1
|
Li J, Zhao J, Liao X, Hu P, Wang W, Ling Q, Xie L, Xiao J, Zhang W, Wang K. Pathways of soil organic carbon accumulation are related to microbial life history strategies in fertilized agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172191. [PMID: 38588738 DOI: 10.1016/j.scitotenv.2024.172191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Although the formation, turnover, and accumulation of soil organic carbon (SOC) are driven by different fertilizer inputs and their subsequent microbial-mediated transformation, the relationship between changes in plant-derived and microbial-derived components and soil microbial life history strategies under different fertilization regimes has not been well explored. In this study, the changes in microbial necromass carbon (MNC), lignin phenols, and glomalin-related soil protein (GRSP), as well as soil microbial life history strategy were determined in a 16-year field experiment in response to different fertilization regimes, including a no-fertilizer control (C), conventional chemical NPK fertilization (NPK), and partial substitutions of the NPK in chemical fertilizers with a low (30 %) or high (60 %) level of straw (0.3S and 0.6S) or cattle manure (0.3M and 0.6M). The results showed that total lignin phenol content and its contribution to SOC were significantly increased by 88.7 % and 74.2 %, respectively, in high-level straw substitution treatment as compared to chemical fertilization. Both high-level straw and cattle manure substitution increased MNC and total GRSP contents, but did not alter their contributions to SOC compared to chemical fertilization. In fertilized treatments, the high-level cattle manure substitution had the lowest and highest bacterial and fungal K/r ratio, respectively. Bacterial K/r ratio was an important factor in predicting bacterial necromass carbon content and there was a significant negative correlation between them. The ratio of ectomycorrhizal to saprotrophic fungi and fungal diversity were important factors for predicting lignin phenol and GRSP contents, respectively. In addition, the SEMs modeling indicated that straw substitution directly affected lignin phenol and MNC accumulation, whereas cattle manure substitution indirectly affected MNC accumulation by affecting microbial life history strategies. In conclusions, agricultural residues inputs support the formation of a multiple carbon pool of SOC compared to chemical fertilization; and microbial life history strategy is an important driver of SOC formation and affects SOC accumulation and stability in agroecosystems.
Collapse
Affiliation(s)
- Jiangnan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Jie Zhao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530012, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China.
| | - Xionghui Liao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Peilei Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Wenyu Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Qiumei Ling
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Lei Xie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Jun Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530012, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, PR China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, PR China.
| |
Collapse
|
2
|
Li YM, Wang YM, Qiu GW, Yu HJ, Liu FM, Wang GL, Duan Y. Conservation tillage facilitates the accumulation of soil organic carbon fractions by affecting the microbial community in an eolian sandy soil. Front Microbiol 2024; 15:1394179. [PMID: 38881670 PMCID: PMC11176501 DOI: 10.3389/fmicb.2024.1394179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Conservation tillage (CT) is an important agronomic measure that facilitates soil organic carbon (SOC) accumulation by reducing soil disturbance and plant residue mulching, thus increasing crop yields, improving soil fertility and achieving C neutrality. However, our understanding of the microbial mechanism underlying SOC fraction accumulation under different tillage practices is still lacking. Here, a 6-year in situ field experiment was carried out to explore the effects of CT and traditional tillage (CK) practices on SOC fractions in an eolian sandy soil. Compared with CK, CT increased the particulate OC (POC) content in the 0-30 cm soil layer and the mineral-associated OC (MAOC) content in the 0-20 cm soil layer. Moreover, tillage type and soil depth had significant influences on the bacterial, fungal and protistan community compositions and structures. The co-occurrence network was divided into 4 ecological modules, and module 1 exhibited significant correlations with the POC and MOC contents. After determining their topological roles, we identified the keystone taxa in the network. The results indicated that the most common bacterial taxa may result in SOC loss due to low C use efficiency, while specific fungal (Cephalotrichum) and protistan (Cercozoa) species could facilitate SOC fraction accumulation by promoting macroaggregate formation and predation. Therefore, the increase in keystone fungi and protists, as well as the reduction in bacteria, drove module 1 community function, which in turn promoted SOC sequestration under CT. These results strengthen our understanding of microbial functions in the accrual of SOC fractions, which contributes to the development of conservation agriculture on the Northeast China Plain.
Collapse
Affiliation(s)
- Yu-Mei Li
- Heilongjiang Black Soil Conservation and Utilization Research Institute, Harbin, China
| | - Yu-Ming Wang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
| | - Guang-Wei Qiu
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hong-Jiu Yu
- Heilongjiang Black Soil Conservation and Utilization Research Institute, Harbin, China
| | - Feng-Man Liu
- Heilongjiang Black Soil Conservation and Utilization Research Institute, Harbin, China
| | - Gen-Lin Wang
- Heilongjiang Black Soil Conservation and Utilization Research Institute, Harbin, China
| | - Yan Duan
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
3
|
Gonçalves R, Wamelink GWW, van der Putten P, Evers JB. Intercropping on Mars: A promising system to optimise fresh food production in future martian colonies. PLoS One 2024; 19:e0302149. [PMID: 38691526 PMCID: PMC11062560 DOI: 10.1371/journal.pone.0302149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Future colonists on Mars will need to produce fresh food locally to acquire key nutrients lost in food dehydration, the primary technique for sending food to space. In this study we aimed to test the viability and prospect of applying an intercropping system as a method for soil-based food production in Martian colonies. This novel approach to Martian agriculture adds valuable insight into how we can optimise resource use and enhance colony self-sustainability, since Martian colonies will operate under very limited space, energy, and Earth supplies. A likely early Martian agricultural setting was simulated using small pots, a controlled greenhouse environment, and species compliant with space mission requirements. Pea (Pisum sativum), carrot (Daucus carota) and tomato (Solanum lycopersicum) were grown in three soil types ("MMS-1" Mars regolith simulant, potting soil and sand), planted either mixed (intercropping) or separate (monocropping). Rhizobia bacteria (Rhizobium leguminosarum) were added as the pea symbiont for Nitrogen-fixing. Plant performance was measured as above-ground biomass (g), yield (g), harvest index (%), and Nitrogen/Phosphorus/Potassium content in yield (g/kg). The overall intercropping system performance was calculated as total relative yield (RYT). Intercropping had clear effects on plant performance in Mars regolith, being beneficial for tomato but mostly detrimental for pea and carrot, ultimately giving an overall yield disadvantage compared to monocropping (RYT = 0.93). This effect likely resulted from the observed absence of Rhizobia nodulation in Mars regolith, negating Nitrogen-fixation and preventing intercropped plants from leveraging their complementarity. Adverse regolith conditions-high pH, elevated compactness and nutrient deficiencies-presumably restricted Rhizobia survival/nodulation. In sand, where more favourable soil conditions promoted effective nodulation, intercropping significantly outperformed monocropping (RYT = 1.32). Given this, we suggest that with simple regolith improvements, enhancing conditions for nodulation, intercropping shows promise as a method for optimising food production in Martian colonies. Specific regolith ameliorations are proposed for future research.
