol (11.76 ± 0.59 µg/mL) showed a better tyrosinase inhibition effect than kojic acid (12.82 ± 0.91 µg/mL), and oxypeucedanin (3.03 ± 0.01 µg/mL) showed better urease inhibition effect than thiourea (5.37 ± 1.86 µg/mL). Our results showed that the osthol molecule was an excellent skin protective agent while the oxypeucedanin molecule could be a remarkable antiulcer agent. Therefore, although this study is the first in its field, it remained in the in vitro and in silico stages and is thought to pave the way for in vivo studies in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Serbay Şafak Gökçimen
- Faculty of Science, Department of Chemistry, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| | - Yaşar İpek
- Faculty of Science, Department of Chemistry, Uluyazı Campus, Çankırı Karatekin University, Çankırı, Turkey
| | - Lütfi Behçet
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bingöl University, Bingöl, Turkey
| | - İbrahim Demirtaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
- Research Laboratories Application and Research Center (ALUM), Igdir University, Iğdır, Turkiye
| | - Tevfik Özen
- Faculty of Science, Department of Chemistry, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
7
|
Yenigun S, Ipek Y, Marah S, Demirtas I, Ozen T. DNA protection, molecular docking, antioxidant, antibacterial, enzyme inhibition, and enzyme kinetic studies for parietin, isolated from Xanthoria parietina (L.) Th. Fr. J Biomol Struct Dyn 2024; 42:848-862. [PMID: 37021462 DOI: 10.1080/07391102.2023.2196693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Parietin was isolated from Xanthoria parietina (L.) Th. Fr.' (methanol:chloroform) extract, using a silica column. 13 C NMR and 1H NMR were used to confirm the structure of the isolated parietin. For the first time, parietin was investigated for its antioxidant, antibacterial and DNA protective activities. Molecular docking was carried out to determine the binding affinity and interactions between the enzymes and our molecule. Inhibition and kinetic mechanism studies for the action of the enzymes were performed too. Parietin exhibited high metal chelating activity. The MIC values of parietin were sufficient to inhibit different bacterial strains; E. coli, P. aeruginosa, K. pneumoniae and S. aureus. Molecular docking applications exhibited that acetylcholinesterase (AChE), butyrylcholinesterase (BChE), lipase, and tyrosinase have high potential for binding with the parietin. Especially, the parietin's highest binding affinity was recorded with AChE and tyrosinase. These results were confirmed by the inhibition and kinetics results, where, parietin observed a potent inhibition with an IC50 values between 0.013-0.003 µM. Moreover, parietin acts' as a non-competitive inhibitor against AChE, BChE, and lipase, and as a competitive inhibitor against tyrosinase with a high rate of inhibition stability. The promising biological properties of parietin revealed its effectiveness in terms of suitability in the food and pharmaceutical industries.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Semiha Yenigun
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Yasar Ipek
- Department of Biochemistry, Faculty of Science and Art, Cankiri Karatekin University, Cankiri, Turkey
| | - Sarmad Marah
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Ibrahim Demirtas
- Department of Biochemistry, Faculty of Science and Art, Igdir University, Igdir, Turkey
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
8
|
Charoenkwan P, Kongsompong S, Schaduangrat N, Chumnanpuen P, Shoombuatong W. TIPred: a novel stacked ensemble approach for the accelerated discovery of tyrosinase inhibitory peptides. BMC Bioinformatics 2023; 24:356. [PMID: 37735626 PMCID: PMC10512532 DOI: 10.1186/s12859-023-05463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Tyrosinase is an enzyme involved in melanin production in the skin. Several hyperpigmentation disorders involve the overproduction of melanin and instability of tyrosinase activity resulting in darker, discolored patches on the skin. Therefore, discovering tyrosinase inhibitory peptides (TIPs) is of great significance for basic research and clinical treatments. However, the identification of TIPs using experimental methods is generally cost-ineffective and time-consuming. RESULTS Herein, a stacked ensemble learning approach, called TIPred, is proposed for the accurate and quick identification of TIPs by using sequence information. TIPred explored a comprehensive set of various baseline models derived from well-known machine learning (ML) algorithms and heterogeneous feature encoding schemes from multiple perspectives, such as chemical structure properties, physicochemical properties, and composition information. Subsequently, 130 baseline models were trained and optimized to create new probabilistic features. Finally, the feature selection approach was utilized to determine the optimal feature vector for developing TIPred. Both tenfold cross-validation and independent test methods were employed to assess the predictive capability of TIPred by using the stacking strategy. Experimental results showed that TIPred significantly outperformed the state-of-the-art method in terms of the independent test, with an accuracy of 0.923, MCC of 0.757 and an AUC of 0.977. CONCLUSIONS The proposed TIPred approach could be a valuable tool for rapidly discovering novel TIPs and effectively identifying potential TIP candidates for follow-up experimental validation. Moreover, an online webserver of TIPred is publicly available at http://pmlabstack.pythonanywhere.com/TIPred .
