1
|
Kim JH, Irfan M, Hossain MA, Shin S, George A, Chung S. LPS-induced inflammation potentiates dental pulp stem cell odontogenic differentiation through C5aR and p38. Connect Tissue Res 2023; 64:505-515. [PMID: 37247252 PMCID: PMC10524681 DOI: 10.1080/03008207.2023.2218944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
AIM Inflammation is a complex host response to harmful infection or injury, and it seems to play a crucial role in tissue regeneration both positively and negatively. We have previously demonstrated that the activation of the complement C5a pathway affects dentin-pulp regeneration. However, limited information is available to understand the role of the complement C5a system related to inflammation-mediated dentinogenesis. The aim of this study was to determine the role of complement C5a receptor (C5aR) in regulating lipopolysaccharide (LPS)-induced odontogenic differentiation of dental pulp stem cells (DPSCs). MATERIAL AND METHODS Human DPSCs were subjected to LPS-stimulated odontogenic differentiation in dentinogenic media treated with the C5aR agonist and antagonist. A putative downstream pathway of the C5aR was examined using a p38 mitogen-activated protein kinase (p38) inhibitor (SB203580). RESULTS Our data demonstrated that inflammation induced by the LPS treatment potentiated DPSC odontogenic differentiation and that this is C5aR dependent. C5aR signaling controlled the LPS-stimulated dentinogenesis by regulating the expression of odontogenic lineage markers like dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1). Moreover, the LPS treatment increased the total p38, and the active form of p38 expression, and treatment with SB203580 abolished the LPS-induced DSPP and DMP-1 increase. CONCLUSIONS These data suggest a significant role of C5aR and its putative downstream molecule p38 in the LPS-induced odontogenic DPSCs differentiation. This study highlights the regulatory pathway of complement C5aR/p38 and a possible therapeutic approach for improving the efficiency of dentin regeneration during inflammation.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Muhammad Irfan
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Md Akil Hossain
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Susie Shin
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Seung Chung
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Lei Y, Li X, Qin D, Zhang Y, Wang Y. gC1qR: A New Target for Cancer Immunotherapy. Front Immunol 2023; 14:1095943. [PMID: 36776869 PMCID: PMC9909189 DOI: 10.3389/fimmu.2023.1095943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Although breakthroughs in cancer treatment have been achieved, immunotherapy yields only modest benefits in most patients. There is still a gap in clarifying the immune evasiveness and immune-resistance mechanisms. Identifying other candidate targets for cancer immunotherapy is therefore a clear unmet clinical need. The complement system, a pillar of innate immunity, has recently entered the limelight due to its immunoregulatory functions in the tumor microenvironment (TME). In particular, gC1qR, a receptor for globular heads of C1q, serves as a promising new target and has attracted more attention. gC1qR, also named P32/C1qBP/HABP1, is a multifunctional protein that is overexpressed in various cancers and holds prognostic value. It regulates the tumorigenic, progression and metastatic properties of tumor cells through several downstream signaling pathways, including the Wnt/β-catenin, PKC-NF-κB and Akt/PKB pathways. A few preclinical experiments conducted through gC1qR interventions, such as monoclonal antibody, chimeric antigen receptor T-cell (CAR-T) therapy, and tumor vaccination, have shown encouraging results in anticancer activity. The efficacy may rely on the regulatory role on the TME, induction of tumor cells apoptosis and antiangiogenic activity. Nevertheless, the current understanding of the relationship between cancer immunotherapy and gC1qR remains elusive and often contradictory, posing both opportunities and challenges for therapeutic translation in the clinic. In this review, we focus on the current understanding of gC1qR function in cancer immunology and highlight the vital roles in regulating the TME. We also examines the rationale behind targeting gC1qR and discusses the potential for translating into clinical practice.