Collapse
Affiliation(s)
- Rebeca Gonçalves
- Centre for Crop System Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - G. W. Wieger Wamelink
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter van der Putten
- Centre for Crop System Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - Jochem B. Evers
- Centre for Crop System Analysis, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Yu T, Hou X, Fang X, Razavi B, Zang H, Zeng Z, Yang Y. Short-term continuous monocropping reduces peanut yield mainly via altering soil enzyme activity and fungal community. ENVIRONMENTAL RESEARCH 2024; 245:117977. [PMID: 38141923 DOI: 10.1016/j.envres.2023.117977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Continuous monocropping can lead to soil sickness and increase of soil-borne disease, which finally reduces crop yield. Microorganisms benefit plants by increasing nutrient availability, participating in auxin synthesis, and defending against pathogens. However, little is known about the influence of short-term successive peanuts cropping on soil properties, enzyme activities, its yield, plant-associated microbes, and their potential correlations in peanut production. Here, we examined the community structure, composition, network structure and function of microbes in the rhizosphere and bulk soils under different monocropping years. Moreover, we assessed the impact of changes in the soil micro-environment and associated soil microbes on peanut yield. Our results showed that increase of monocropping year significantly decreased most soil properties, enzyme activities and peanut yield (p < 0.05). Principal co-ordinates analysis (PCoA) and analysis of similarities (ANOSIM) indicated that monocropping year significantly influenced the fungal community structure in the rhizosphere and bulk soils (p < 0.01), while had no effect on the bacterial community. With the increase of continuous monocropping year, peanut selectively decreased (e.g., Candidatus_Entotheonella, Bacillus and Bryobacter) or increased (e.g., Nitrospira, Nocardioides, Ensifer, Gaiella, and Novosphingobium) the abundance of some beneficial bacterial genera in the rhizosphere. Continuous monocropping significantly increased the abundance of plant pathogens (e.g., Plectosphaerella, Colletotrichum, Lectera, Gibberella, Metarhizium, and Microdochium) in the rhizosphere and negatively affected the balance of fungal community. Besides, these species were correlated negatively with L-leucine aminopeptidase (LAP) activity. Network co-occurrence analysis showed that continuous monocropping simplified the interaction network of bacteria and fungi. Random forest and partial least squares path modeling (PLS-PM) analysis further showed that fungal community, pathogen abundance, soil pH, and LAP activity negatively affected peanut yield. In conclusion, short-term continuous monocropping decreased LAP activity and increased potential fungal pathogens abundance, leading to reduction of peanut yield.
Collapse
Affiliation(s)
- Taobing Yu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiqing Hou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiangyang Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bahar Razavi
- Department of Soil-Plant-Microbiome, Institute of Phytopathology, University of Kiel, Germany
| | - Huadong Zang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohai Zeng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yadong Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Zhai C, Han L, Xiong C, Ge A, Yue X, Li Y, Zhou Z, Feng J, Ru J, Song J, Jiang L, Yang Y, Zhang L, Wan S. Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167217. [PMID: 37751844 DOI: 10.1016/j.scitotenv.2023.167217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Soil microbiomes play a critical role in regulating ecosystem multifunctionality. However, whether and how soil protists and microbiome interactions affect ecosystem multifunctionality under climate change is unclear. Here, we transplanted 54 soil monoliths from three typical temperate grasslands (i.e., desert, typical, and meadow steppes) along a precipitation gradient in the Mongolian Plateau and examined their response to nighttime warming, decreased, and increased precipitation. Across the three steppes, nighttime warming only stimulated protistan diversity by 15.61 (absolute change, phylogenetic diversity) but had no effect on ecosystem multifunctionality. Decreased precipitation reduced bacterial (8.78) and fungal (22.28) diversity, but significantly enhanced soil microbiome network complexity by 1.40. Ecosystem multifunctionality was reduced by 0.23 under decreased precipitation, which could be largely attributed to the reduced soil moisture that negatively impacted bacterial and fungal communities. In contrast, increased precipitation had little impact on soil microbial communities. Overall, both bacterial and fungal diversity and network complexity play a fundamental role in maintaining ecosystem multifunctionality in response to drought stress. Protists alter ecosystem multifunctionality by indirectly affecting microbial network complexity. Therefore, not only microbial diversity but also their interactions (regulated by soil protists) should be considered in evaluating the responses of ecosystem multifunctionality, which has important implications for predicting changes in ecosystem functioning under future climate change scenarios.
Collapse
Affiliation(s)
- Changchun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anhui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaojing Yue
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Ying Li
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhenxing Zhou
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Feng
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Limei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
6
|
Shao M, Wang C, Zhou L, Peng F, Zhang G, Gao J, Chen S, Zhao Q. Rhizosphere soil properties of waxy sorghum under different row ratio configurations in waxy sorghum-soybean intercropping systems. PLoS One 2023; 18:e0288076. [PMID: 37410726 DOI: 10.1371/journal.pone.0288076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023] Open
Abstract
To overcome the continuous planting obstacle and promote the sustainable production of waxy sorghum, a two-years field experiment was performed to determine the responses of waxy sorghum rhizosphere soil properties to different row ratio configurations in waxy sorghum-soybean intercropping systems. The treatments included five row ratio configurations, which were two rows of waxy sorghum intercropped with one row of soybean (2W1S), two rows of waxy sorghum intercropped with two rows of soybean (2W2S), three rows of waxy sorghum intercropped with one row of soybean (3W1S), three rows of waxy sorghum intercropped with two rows of soybean (3W2S), and three rows of waxy sorghum intercropped with three rows of soybean (3W3S), and sole cropping waxy sorghum (SW) was used as control. The nutrients, enzyme activities, and microbes of waxy sorghum rhizosphere soil were investigated at the jointing, anthesis, and maturity stages. Results showed that rhizosphere soil properties of waxy sorghum were significantly affected by row ratio configurations of waxy sorghum intercropped soybean. Among all treatments, the performances of rhizosphere soil nutrients contents, enzymes activities, and microbes contents were 2W1S > 3W1S > 3W2S > 3W3S > 2W2S > SW. Compared to SW treatment, the 2W1S treatment increased the organic matter, total N, total P, total K, gram-negative bacteria phospholipid fatty acids (PLFAs), and gram-positive bacteria PLFAs contents and catalase, polyphenol oxidase, and urease activities by 20.86%-25.67%, 34.33%-70.05%, 23.98%-33.83%, 44.12%-81.86%, 74.87%-194.32%, 81.59-136.59%, 91.44%-114.07%, 85.35%-146.91%, and 36.32%-63.94%, respectively. Likewise, the available N, available P, available K, total PLFAs, fungus PLFAs, actinomycetes PLFAs, and bacteria PLFAs contents under the 2W1S treatment were 1.53-2.41, 1.32-1.89, 1.82-2.05, 1.96-2.91, 3.59-4.44, 9.11-12.56, and 1.81-2.71 times than those of SW treatment, respectively. Further, the determining factors of soil microbes were total K, catalase, and polyphenol oxidase for total microbes, bacteria, and gram-negative bacteria, total P and available K for fungus, available N, available K, and polyphenol oxidase for actinomycetes, and total K and polyphenol oxidase for gram-positive bacteria. In conclusion, the 2W1S treatment was the optimal row ratio configuration of waxy sorghum intercropped with soybean, which can improve the rhizosphere soil quality and promote the sustainable production of waxy sorghum.