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasikarn Kongsompong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand.
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
9
|
Ge Z, Liu JC, Sun JA, Mao XZ. Tyrosinase Inhibitory Peptides from Enzyme Hydrolyzed Royal Jelly: Production, Separation, Identification and Docking Analysis. Foods 2023; 12:foods12112240. [PMID: 37297482 DOI: 10.3390/foods12112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Tyrosinase is inextricably related to the development of Alzheimer's disease. The effects of natural tyrosinase inhibitors on human health have attracted widespread attention. This study aimed to isolate and analyze the tyrosinase (TYR) inhibitory peptides in the enzymatic digestion products of royal jelly. We first analyzed optimal process conditions for the enzymatic digestion of royal jelly by single-factor and orthogonal experiments and then used gel filtration chromatography to obtain five fractions (D1~D5) with molecular weights ranging from 600 to 1100 Da. LC-MS/MS was applied to identify the fractions with the highest activity, and the obtained peptides were screened and molecularly docked using AutoDock Vina. The results showed that the optimal enzymatic conditions for tyrosinase inhibition rate were acid protease, enzyme addition 10,000 U/g, initial pH 4, feed-to-liquid ratio 1:4, enzymatic temperature 55 °C, and enzymatic time 4 h. The D4 fraction had the most significant TYR inhibitory activity. The IC50 values of the three new peptides with the strongest TYR inhibitory activity, TIPPPT, IIPFIF, and ILFTLL, were obtained as 7.59 mg/mL, 6.16 mg/mL, and 9.25 mg/mL, respectively. The molecular docking results showed that aromatic and hydrophobic amino acids were more favorable to occupy the catalytic center of TYR. In conclusion, the new peptide extracted from royal jelly has the potential to be used as a natural TYR inhibitory peptide in food products with health-promoting properties.
Collapse
Affiliation(s)
- Zhen Ge
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jun-Cai Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jian-An Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiang-Zhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Progress on membrane technology for separating bioactive peptides. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Identification of peptides with antioxidant, anti-lipoxygenase, anti-xanthine oxidase and anti-tyrosinase activities from velvet antler blood. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Song Y, Chen S, Li L, Zeng Y, Hu X. The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview. Molecules 2022; 27:molecules27092710. [PMID: 35566061 PMCID: PMC9103514 DOI: 10.3390/molecules27092710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Skin hyperpigmentation resulting from excessive tyrosinase expression has long been a problem for beauty lovers, which has not yet been completely solved. Although researchers are working on finding effective tyrosinase inhibitors, most of them are restricted, due to cell mutation and cytotoxicity. Therefore, functional foods are developing rapidly for their good biocompatibility. Food-derived peptides have been proven to display excellent anti-tyrosinase activity, and the mechanisms involved mainly include inhibition of oxidation, occupation of tyrosinase’s bioactive site and regulation of related gene expression. For anti-oxidation, peptides can interrupt the oxidative reactions catalyzed by tyrosinase or activate an enzyme system, including SOD, CAT, and GSH-Px to scavenge free radicals that stimulate tyrosinase. In addition, researchers predict that peptides probably occupy the site of the substrate by chelating with copper ions or combining with surrounding amino acid residues, ultimately inhibiting the catalytic activity of tyrosinase. More importantly, peptides reduce the tyrosinase expression content, primarily through the cAMP/PKA/CREB pathway, with PI3K/AKT/GSK3β, MEK/ERK/MITF and p38 MAPK/CREB/MITF as side pathways. The objective of this overview is to recap three main mechanisms for peptides to inhibit tyrosinase and the emerging bioinformatic technologies used in developing new inhibitors.