Collapse
Affiliation(s)
- Yanna Lei
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Diyuan Qin
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Rabin R, Hirsch Y, Chung WK, Ekstein J, Levy-Lahad E, Zuckerman S, Mor-Shaked H, Meiner V, Booth KT, Pappas J. Expanding the phenotypic spectrum of COLEC10-Related 3MC syndrome: A glimpse into COLEC10-Related 3MC syndrome in the Ashkenazi Jewish population. Am J Med Genet A 2022; 188:3110-3117. [PMID: 35943032 DOI: 10.1002/ajmg.a.62943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023]
Abstract
Bi-allelic variants in COLEC11 and MASP1 have been associated with 3MC syndrome, a clinical entity made of up four rare autosomal recessive disorders: Carnevale, Mingarelli, Malpuech, and Michels syndromes, characterized by variable expression of facial dysmorphia, cleft lip/palate, postnatal growth deficiency, hearing loss, cognitive impairment, craniosynostosis, radioulnar synostosis, and genital and vesicorenal anomalies. More recently, bi-allelic variants in COLEC10 have been described to be associated with 3MC syndrome. Syndromic features seen in 3MC syndrome are thought to be due to disruption of the chemoattractant properties that influence neural crest cell migration. We identified nine individuals from five families of Ashkenazi Jewish descent with homozygosity of the c.311G > T (p.Gly104Val) variant in COLEC10 and phenotype consistent with 3MC syndrome. Carrier frequency was calculated among 52,278 individuals of Jewish descent. Testing revealed 400 carriers out of 39,750 individuals of Ashkenazi Jewish descent, giving a carrier frequency of 1 in 99 or 1.01%. Molecular protein modeling suggested that the p.Gly104Val substitution alters local conformation. The c.311G > T (p.Gly104Val) variant likely represents a founder variant, and homozygosity is associated with features of 3MC syndrome. 3MC syndrome should be in the differential diagnosis for individuals with short stature, radioulnar synostosis, cleft lip and cleft palate.
Collapse
Affiliation(s)
- Rachel Rabin
- Department of Pediatrics, NYU Grossman School of Medicine, New York, New York, USA
| | - Yoel Hirsch
- Dor Yeshorim, Committee for Prevention Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, New York, USA
| | - Josef Ekstein
- Dor Yeshorim, Committee for Prevention Jewish Genetic Diseases, Brooklyn, New York, USA
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shachar Zuckerman
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Vardiella Meiner
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Kevin T Booth
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John Pappas
- Department of Pediatrics, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Wei Y, Chen T, Bosco DB, Xie M, Zheng J, Dheer A, Ying Y, Wu Q, Lennon VA, Wu LJ. The complement C3-C3aR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia 2021; 69:1155-1169. [PMID: 33314324 PMCID: PMC7936954 DOI: 10.1002/glia.23955] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild-type mice, both C3-/- and C3aR-/- mice had significantly less microglia-astrocyte interaction in response to KA-induced status epilepticus. Additionally, KA-injected C3-/- mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3-C3aR pathway contributes to KA-induced neurodegeneration by mediating microglia-astrocyte communication. The C3-C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Yujia Wei
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yanlu Ying
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qian Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vanda A. Lennon
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
5
|
Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L, Castellano G. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage. Front Immunol 2020; 11:734. [PMID: 32457738 PMCID: PMC7221190 DOI: 10.3389/fimmu.2020.00734] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The aberrant activation of complement system in several kidney diseases suggests that this pillar of innate immunity has a critical role in the pathophysiology of renal damage of different etiologies. A growing body of experimental evidence indicates that complement activation contributes to the pathogenesis of acute kidney injury (AKI) such as delayed graft function (DGF) in transplant patients. AKI is characterized by the rapid loss of the kidney's excretory function and is a complex syndrome currently lacking a specific medical treatment to arrest or attenuate progression in chronic kidney disease (CKD). Recent evidence suggests that independently from the initial trigger (i.e., sepsis or ischemia/reperfusions injury), an episode of AKI is strongly associated with an increased risk of subsequent CKD. The AKI-to-CKD transition may involve a wide range of mechanisms including scar-forming myofibroblasts generated from different sources, microvascular rarefaction, mitochondrial dysfunction, or cell cycle arrest by the involvement of