Collapse
Affiliation(s)
- Mingbo Shao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Can Wang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Lingbo Zhou
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Fangli Peng
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Guobing Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Jie Gao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Siyu Chen
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Qiang Zhao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Liu WS, Wei YX, Deng PP, Oladele OP, N'Dri Bohoussou Y, Dang YP, Zhao X, Zhang HL. Conservation tillage increases surface soil organic carbon stock by altering fungal communities and enzyme activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80901-80915. [PMID: 37311861 DOI: 10.1007/s11356-023-28062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Fungal communities play a key role in the decomposition of crop residues and affect soil organic carbon (SOC) dynamics. Conservation tillage enhances SOC sequestration and mitigate global climate change. However, the impact of long-term tillage practices on fungal community diversity and its relation to SOC stock remains unclear. The objectives of this study were to evaluate the relationship between extracellular enzyme activities and fungal community diversity and SOC stock under different tillage practices. A field experiment was conducted with four tillage practices: (i) no-tillage with straw removal (NT0), (ii) no-tillage with straw retention (NTSR, conservation tillage), (iii) plough tillage with straw retention (PTSR), and (iv) rotary tillage with straw retention (RTSR). The results showed that the SOC stock in NTSR was higher than other treatments in the 0-10 cm soil layer. Compared to NT0, NTSR significantly increased soil β-glucosidase, xylosidase, cellobiohydrolase, and chitinase activities at 0-10 cm soil depth (P < 0.05). However, different tillage methods with straw returning had no significant effects on enzyme activity at 0-10 cm soil depth. The observed species and Chao1 index of the fungal communities under NTSR were 22.8% and 32.1% lower than under RTSR in the 0-10 cm soil layer, respectively. The composition, structure, and co-occurrence network of fungal communities differed across tillage practices. A partial least squares path model (PLS-PM) analysis indicated that C-related enzymes were the most influential factors associated with SOC stock. Soil physicochemical properties and fungal communities affected extracellular enzyme activities. Overall, conservation tillage can promote surface SOC stock, which was associated with increased enzyme activity.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, 100193, People's Republic of China
| | - Yu-Xin Wei
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, 100193, People's Republic of China
| | - Ping-Ping Deng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, 100193, People's Republic of China
| | - Olatunde Pelumi Oladele
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, 100193, People's Republic of China
| | - Yves N'Dri Bohoussou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, 100193, People's Republic of China
| | - Yash Pal Dang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, 4072, Australia
| | - Xin Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, 100193, People's Republic of China
| | - Hai-Lin Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, People's Republic of China.
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, 100193, People's Republic of China.
| |
Collapse
|
8
|
Xu Y, Sun L, Gao X, Wang J. Contrasting response of fungal versus bacterial residue accumulation within soil aggregates to long-term fertilization. Sci Rep 2022; 12:17834. [PMID: 36284223 PMCID: PMC9596480 DOI: 10.1038/s41598-022-22064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/10/2022] [Indexed: 01/20/2023] Open
Abstract
Soil microorganisms are critical for soil carbon (C) cycling. They primarily regulate the turnover of the soil organic C (SOC) by adjusting their community structure, and contributing residues with a considerable amount to the resistant SOC. Nevertheless, how long-term fertilization (e.g., the combination of manure and chemical fertilizer) affects the spatial distribution of both living microbial communities and dead microbial residue within soil aggregate fractions remains largely unclear. In this study, we analyzed changes in microbial community (lipid biomarkers) and microbial residue retention (amino sugar biomarkers), and also calculated the contribution of microbial residue to organic C in bulk soil and different soil aggregates (> 2 mm, 1-2 mm, 0.25-1 mm, and < 0.25 mm) in Alfisols treated with 29 years fertilization or no fertilization (control). Our results showed that long-term fertilization significantly increased the mean weight diameter (MWD) of aggregates and organic C contents in all aggregate fractions. The fertilization treatment increased the contents of PLFAs and microbial residue C, but the relative contribution of microbial residue to SOC was higher in the control (56.8% vs. 49.0%), due to the low SOC background caused by much lower level of non-microbially derived C input. These results suggested that long-term fertilization could increase SOC by accumulating both plant- and microbial-derived C, while the C deficient soil is more dependent on the accumulation of microbial residues. Long-term fertilization promoted the enrichment of bacterial-derived muramic acid in micro aggregates, but increased the proportion of fungal-derived glucosamine in macro aggregates. Meanwhile, the contribution of bacterial residue to organic C in the fertilization treatment was higher in micro aggregates (7.6% for > 2 mm vs. 9.2% for < 0.25 mm aggregate), while the contribution of fungal residue was higher in macro aggregate fractions (40.9% for > 2 mm vs. 35.7% for < 0.25 mm aggregate). The above results indicated that long-term fertilization could drive the differentiation of heterogeneous microbial residue accumulation patterns that significantly alter the contribution of fungal- versus bacterial-derived C to organic C within soil aggregate fractions.