Collapse
Affiliation(s)
- Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|
13
|
Ali Redha A, Valizadenia H, Siddiqui SA, Maqsood S. A state-of-art review on camel milk proteins as an emerging source of bioactive peptides with diverse nutraceutical properties. Food Chem 2021; 373:131444. [PMID: 34717085 DOI: 10.1016/j.foodchem.2021.131444] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
The generation of camel milk derived bioactive peptides (CM-BAPs) have started to grab keen interest of many researchers during the past decade. CM-BAPs have shown more significant bioactive properties in comparison to camel milk intact proteins. CM-BAPs can be obtained using enzyme hydrolysis to form hydrolysates, or by the fermentation process. In this systematic review, 46 research articles exploring the health-related bioactive properties of CM-BAPs through in-vitro and in-vivo studies have been included. CM-BAPs have been reported for their antioxidant, anti-diabetic, anti-obesity, antihypertensive, antibacterial, antibiofilm, anticancer, anti-inflammatory, anti-haemolytic, and anti-hyperpigmentation activities. The effects of factors such as molecular weight of peptides, type of enzyme, enzyme to substrate ratio, hydrolysis temperature and duration have been analysed. The in-vitro studies have provided enough evidence on certain aspects of the pharmacological actives of camel milk bioactive peptides. Nevertheless, the in-vivo studies are very limited, and no clinical studies on CM-BAPs have been reported.
Collapse
Affiliation(s)
- Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Hamidreza Valizadenia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Semnan Province, Iran
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; DIL e.V. - German Institute of Food Technologies, D-Quakenbrück, Germany
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
14
|
Hariri R, Saeedi M, Akbarzadeh T. Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors. J Pept Sci 2021; 27:e3329. [PMID: 33860571 DOI: 10.1002/psc.3329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/30/2023]
Abstract
Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment, which is the most important photo protective agent against skin photo carcinogenesis. Excess production of melanin causes hyperpigmentation leading to undesired browning in human skin, fruits, and vegetable as well as plant-derived foods. Moreover, the role of tyrosinase in the onset and progression of various diseases such as cancers, Alzheimer's, and Parkinson diseases has been well documented in the literature. In this respect, tyrosinase inhibitors have been in the center of attention particularly as the efficient skin whitening agents. Among a wide range of compounds possessing anti-tyrosinase activity, peptides both natural and synthetic derivatives have attracted attention due to high potency and safety.
Collapse
Affiliation(s)
- Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Angiotensin-I Converting Enzyme Inhibition and Antioxidant Activity of Papain-Hydrolyzed Camel Whey Protein and Its Hepato-Renal Protective Effects in Thioacetamide-Induced Toxicity. Foods 2021; 10:foods10020468. [PMID: 33672579 PMCID: PMC7924048 DOI: 10.3390/foods10020468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Papain hydrolysis of camel whey protein (CWP) produced CWP hydrolysate (CWPH). Fractionation of CWPH by the size exclusion chromatography (SEC) generated fractions (i.e., SEC-F1 and SEC-F2). The angiotensin converting enzyme inhibitory activity (ACE-IA) and free radical scavenging actions were assessed for CWP, CWPH, SEC-F1, and SEC-F2. The SEC-F2 exerted the highest ACE-IA and scavenging activities, followed by CWPH. The protective effects of CWPH on thioacetamide (TAA)-induced toxicity were investigated in rats. The liver enzymes, protein profile, lipid profile, antioxidant enzyme activities, renal functions, and liver histopathological changes were assessed. Animals with TAA toxicity showed impaired hepatorenal functions, hyperlipidemia, and decreased antioxidant capacity. Treatment by CWPH counteracted the TAA-induced oxidative tissue damage as well as preserved the renal and liver functions, the antioxidative enzyme activities, and the lipid profile, compared to the untreated animals. The current findings demonstrate that the ACE-IA and antioxidative effects of CWPH and its SEC-F2 fraction are worth noting. In addition, the CWPH antioxidative properties counteracted the toxic hepatorenal dysfunctions. It is concluded that the hydrolysis of CWP generates a wide range of bioactive peptides with potent antihypertensive, antioxidant, and hepatorenal protective properties. This opens up new prospects for the therapeutic utilization of CWPH and its fractions in the treatment of oxidative stress-associated health problems, e.g., hypertension and hepatorenal failure.