epigenetic, gene, and protein alterations leading to common final signaling pathways [i.e., transforming growth factor beta (TGF-β), p16 ink4a , Wnt/β-catenin pathway] involved in renal aging. Research in recent years has revealed that several stressors or complications such as rejection after renal transplantation can lead to accelerated renal aging with detrimental effects with the establishment of chronic proinflammatory cellular phenotypes within the kidney. Despite a greater understanding of these mechanisms, the role of complement system in the context of the AKI-to-CKD transition and renal inflammaging is still poorly explored. The purpose of this review is to summarize recent findings describing the role of complement in AKI-to-CKD transition. We will also address how and when complement inhibitors might be used to prevent AKI and CKD progression, therefore improving graft function.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
6
|
Dasgupta K, Chung JU, Asam K, Jeong J. Molecular patterning of the embryonic cranial mesenchyme revealed by genome-wide transcriptional profiling. Dev Biol 2019; 455:434-448. [PMID: 31351040 PMCID: PMC6842427 DOI: 10.1016/j.ydbio.2019.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
In the head of an embryo, a layer of mesenchyme surrounds the brain underneath the surface ectoderm. This cranial mesenchyme gives rise to the meninges, the calvaria (top part of the skull), and the dermis of the scalp. Abnormal development of these structures, especially the meninges and the calvaria, is linked to significant congenital defects in humans. It has been known that different areas of the cranial mesenchyme have different fates. For example, the calvarial bone develops from the cranial mesenchyme on the baso-lateral side of the head just above the eye (supraorbital mesenchyme, SOM), but not from the mesenchyme apical to SOM (early migrating mesenchyme, EMM). However, the molecular basis of this difference is not fully understood. To answer this question, we compared the transcriptomes of EMM and SOM using high-throughput sequencing (RNA-seq). This experiment identified a large number of genes that were differentially expressed in EMM and SOM, and gene ontology analyses found very different terms enriched in each region. We verified the expression of about 40 genes in the head by RNA in situ hybridization, and the expression patterns were annotated to make a map of molecular markers for 6 subdivisions of the cranial mesenchyme. Our data also provided insights into potential novel regulators of cranial mesenchyme development, including several axon guidance pathways, lectin complement pathway, cyclic-adenosine monophosphate (cAMP) signaling pathway, and ZIC family transcription factors. Together, information in this paper will serve as a unique resource to guide future research on cranial mesenchyme development.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Jong Uk Chung
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Kesava Asam
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
7
|
Abstract
Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.
Collapse
Affiliation(s)
- András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
8
|
Mödinger Y, Rapp A, Pazmandi J, Vikman A, Holzmann K, Haffner-Luntzer M, Huber-Lang M, Ignatius A. C5aR1 interacts with TLR2 in osteoblasts and stimulates the osteoclast-inducing chemokine CXCL10. J Cell Mol Med 2018; 22:6002-6014. [PMID: 30247799 PMCID: PMC6237570 DOI: 10.1111/jcmm.13873] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
The anaphylatoxin C5a is generated upon activation of the complement system, a crucial arm of innate immunity. C5a mediates proinflammatory actions via the C5a receptor C5aR1 and thereby promotes host defence, but also modulates tissue homeostasis. There is evidence that the C5a/C5aR1 axis is critically involved both in physiological bone turnover and in inflammatory conditions affecting bone, including osteoarthritis, periodontitis, and bone fractures. C5a induces the migration and secretion of proinflammatory cytokines of osteoblasts. However, the underlying mechanisms remain elusive. Therefore, in this study we aimed to determine C5a‐mediated downstream signalling in osteoblasts. Using a whole‐genome microarray approach, we demonstrate that C5a activates mitogen‐activated protein kinases (MAPKs) and regulates the expression of genes involved in pathways related to insulin, transforming growth factor‐β and the activator protein‐1 transcription factor. Interestingly, using coimmunoprecipitation, we found an interaction between C5aR1 and Toll‐like receptor 2 (TLR2) in osteoblasts. The C5aR1‐ and TLR2‐signalling pathways converge on the activation of p38 MAPK and the generation of C‐X‐C motif chemokine 10, which functions, among others, as an osteoclastogenic factor. In conclusion, C5a‐stimulated osteoblasts might modulate osteoclast activity and contribute to immunomodulation in inflammatory bone disorders.