Collapse
Affiliation(s)
- Yingde Xu
- grid.412557.00000 0000 9886 8131Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang, 110866 China
| | - Liangjie Sun
- grid.412557.00000 0000 9886 8131Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang, 110866 China
| | - Xiaodan Gao
- grid.412557.00000 0000 9886 8131Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang, 110866 China
| | - Jingkuan Wang
- grid.412557.00000 0000 9886 8131Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang, 110866 China
| |
Collapse
|
9
|
Gu S, Xiong X, Tan L, Deng Y, Du X, Yang X, Hu Q. Soil microbial community assembly and stability are associated with potato ( Solanum tuberosum L.) fitness under continuous cropping regime. FRONTIERS IN PLANT SCIENCE 2022; 13:1000045. [PMID: 36262646 PMCID: PMC9574259 DOI: 10.3389/fpls.2022.1000045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Continuous cropping obstacles caused by the over-cultivation of a single crop trigger soil degradation, yield reduction and the occurrence of plant disease. However, the relationships among stability, complexity and the assembly process of soil microbial community with continuous cropping obstacles remains unclear. In this study, molecular ecological networks analysis (MENs) and inter-domain ecological networks analysis (IDENs), and a new index named cohesion tools were used to calculate the stability and complexity of soil microbial communities from eight potato cultivars grown under a continuous cropping regime by using the high-throughput sequencing data. The results showed that the stability (i.e., robustness index) of the bacterial and fungal communities for cultivar ZS5 was significantly higher, and that the complexity (i.e., cohesion values) was also significantly higher in the bacterial, fungal and inter-domain communities (i.e., bacterial-fungal community) of cultivar ZS5 than other cultivars. Network analysis also revealed that Actinobacteria and Ascomycota were the dominant phyla within intra-domain networks of continuous cropping potato soil communities, while the phyla Proteobacteria and Ascomycota dominated the correlation of the bacterial-fungal network. Infer community assembly mechanism by phylogenetic-bin-based null model analysis (iCAMP) tools were used to calculate the soil bacterial and fungal communities' assembly processes of the eight potato cultivars under continuous cropping regime, and the results showed that the bacterial community was mainly dominated by deterministic processes (64.19% - 81.31%) while the fungal community was mainly dominated by stochastic processes (78.28% - 98.99%), indicating that the continuous-cropping regime mainly influenced the potato soil bacterial community assembly process. Moreover, cultivar ZS5 possessed a relatively lower homogeneous selection, and a higher TP, TN, AP and yield than other cultivars. Our results indicated that the soil microbial network stability and complexity, and community assemble might be associated with yield and soil properties, which would be helpful in the study for resistance to potato continuous cropping obstacles.
Collapse
Affiliation(s)
- Songsong Gu
- Hunan Agricultural University, Changsha, China
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xingyao Xiong
- Hunan Agricultural University, Changsha, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lin Tan
- Hunan Agricultural University, Changsha, China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiongfeng Du
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xingxing Yang
- Hunan Center of Crop Germplasm Resources and Breeding Crop, Changsha, China
| | - Qiulong Hu
- Hunan Agricultural University, Changsha, China
| |
Collapse
|
10
|
Fan Q, Yang Y, Geng Y, Wu Y, Niu Z. Biochemical composition and function of subalpine shrubland and meadow soil microbiomes in the Qilian Mountains, Qinghai-Tibetan plateau, China. PeerJ 2022; 10:e13188. [PMID: 35402098 PMCID: PMC8988934 DOI: 10.7717/peerj.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/08/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms participate in the soil biogeochemical cycle. Therefore, investigating variations in microbial biomass, composition, and functions can provide a reference for improving soil ecological quality due to the sensitivity of microorganisms to vegetation coverage changes. However, the differences in soil microorganisms between shrubland and meadow have not been investigated in ecologically vulnerable subalpine areas. This study aimed to investigate the biochemical composition and functions of the soil microbial community under two shrublands and a meadow at high altitudes (3,400-3,550 m). Three sites under two shrublands, Rhododendron thymifolium (RHO) and Potentilla fruticosa (POT), and one meadow dominated by Kobresia myosuroides (MEA), were selected on the southern slope of the Qilian Mountains on the northeastern edge of the Qinghai-Tibetan Plateau, China. Soil physicochemical properties, the microbial community composition expressed by the phospholipid fatty acid (PLFA) biomarker, and enzyme activities were analyzed as well as their relationships. The results showed that water holding capacity and the soil carbon, nitrogen, and potassium content in RHO and POT were higher than those in the MEA. Moreover, the soil active carbon, dissolved organic carbon, total nitrogen, and dissolved total nitrogen content in RHO were higher than those in POT. The abundance of total PLFAs, bacteria, and fungi beneath the shrublands was considerably higher than that in the MEA. The PLFA abundance in RHO was significantly higher than that in POT. The fungal-to-bacterial ratio of RHO and POT was significantly higher than that in the MEA. The activities of β-glucosidase, cellobiohydrolase, and leucine aminopeptidase were the highest in RHO among the three vegetation types, followed by POT and MEA. The redundancy analysis indicated that the biochemical composition of the soil microorganisms and enzyme activities were driven by total nitrogen, dissolved organic carbon, water holding capacity, and soil organic carbon. Therefore, shrublands, which have higher biomass, can improve soil moisture status, increase soil carbon and nitrogen content (especially active carbon and active nitrogen), and further increase the abundance of total PLFAs, bacteria, and fungi. The increase of microbial biomass indirectly enhances the activity of relevant soil enzymes. The variations in PLFA abundance and enzyme activities can be attributed to shrub species, especially evergreen shrubs, which create more favorable conditions for soil microorganisms. This study provides a theoretical basis for investigating the soil biogeochemical cycle and a scientific basis for soil management and vegetation restoration in the subalpine regions.
Collapse
Affiliation(s)
- Qiuyun Fan
- School of Forestry, Beijing Forestry University, Beijing, China
| | - Yuguo Yang
- School of Forestry, Beijing Forestry University, Beijing, China
| | - Yuqing Geng
- School of Forestry, Beijing Forestry University, Beijing, China
| | - Youlin Wu
- Huzhu Tu Autonomous County Beishan Forest Farm, Haidong, Qinghai, China
| | - Zhanen Niu
- Huzhu Tu Autonomous County Beishan Forest Farm, Haidong, Qinghai, China
| |
Collapse
|
11
|
Duell EB, O'Hare A, Wilson GW. Inoculation with native soil improves seedling survival and reduces non‐native reinvasion in a grassland restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric B. Duell
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma USA 74075
| | - Anna O'Hare
- Burns and McDonnell Chicago Illinois USA 60642
| | - Gail W.T. Wilson
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma USA 74075
| |
Collapse
|
12
|
Lahlali R, Ibrahim DS, Belabess Z, Kadir Roni MZ, Radouane N, Vicente CS, Menéndez E, Mokrini F, Barka EA, Galvão de Melo e Mota M, Peng G. High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon 2021; 7:e08142. [PMID: 34693062 PMCID: PMC8515249 DOI: 10.1016/j.heliyon.2021.e08142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations.