Collapse
|
16
|
Nascimento TCES, Molino JVD, Donado PRS, Montalvo GSA, Dos Santos WL, Gomes JEG, Santos JHPM, da Silva R, Sette LD, Pessoa Junior A, Moreira KA. Antarctic fungus proteases generate bioactive peptides from caseinate. Food Res Int 2021; 139:109944. [PMID: 33509497 DOI: 10.1016/j.foodres.2020.109944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 01/20/2023]
Abstract
The extracellular serine protease produced by Acremonium sp. L1-4B isolated from the Antarctic continent, was purified and used for the proteolysis of bovine and caprine sodium caseinate. Protein hydrolysates were evaluated in vitro to determine their antioxidant and antihypertensive potential, and later characterized by mass spectrometry. Bovine and caprine hydrolysates produced over 24 h showed a higher content of copper chelation (25.8 and 31.2% respectively), also at this time the ABTS+• scavenging was 65.2% (bovine sample) and 67.5% (caprine sample), and bovine caseinate hydrolysate (8 h) exhibited higher iron chelation capacity (43.1%). Statistically (p < 0.05), caprine caseinate hydrolysates showed relatively higher antioxidant potential in this study. All hydrolysates showed antihypertensive potential; however peptides released from caprine caseinate after 8 h of hydrolysis were able to inhibit 75% of angiotensin-converting enzyme (ACE) activity. Nano-ESI-Q-TOF-MS/MS analysis prospected a total of 23 different peptide sequences in the bovine hydrolysate fraction, originated from the αS1- and β-casein chain, whilst in caprine hydrolysate, 31 sequences were detected, all from β-casein. The low molecular weight bovine and caprine hydrolysates obtained in this research have the potential to act in the prevention of disorders caused by oxidative reactions and in the regulation of blood pressure. These findings support the development of new functional food and nutraceutical formulations.
Collapse
Affiliation(s)
- Talita C E S Nascimento
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - João Vitor Dutra Molino
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Priscila R S Donado
- Department of Agribusiness, Food and Nutrition, ESALQ, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Gualberto S A Montalvo
- Department of Statistics and Applied Mathematics, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Wellington L Dos Santos
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - José Erick G Gomes
- Department of Chemistry and Environmental Science, IBILCE, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Roberto da Silva
- Department of Chemistry and Environmental Science, IBILCE, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Lara Durães Sette
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
17
|
Kong S, Choi HR, Kim YJ, Lee YS, Park KC, Kwak SY. Milk Protein-Derived Antioxidant Tetrapeptides as Potential Hypopigmenting Agents. Antioxidants (Basel) 2020; 9:antiox9111106. [PMID: 33182801 PMCID: PMC7698045 DOI: 10.3390/antiox9111106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022] Open
Abstract
Excessive accumulation of melanin can cause skin pigmentation disorders, which may be accompanied by significant psychological stress. Although many natural and synthetic products have been developed for the regulation of melanogenesis biochemistry, the management of unwanted skin pigmentation remains challenging. Herein, we investigated the potential hypopigmenting properties of peptide sequences that originated from milk proteins such as ĸ-casein and β-lactoglobulin. These proteins are known to inhibit melanogenesis and their hydrolysates are reported as antioxidant peptides. We synthesize tetrapeptide fragments of the milk protein hydrolysates and investigate the amino acids that are essential for designing peptides with tyrosinase inhibitory and antioxidant activities. We found that the peptide methionine-histidine-isoleucine-arginine amide sufficiently inhibits mushroom tyrosinase activity, shows potent antioxidant activity and effectively impedes melanogenesis in cultured melanocytes via cooperative biological activities. Our findings demonstrate the potential utility of the bioactive tetrapeptide from milk proteins as a chemical alternative to hypopigmenting agents.
Collapse
Affiliation(s)
- Saerom Kong
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (H.-R.C.); (Y.-J.K.)
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13605, Korea
| | - Yoon-Jeong Kim
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (H.-R.C.); (Y.-J.K.)
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
- Correspondence: (Y.-S.L.); (K.-C.P.); (S.-Y.K.)
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (H.-R.C.); (Y.-J.K.)
- Department of Dermatology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (Y.-S.L.); (K.-C.P.); (S.-Y.K.)
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (Y.-S.L.); (K.-C.P.); (S.-Y.K.)
| |
Collapse
|