Collapse
Affiliation(s)
- Yvonne Mödinger
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | - Anna Rapp
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | - Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Anna Vikman
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | | | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
9
|
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37:53-65. [DOI: 10.1016/j.smim.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
10
|
Bryan K, McGivney BA, Farries G, McGettigan PA, McGivney CL, Gough KF, MacHugh DE, Katz LM, Hill EW. Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components. BMC Genomics 2017; 18:595. [PMID: 28793853 PMCID: PMC5551008 DOI: 10.1186/s12864-017-4007-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND A single bout of exercise induces changes in gene expression in skeletal muscle. Regular exercise results in an adaptive response involving changes in muscle architecture and biochemistry, and is an effective way to manage and prevent common human diseases such as obesity, cardiovascular disorders and type II diabetes. However, the biomolecular mechanisms underlying such responses still need to be fully elucidated. Here we performed a transcriptome-wide analysis of skeletal muscle tissue in a large cohort of untrained Thoroughbred horses (n = 51) before and after a bout of high-intensity exercise and again after an extended period of training. We hypothesized that regular high-intensity exercise training primes the transcriptome for the demands of high-intensity exercise. RESULTS An extensive set of genes was observed to be significantly differentially regulated in response to a single bout of high-intensity exercise in the untrained cohort (3241 genes) and following multiple bouts of high-intensity exercise training over a six-month period (3405 genes). Approximately one-third of these genes (1025) and several biological processes related to energy metabolism were common to both the exercise and training responses. We then developed a novel network-based computational analysis pipeline to test the hypothesis that these transcriptional changes also influence the contextual molecular interactome and its dynamics in response to exercise and training. The contextual network analysis identified several important hub genes, including the autophagosomal-related gene GABARAPL1, and dynamic functional modules, including those enriched for mitochondrial respiratory chain complexes I and V, that were differentially regulated and had their putative interactions 're-wired' in the exercise and/or training responses. CONCLUSION Here we have generated for the first time, a comprehensive set of genes that are differentially expressed in Thoroughbred skeletal muscle in response to both exercise and training. These data indicate that consecutive bouts of high-intensity exercise result in a priming of the skeletal muscle transcriptome for the demands of the next exercise bout. Furthermore, this may also lead to an extensive 're-wiring' of the molecular interactome in both exercise and training and include key genes and functional modules related to autophagy and the mitochondrion.
Collapse
Affiliation(s)
- Kenneth Bryan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Beatrice A. McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Gabriella Farries
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Paul A. McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Charlotte L. McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Katie F. Gough
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Lisa M. Katz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Ireland
| | - Emmeline W. Hill
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Ireland
| |
Collapse
|
11
|
Grajales-Esquivel E, Luz-Madrigal A, Bierly J, Haynes T, Reis ES, Han Z, Gutierrez C, McKinney Z, Tzekou A, Lambris JD, Tsonis PA, Del Rio-Tsonis K. Complement component C3aR constitutes a novel regulator for chick eye morphogenesis. Dev Biol 2017; 428:88-100. [PMID: 28576690 PMCID: PMC5726978 DOI: 10.1016/j.ydbio.2017.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2016] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