Collapse
Affiliation(s)
- Rachid Lahlali
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
| | - Dina S.S. Ibrahim
- Department of Nematodes Diseases and Central Lab of Biotechnology, Plant Pathology Research Institute, Agricultural Research Center (ARC), 12619, Egypt
| | - Zineb Belabess
- Plant Protection Laboratory. Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 60000 Oujda, Morocco
| | - Md Zohurul Kadir Roni
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Nabil Radouane
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
- Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Cláudia S.L. Vicente
- MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Esther Menéndez
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
- Department of Microbiology and Genetics / Spanish-Portuguese Institute for Agricultural Research (CIALE). University of Salamanca, 37007, Salamanca, Spain
| | - Fouad Mokrini
- Plant Protection Laboratory, INRA, Centre Régional de la Recherche Agronomique (CRRA), Rabat, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-protection des Plantes, EA 4707, USC, INRAe1488, Université de Reims Champagne-Ardenne, France
| | - Manuel Galvão de Melo e Mota
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development & Department of Biology, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gary Peng
- Saskatoon Research Development Centre, Agriculture and Agri-Food, Saskatchewan, Canada
| |
Collapse
|
13
|
Dar A, Zahir ZA, Iqbal M, Mehmood A, Javed A, Hussain A, Ahmad M. Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology, and soil properties. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:515. [PMID: 34304322 DOI: 10.1007/s10661-021-09286-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The current study investigated the influence of exopolysaccharides (EPSs) producing plant growth-promoting rhizobacteria (PGPR) on the growth, physiology, and soil properties. The pre-isolated and compatible EPS producing PGPR strains were first screened based on improvement in soil aggregates in an incubation study. The screened strains (Rhizobium phaseoli strain Mn-6, Pseudomonas bathysetes strain LB5, and unidentified strain R2) were then employed in pot study for assessing improvements in maize growth, physiology, and soil properties. Eight treatments including T1 = control, T2 = Mn-6, T3 = R2, T4 = LB5, T5 = Mn-6 + R2, T6 = Mn-6 + LB5, T7 = R2 + LB5, and T8 = Mn-6 + R2 + LB5 were applied in completely randomized design (CRD) hexa replicated (half for root and half for soil, and yield attributes). The results depicted that among various treatments, the application of PGPR strain Mn-6 increased plant height, root length, root fresh and dry weight, root length density, SPAD value, leaf areas index, photosynthesis rate, transpiration, and stomatal conductance by 24, 79, 72, 90, 49, 35, 23, 21, 75, and 77%, respectively, compared with non-inoculated treatment. Similarly, significant improvement in maize yield and soil physical properties was also observed in response to the application of EPS-producing PGPR. Therefore, it is concluded that the application of EPS producing PGPR is an effective strategy to improve plant growth, physiology, yield, and soil physical properties. Moreover, EPS-producing PGPR should be exploited in field studies for their potential in improving plant growth and soil properties.
Collapse
Affiliation(s)
- Abubakar Dar
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
- Department of Soil Sciencce, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Iqbal
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Atif Mehmood
- Institute of Soil Chemistry & Environmental Sciences, AARI, Faisalabad, Pakistan
| | - Atif Javed
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Azhar Hussain
- Department of Soil Sciencce, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Sciencce, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
14
|
Bhattacharyya R, Rabbi SMF, Zhang Y, Young IM, Jones AR, Dennis PG, Menzies NW, Kopittke PM, Dalal RC. Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146286. [PMID: 33725601 DOI: 10.1016/j.scitotenv.2021.146286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Microbial activity strongly influences the stabilization of soil organic matter (SOM), and is affected by the abiotic properties within soil aggregates, which tend to differ between land uses. Here, we assessed the effects of SOM and pore geometry on the diversity and activity of microbial communities within aggregates formed under different land uses (undisturbed, plantation, pasture, and cropping). X-ray micro-computed tomography (μCT) revealed that macro-aggregates (2-8 mm) of undisturbed soils were porous, highly-connected, and had 200% more macro-pores compared with those from pasture and cropping soils. While the macro-aggregates of undisturbed soils had greater soil organic carbon (SOC) contents and N-acetyl β-glucosaminidase, β-glucosidase, and phosphatase activities, those of cropped soils harboured more diverse bacterial communities. Organic carbon was positively associated with the porosity of the macro-aggregates, which was negatively associated with microbial diversity and positively associated with enzyme activity. Thus, the biophysical processes in macro-aggregates may be important for SOC stabilization within the macro-aggregates.
Collapse
Affiliation(s)
- Ranjan Bhattacharyya
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; CESCRA, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Sheikh M F Rabbi
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Yaqi Zhang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Iain M Young
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Andrew R Jones
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94707, USA
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Neal W Menzies
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ram C Dalal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
15
|
Shi Y, Yang H, Chu M, Niu X, Huo X, Gao Y, Zeng J, Lin Q, Lou K. Diversity and Spatiotemporal Dynamics of Fungal Communities in the Rhizosphere Soil of Cotton in the Arid Region of Northwest China. MICROBIAL ECOLOGY 2021; 82:87-99. [PMID: 33415384 DOI: 10.1007/s00248-020-01646-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the fungal diversity and its temporal and spatial dynamics in the rhizosphere soil of healthy cotton by high-throughput sequencing. We studied species richness, composition, and distribution of cotton rhizosphere fungal community with respect to location (Alaer, Kuerle, Tumushuke, Hami, Shihezi, Wusu, and Jinghe) and plant growth period (seedling stage, bud stage, flowering stage, and boll-opening stage) using the methods of PCR-based high-throughput sequencing and real-time quantitative PCR. A total of 1,838,454 fungal nuclear ribosomal internal transcribed spacer region sequences (rRNA ITS) were obtained from all cotton plants sampled at different growth stages in the seven locations in Xinjiang. The most abundant fungal group in the cotton rhizosphere was the Ascomycota (78.72%), followed by the Zygomycota (9.56%) and Basidiomycota (2.77%). These sequences revealed an enormous number of operational taxonomic units (OTUs) in cotton (1802 unique OTUs), with 67-464 OTUs in a single cotton sample, at a 3% threshold and a sequencing depth of 30,000 sequences. We identified 33 classes and 389 genera from the resulting 1,800,714 sequences. Sordariomycetes was the most frequent class in all samples, followed by Leotiomycetes and Eurotiomycetes. There were some differences in OTUs among different growth stages, but the differences were not significant, with 382 OTUs (14.66%) being common to each of the stages. A marked difference in the diversity of fungi in the rhizosphere soil of cotton was evident among the different locations, with the highest number of OTUs being detected in Jinghe (1084 OTUs) and clusters of OTUs representative of northern and eastern Xinjiang being detected. There were significantly more tags of Mortierella in Jinghe and Wusu than in the other sampling sites. The dynamics of the rhizosphere fungal communities were influenced by sampling sites. To the best of our knowledge, the current study is the first application of PCR-based Illumina to characterize and compare the fungal biodiversity in multiple rhizosphere soil samples from cotton.
Collapse
Affiliation(s)
- YingWu Shi
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China.
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, Xinjiang, China.
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, 830091, Xinjiang, China.
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China.
| | - HongMei Yang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, Xinjiang, China
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, 830091, Xinjiang, China
| | - Ming Chu
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, Xinjiang, China
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, 830091, Xinjiang, China
| | - XinXiang Niu
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, 830091, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | - XiangDong Huo
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, Xinjiang, China
| | - Yan Gao
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, Xinjiang, China
| | - Jun Zeng
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, Xinjiang, China
| | - Qing Lin
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, Xinjiang, China
| | - Kai Lou
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, Xinjiang, China
| |
Collapse
|
16
|
Response of Soil Microbial Communities to Warming and Clipping in Alpine Meadows in Northern Tibet. SUSTAINABILITY 2020. [DOI: 10.3390/su12145617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to explore responses of soil microbial communities among different alpine meadows under warming and clipping, soil microorganisms of three alpine meadow sites (low altitude: 4313 m, alpine steppe meadow, 30°30′ N, 91°04′ E; mid-altitude: 4513 m, alpine steppe meadow, 30°31′ N, 91°04′ E; and high altitude: 4693, alpine Kobresia meadow, 30°32′ N, 91°03′ E) were measured using the phospholipid fatty acid (PLFA) method. Both warming and clipping significantly reduced PLFA content and changed the community composition of soil microbial taxa, which belong to bacterial and fungal communities in the alpine Kobresia meadow. Warming significantly reduced the soil total PLFA content by 36.1% and the content of soil fungi by 37.0%; the clipping significantly reduced the soil total PLFA content by 57.4%, the content of soil fungi by 49.9%, and the content of soil bacteria by 60.5% in the alpine Kobresia meadow. Only clipping changed the total fungal community composition at a low altitude. Neither clipping nor warming changed the microbial community composition at a moderate altitude. Soil temperature, soil moisture, and pH were the main factors affecting soil microbial communities. Therefore, the effects of warming and clipping on soil microbial communities in alpine meadows were related to grassland types and soil environmental conditions.
Collapse
|
17
|
Zhang S, Sun L, Wang Y, Fan K, Xu Q, Li Y, Ma Q, Wang J, Ren W, Ding Z. Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiol 2020; 20:190. [PMID: 32611380 PMCID: PMC7329415 DOI: 10.1186/s12866-020-01871-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Background Cow manure is not only an agricultural waste, but also an organic fertilizer resource. The application of organic fertilizer is a feasible practice to mitigate the soil degradation caused by overuse of chemical fertilizers, which can affect the bacterial diversity and community composition in soils. However, to our knowledge, the information about the soil bacterial diversity and composition in tea plantation applied with cow manure fertilization was limited. In this study, we performed one field trial to research the response of the soil bacterial community to cow manure fertilization compared with urea fertilization using the high-throughput sequencing technique of 16S rRNA genes, and analyzed the relationship between the soil bacterial community and soil characteristics during different tea-picking seasons using the Spearman’s rank correlation analysis. Results The results showed that the soil bacterial communities were dominated by Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria across all tea-picking seasons. Therein, there were significant differences of bacterial communities in soils with cow manure fertilization (CMF) and urea fertilization (UF) in three seasons: the relative abundance of Bacteroidetes in CMF was significantly higher than that in UF and CK in spring, and the relative abundance of Proteobacteria and Bacteroidetes in CMF was significantly higher than that in UF and CK in autumn. So, the distribution of the dominant phyla was mainly affected by cow manure fertilization. The diversity of bacterial communities in soils with cow manure fertilization was higher than that in soils with urea fertilization, and was the highest in summer. Moreover, soil pH, OM and AK were important environmental properties affecting the soil bacterial community structure in tea plantation. Conclusions Although different fertilizers and seasons affect the diversity and structure of soil microorganisms, the application of cow manure can not only improve the diversity of soil bacteria, but also effectively regulate the structure of soil bacterial community in tea plantation. So, cow manure fertilization is more suitable for tea plantation.
Collapse
Affiliation(s)
- Shuning Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Litao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Qingshan Xu
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shanxi, China
| | - Yusheng Li
- Fruit and Tea Technology Extension Station, Jinan, 250000, Shandong, China
| | - Qingping Ma
- College of Agriculture, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Jiguo Wang
- Rizhao Agricultural Technology Service Center, Rizhao, 276800, Shandong, China
| | - Wanming Ren
- Modern Agricultural And Rural Development Research Center Of Shandong Province, Jinan, 250100, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
18
|
Chen H, Wang Y, Sun X, Peng Y, Xiao L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. CHEMOSPHERE 2020; 243:125271. [PMID: 31760289 DOI: 10.1016/j.chemosphere.2019.125271] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Microplastics have become a contaminant of increasing concern in soils. Although biodegradable plastics were considered as alternatives of traditional plastics, some evidence showed that biodegradable plastics might produce more microplastics. Until now, the effect of biodegradable microplastics on soil functions and processes, as well as microbial communities is uncertain. Based on high throughput sequencing, enzymatic activity assay and dynamic analysis of soil carbon and nitrogen, we investigated the effects of biodegradable polylactic acid microplastics (PLA MPs) on soil microbiota and related ecological processes under conditions of high or low carbon content. The results showed that PLA MPs had no significant effect on the overall diversity and composition of bacterial communities or related ecosystem functions and processes. However, co-occurrence network analysis revealed that PLA MPs impacted the interactions between constituent species, which might have legacy effect on soil bacterial communities and functions. Our data also revealed that PLA MPs could trade off the priming effect of carbon source. Our results provided an integrated picture in understanding the effects of PLA MPs on soil microbes, properties and ecological functions, which will help to further understand the effects of MPs on terrestrial ecosystems.
Collapse
Affiliation(s)
- Huiping Chen
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yuhuang Wang
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xi Sun
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yuke Peng
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Lin Xiao
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
19
|
Zaeem M, Nadeem M, Pham TH, Ashiq W, Ali W, Gilani SSM, Elavarthi S, Kavanagh V, Cheema M, Galagedara L, Thomas R. The potential of corn-soybean intercropping to improve the soil health status and biomass production in cool climate boreal ecosystems. Sci Rep 2019; 9:13148. [PMID: 31511594 PMCID: PMC6739473 DOI: 10.1038/s41598-019-49558-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/22/2019] [Indexed: 11/09/2022] Open
Abstract
Intercropping (IC) is a promising approach used to improve soil health and sustainable crop production. However, it is unknown whether IC improve the soil health status and biomass productivity of crops cultivated in podzols under cool climate in boreal ecosystems. Two silage corn and three forage soybean genotypes were cultivated either as inter or monocrop (MC) treatments in a randomized complete block design. IC resulted in 28% increase in total forage production (FP). A reduction in rhizosphere soil pH (RS-pH) was observed in the IC treatments. Conversely, the rhizosphere soil acid phosphatase (RS-APase) activity was significantly higher (26-46%) in the IC treatments and occurred concomitant with a significant increase in available phosphorus (RS-Pavailable) (26-74%) in the rhizosphere. Furthermore, IC enhanced the active microbial composition and strong positive correlations were observed between RS-Pavailable, RS-APase, microbial biomass and FP; while RS-pH was negatively correlated with FP, RS-APase and RS-Pavailable. These findings suggested silage corn intercropped with forage soybean could be a viable approach to enhance FP through improved active microbial community structure, RS-APase activity and RS-Pavailable when cultivated on podzols in cool climate boreal ecosystem.