Complement components have been implicated in a wide variety of functions including neurogenesis, proliferation, cell migration, differentiation, cancer, and more recently early development and regeneration. Following our initial observations indicating that C3a/C3aR signaling induces chick retina regeneration, we analyzed its role in chick eye morphogenesis. During eye development, the optic vesicle (OV) invaginates to generate a bilayer optic cup (OC) that gives rise to the retinal pigmented epithelium (RPE) and neural retina. We show by immunofluorescence staining that C3 and the receptor for C3a (the cleaved and active form of C3), C3aR, are present in chick embryos during eye morphogenesis in the OV and OC. Interestingly, C3aR is mainly localized in the nuclear compartment at the OC stage. Loss of function studies at the OV stage using morpholinos or a blocking antibody targeting the C3aR (anti-C3aR Ab), causes eye defects such as microphthalmia and defects in the ventral portion of the eye that result in coloboma. Such defects were not observed when C3aR was disrupted at the OC stage. Histological analysis demonstrated that microphthalmic eyes were unable to generate a normal optic stalk or a closed OC. The dorsal/ventral patterning defects were accompanied by an expansion of the ventral markers Pax2, cVax and retinoic acid synthesizing enzyme raldh-3 (aldh1a3) domains, an absence of the dorsal expression of Tbx5 and raldh-1 (aldh1a1) and a re-specification of the ventral RPE to neuroepithelium. In addition, the eyes showed overall decreased expression of Gli1 and a change in distribution of nuclear β-catenin, suggesting that Shh and Wnt pathways have been affected. Finally, we observed prominent cell death along with a decrease in proliferating cells, indicating that both processes contribute to the microphthalmic phenotype. Together our results show that C3aR is necessary for the proper morphogenesis of the OC. This is the first report implicating C3aR in eye development, revealing an unsuspected hitherto regulator for proper chick eye morphogenesis.
Collapse
Affiliation(s)
- Erika Grajales-Esquivel
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Agustin Luz-Madrigal
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA; Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Jeffrey Bierly
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Tracy Haynes
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zeyu Han
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Christian Gutierrez
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Zachary McKinney
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Apostolia Tzekou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
12
|
The Molecular Basis of Radial Intercalation during Tissue Spreading in Early Development. Dev Cell 2017; 37:213-25. [PMID: 27165554 PMCID: PMC4865533 DOI: 10.1016/j.devcel.2016.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/18/2016] [Accepted: 04/08/2016] [Indexed: 02/08/2023]
Abstract
Radial intercalation is a fundamental process responsible for the thinning of multilayered tissues during large-scale morphogenesis; however, its molecular mechanism has remained elusive. Using amphibian epiboly, the thinning and spreading of the animal hemisphere during gastrulation, here we provide evidence that radial intercalation is driven by chemotaxis of cells toward the external layer of the tissue. This role of chemotaxis in tissue spreading and thinning is unlike its typical role associated with large-distance directional movement of cells. We identify the chemoattractant as the complement component C3a, a factor normally linked with the immune system. The mechanism is explored by computational modeling and tested in vivo, ex vivo, and in vitro. This mechanism is robust against fluctuations of chemoattractant levels and expression patterns and explains expansion during epiboly. This study provides insight into the fundamental process of radial intercalation and could be applied to a wide range of morphogenetic events.
Collapse
|
13
|
Nissen A, Andersen PH, Bendixen E, Ingvartsen KL, Røntved CM. Colostrum and milk protein rankings and ratios of importance to neonatal calf health using a proteomics approach. J Dairy Sci 2017; 100:2711-2728. [DOI: 10.3168/jds.2016-11722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/18/2016] [Indexed: 12/19/2022]
|
14
|
Munye MM, Diaz-Font A, Ocaka L, Henriksen ML, Lees M, Brady A, Jenkins D, Morton J, Hansen SW, Bacchelli C, Beales PL, Hernandez-Hernandez V. COLEC10 is mutated in 3MC patients and regulates early craniofacial development. PLoS Genet 2017; 13:e1006679. [PMID: 28301481 PMCID: PMC5373641 DOI: 10.1371/journal.pgen.1006679] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/30/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