Collapse
Affiliation(s)
- Muhammad Zaeem
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada.
| | - Muhammad Nadeem
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
- Department of Environmental Sciences, COMSATS University of Islamabad, Vehari, 61100, Pakistan
| | - Thu Huong Pham
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Waqar Ashiq
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Waqas Ali
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Syed Shah Mohioudin Gilani
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Sathya Elavarthi
- Department of Agriculture and Natural Resources Delaware State University, 1200N Dupont Hwy, Dover, DE, 19901, USA
| | - Vanessa Kavanagh
- Department of Fisheries, and Land Resources, Government of Newfoundland and Labrador, Pasadena, NL, A0L 1K0, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, A2H 5G4, Canada.
| |
Collapse
|
20
|
Piazza G, Ercoli L, Nuti M, Pellegrino E. Interaction Between Conservation Tillage and Nitrogen Fertilization Shapes Prokaryotic and Fungal Diversity at Different Soil Depths: Evidence From a 23-Year Field Experiment in the Mediterranean Area. Front Microbiol 2019; 10:2047. [PMID: 31551981 PMCID: PMC6737287 DOI: 10.3389/fmicb.2019.02047] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 01/20/2023] Open
Abstract
Soil biodiversity accomplishes key roles in agro-ecosystem services consisting in preserving and enhancing soil fertility and nutrient cycling, crop productivity and environmental protection. Thus, the improvement of knowledge on the effect of conservation practices, related to tillage and N fertilization, on soil microbial communities is critical to better understand the role and function of microorganisms in regulating agro-ecosystems. In the Mediterranean area, vulnerable to climate change and suffering for management-induced losses of soil fertility, the impact of conservation practices on soil microbial communities is of special interest for building mitigation and adaptation strategies to climate change. A long-term experiment, originally designed to investigate the effect of tillage and N fertilization on crop yield and soil organic carbon, was utilized to understand the effect of these management practices on soil prokaryotic and fungal community diversity. The majority of prokaryotic and fungal taxa were common to all treatments at both soil depths, whereas few bacterial taxa (Cloacimonates, Spirochaetia and Berkelbacteria) and a larger number of fungal taxa (i.e., Coniphoraceae, Debaryomycetaceae, Geastraceae, Cordicypitaceae and Steccherinaceae) were unique to specific management practices. Soil prokaryotic and fungal structure was heavily influenced by the interaction of tillage and N fertilization: the prokaryotic community structure of the fertilized conventional tillage system was remarkably different respect to the unfertilized conservation and conventional systems in the surface layer. In addition, the effect of N fertilization in shaping the fungal community structure of the surface layer was higher under conservation tillage systems than under conventional tillage systems. Soil microbial community was shaped by soil depth irrespective of the effect of plowing and N addition. Finally, chemical and enzymatic parameters of soil and crop yields were significantly related to fungal community structure along the soil profile. The findings of this study gave new insights on the identification of management practices supporting and suppressing beneficial and detrimental taxa, respectively. This highlights the importance of managing soil microbial diversity through agro-ecological intensified systems in the Mediterranean area.
Collapse
|
21
|
Li M, Peterson CA, Tautges NE, Scow KM, Gaudin ACM. Yields and resilience outcomes of organic, cover crop, and conventional practices in a Mediterranean climate. Sci Rep 2019; 9:12283. [PMID: 31439927 PMCID: PMC6706438 DOI: 10.1038/s41598-019-48747-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/08/2019] [Indexed: 11/10/2022] Open
Abstract
Adaptive management practices that maximize yields while improving yield resilience are required in the face of resource variability and climate change. Ecological intensification such as organic farming and cover cropping are lauded in some studies for fostering yield resilience, but subject to criticism in others for their low productivity. We implemented a quantitative framework to assess yield resilience, emphasizing four aspects of yield dynamics: yield, yield stability, yield resistance (i.e., the ability of systems to avoid crop failure under stressful growing conditions), and maximum yield potential. We compared the resilience of maize-tomato rotation systems after 24 years of irrigated organic, cover cropped, and conventional management in a Mediterranean climate, and identified crop-specific resilience responses of tomato and maize to three management systems. Organic management maintained tomato yields comparable to those under conventional management, while increasing yield stability and resistance. However, organic and cover cropped system resulted in 36.1% and 35.8% lower maize yields and reduced yield stability and resistance than the conventional system. Our analyses suggest that investments in ecological intensification approaches could potentially contribute to long-term yield resilience, however, these approaches need to be tailored for individual crops and systems to maximize their benefits, rather than employing one-size-fits-all approaches.
Collapse
Affiliation(s)
- Meng Li
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Caitlin A Peterson
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Nicole E Tautges
- Agricultural Sustainability Institute, University of California, Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Kate M Scow
- Department of Land, Air, and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA, 95616, United States
| | - Amélie C M Gaudin
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, United States.
| |
Collapse
|
22
|
Zhang D, Ji X, Meng Z, Qi W, Qiao K. Effects of fumigation with 1,3-dichloropropene on soil enzyme activities and microbial communities in continuous-cropping soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:730-736. [PMID: 30502523 DOI: 10.1016/j.ecoenv.2018.11.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The compound 1,3-D (1,3-dichloropropene) is a potential candidate soil fumigant due to the restrictions on methyl bromide (MB). To date, little is known about the soil microbial community changes induced by 1,3-D fumigation. Therefore, soil properties, related soil enzymes, genes encoding the key enzymes of ammonia oxidation in both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) and bacterial diversity were investigated to assess the effects of 1,3-D fumigation on the soil microbial community. The results exhibited that fumigation with 1,3-D caused accumulation of NH4+-N, but it led to decrease in the rate of NO3--N, and the concentration of NO3--N gradually recovered. At 12 weeks after transplant (WAT) of tomato seedlings, the concentration of NH4+-N and NO3--N were not statistically significant between the 1,3-D treatment groups and the untreated control group. A similar tendency was found for organic matter, soil pH, urease and protease activities. Moreover, quantitative real-time PCR (qPCR) showed that 1,3-D decreased total bacterial abundance, AOA-amoA and AOB-amoA genes. In addition, Illumina MiSeq sequencing analysis revealed that soil bacterial community diversities were significantly reduced at earlier sampling time points, and at later sampling time points, soil bacterial diversity gradually recovered, there was no significant difference compared to the control group. The present study provides useful information to evaluate the environmental safety of 1,3-D.