3MC syndrome is an autosomal recessive heterogeneous disorder with features linked to developmental abnormalities. The main features include facial dysmorphism, craniosynostosis and cleft lip/palate; skeletal structures derived from cranial neural crest cells (cNCC). We previously reported that lectin complement pathway genes COLEC11 and MASP1/3 are mutated in 3MC syndrome patients. Here we define a new gene, COLEC10, also mutated in 3MC families and present novel mutations in COLEC11 and MASP1/3 genes in a further five families. The protein products of COLEC11 and COLEC10, CL-K1 and CL-L1 respectively, form heteromeric complexes. We show COLEC10 is expressed in the base membrane of the palate during murine embryo development. We demonstrate how mutations in COLEC10 (c.25C>T; p.Arg9Ter, c.226delA; p.Gly77Glufs*66 and c.528C>G p.Cys176Trp) impair the expression and/or secretion of CL-L1 highlighting their pathogenicity. Together, these findings provide further evidence linking the lectin complement pathway and complement factors COLEC11 and COLEC10 to morphogenesis of craniofacial structures and 3MC etiology. The 3MC syndrome is a unifying term amalgamating four rare recessive genetic disorders with overlapping features namely; Mingarelli, Malpuech, Michels and Carnevale syndromes. It is characterised by facial malformations including, high-arched eyebrows, cleft lip/palate, hypertelorism, developmental delay and hearing loss. We previously reported that lectin complement pathway genes COLEC11 and MASP1/3 were mutated in 3MC syndrome patients. Here we describe a new gene from the same pathway, COLEC10, mutated in 3MC patients. Our results show that COLEC10 is expressed in craniofacial tissues during development. We demonstrate how CL-L1, the protein expressed by COLEC10, can act as a cellular chemoattractant in vitro, controlling cell movement and migration. We overexpressed constructs carrying COLEC10 non-sense mutations found in our patients, CL-L1 failed to be expressed and secreted. Moreover, when we expressed a missense COLEC10 construct, CL-L1 was expressed but failed to be secreted. In sum, we discovered a new gene, COLEC10, mutated in 3MC syndrome and we propose a pathogenic mechanism for 3MC relating to the failure of CL-L1 function and its craniofacial developmental consequences.
Collapse
Affiliation(s)
- Mustafa M. Munye
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anna Diaz-Font
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Louise Ocaka
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Maiken L. Henriksen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Lees
- Department of Clinical Genetics, Great Ormond Street Hospital, London, United Kingdom
| | - Angela Brady
- North West Thames Regional Genetics Service, Kennedy-Galton Centre, Northwick Park Hospital, London, United Kingdom
| | - Dagan Jenkins
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jenny Morton
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Soren W. Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Chiara Bacchelli
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Philip L. Beales
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail: (PLB); (VHH)
| | - Victor Hernandez-Hernandez
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail: (PLB); (VHH)
| |
Collapse
|
15
|
Driever W. A Cue for Driving Large-Scale Cell Movement. Dev Cell 2016; 37:201-2. [PMID: 27165548 DOI: 10.1016/j.devcel.2016.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The earliest cell movements that initiate gastrulation in the vertebrate embryo have always fascinated embryologists, but signals controlling this large-scale morphogenesis where nearly all cells move have been elusive. Reporting in Developmental Cell, Szabó et al. (2016) uncover a mechanism for morphogenesis based on complement system C3a/C3aR-directed chemotaxis.
Collapse
Affiliation(s)
- Wolfgang Driever
- Developmental Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
16
|
Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin. Dev Biol 2016; 414:85-99. [PMID: 27041467 PMCID: PMC4937886 DOI: 10.1016/j.ydbio.2016.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders.
Collapse
|
17
|
Schraufstatter IU, Khaldoyanidi SK, DiScipio RG. Complement activation in the context of stem cells and tissue repair. World J Stem Cells 2015; 7:1090-1108. [PMID: 26435769 PMCID: PMC4591784 DOI: 10.4252/wjsc.v7.i8.1090] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a.
Collapse
|
18
|
Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, Saalmüller A, Summerfield A, Gerdts V, Wilson HL, Meurens F. The porcine innate immune system: an update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:321-43. [PMID: 24709051 PMCID: PMC7103209 DOI: 10.1016/j.dci.2014.03.022] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 05/21/2023]
Abstract
Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease.
Collapse
Affiliation(s)
- K H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - C Sedlak
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - T Käser
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - A Pasternak
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - B Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - W Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - A Summerfield
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - V Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - H L Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - F Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|