Collapse
Affiliation(s)
- Dianli Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Zhen Meng
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Wenzhe Qi
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China.
| |
Collapse
|
23
|
Liu B, Zhang R, Xia X, Zhang W, Gao M, Lu Q, Lin K. Toxicity responses of bacterial community as a biological indicator after repeated exposure to lead (Pb) in the presence of decabromodiphenyl ether (BDE209). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36278-36286. [PMID: 30368700 DOI: 10.1007/s11356-018-3342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Continuous exposure of chemicals could cause various environmental impacts. Decabromodiphenyl ether (BDE209) and lead (Pb) can co-exist and are discharged simultaneously at e-waste recycling sites (EWRSs). Extensive concerns have been attracted by their toxic effects on soil microorganisms. Thus, by using high-throughput sequencing, this study explored bacterial community responses in a soil system after repeated Pb exposure in the presence of BDE209 in the laboratory during 90-day indoor incubation period. Gene sequencing of 16S rDNA performed on an Illumina MiSeq platform proved that one-off Pb exposure caused higher microbial abundance and community diversity. Additionally, both repetitive Pb treatment and exogenous BDE209 input could change bacterial community composition. Twenty-three different bacterial phyla were detected in the soil samples, while more than 90% of the sequences in each treatment belonged to a narrow variety. The sequence analyses elucidated that Proteobacteria, Acidobacteria, and Bacteroidetes were the top three dominant phyla. Our observations could provide a few insights into the ecological risks of Pb and BDE209 co-existed contamination in soils at EWRSs.
Collapse
Affiliation(s)
- Bo Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Pharmaceutical School, Shanghai, 200135, China
| | - Rong Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoqian Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Mengwen Gao
- Baowu Group Environmental Resources Technology Co., Ltd., Shanghai, 200439, China
| | - Qiang Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
24
|
Zhang L, Jing Y, Xiang Y, Zhang R, Lu H. Responses of soil microbial community structure changes and activities to biochar addition: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:926-935. [PMID: 29960229 DOI: 10.1016/j.scitotenv.2018.06.231] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/25/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to investigate responses of soil microbial community structure changes and activities to biochar addition under different biochar characteristics, soil properties, and experiment conditions. A meta-analysis was conducted based on 265 datasets from 49 published studies. Results showed that biochar addition significantly increased the ratios of soil fungi to bacteria (F/B) and the ratios of Gram-positive bacteria to Gram-negative bacteria (G+/G-), and microbial biomass and activities. The enhancement of F/B ratios was most significant with addition of biochars produced at low temperatures to soils with lower pH and nutrients in a long-term condition, which improved ecosystem stability of agricultural soils. The F/B ratios were mainly affected by biochar nutrients, soil nutrients, and soil pH values. Biochar nutrients and structural properties (i.e., surface area and porosity) also played the important role in enhancing G+/G-, total microbial biomass, and activities of bacteria, fungi, and actinomycetes. The G+/G- ratios increased the most with addition of biochars produced with medium temperatures and residue accompanied with fertilizers in dry land (dried farmland) soils. High biochar load greatly improved the total phospholipid fatty acids, and activities of bacteria, fungi, and actinomycetes in fine/coarse, paddy soils, and soils with low nutrients, in turn increased the soil nutrient cycling. In addition, the structural properties of biochars were the most influencing factor to increase total microbial biomass and actinomycete activity. Overall, the enhancement of microbial activities and community structure shifts under biochar addition should promote soil nutrients cycling and carbon sequestration, and improve crop yields.
Collapse
Affiliation(s)
- Leiyi Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yiming Jing
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangzhou Xiang
- Guizhou Institute of Forest Inventory and Planning, Guiyang 550003, China
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haibo Lu
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
Response of Organic Matter Decomposition to No-Tillage Adoption Evaluated by the Tea Bag Technique. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2030042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organic matter (OM) decomposition is a fundamental ecosystem service in conservation agriculture, but the response of this process to the conversion from conventional tillage (CT) to no-tillage (NT) systems is not fully understood, especially during the transition period. Here, using a litterbag experiment (tea bag technique), we studied OM decomposition in a chronosequence of NT fields of different ages since conversion from CT (1 to 7 years) around Beauvais (northern France). We found that, in contrast with physico-chemical soil properties, the decomposition of both high quality (green tea) and low quality (rooibos tea) organic matter was significantly correlated with the NT age. Irrespective of the OM quality, the OM mass losses linearly increased with the time span since conversion from CT to NT. Taken together, our results suggest that adopting NT practices provides more favorable habitats for microorganisms involved in OM decomposition.
Collapse
|
26
|
Dynamics of a Soil Fungal Community in a Three-Year Green Garlic/Cucumber Crop Rotation System in Northwest China. SUSTAINABILITY 2018. [DOI: 10.3390/su10051391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Huang Y, Xiao X, Huang H, Jing J, Zhao H, Wang L, Long XE. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry. Appl Microbiol Biotechnol 2018; 102:5717-5729. [PMID: 29704041 DOI: 10.1007/s00253-018-9013-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/26/2018] [Accepted: 04/05/2018] [Indexed: 01/25/2023]
Abstract
Soil weakness across consecutive cropping fields can be partially explained by the changes in microbial community diversity and structure. Succession patterns and co-occurrence mechanisms of bacteria and fungi, especially beneficial or pathogenic memberships in continuous cropping strawberry fields and their response to edaphic factors remained unclear. In this study, Illumina sequencing of bacterial 16S ribosomal RNA and fungal internal transcribed spacer genes was applied in three time-course (1, 5, and 10 years) fields across spring and winter. Results showed that the richness and diversity of bacterial and fungal communities increased significantly (p < 0.05) in 1-year field and decreased afterwards across two seasons. Network analysis revealed beneficial bacterial and fungal genus (Bacillus and Trichoderma) dominated under 1-year field whereas Fusarium accumulated under 10-year field at either season. Moreover, Trichoderma harzianum and Bacillus subtilis that have been reported to effectively control Fusarium wilt in strawberries accumulated significantly under 1-year field. Canonical correspondence analysis showed that beneficial bacterial Rhodospirillales and Rhizobiales and fungal Glomerales accumulated in 1-year field and their distributions were significantly affected by soil pH, microbial biomass C (MBC), and moisture. On the contrary, fungal pathogenic species Fusarium oxysporum strongly increased under 10-year field at the winter sample and the abundance was positively (p < 0.01) correlated with soil moisture. Our study suggested that the potential of microcosm under 1-year field stimulates the whole microbial diversity and favors different beneficial taxa across two seasons. Soil pH, moisture, and MBC were the most important edaphic factors leading to contrasting beneficial and pathogenic memberships across consecutive strawberry cropping fields.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory for Agricultural Wastes Treatment and Recycling, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu District, Nanjing, 210014, Jiangsu Province, China.,Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Xu Xiao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Hongying Huang
- Laboratory for Agricultural Wastes Treatment and Recycling, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu District, Nanjing, 210014, Jiangsu Province, China.
| | - Jinquan Jing
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Hejuan Zhao
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Lin Wang
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, 210046, Jiangsu Province, China
| | - Xi-En Long
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
28
|
Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS One 2018; 13:e0192953. [PMID: 29447262 PMCID: PMC5814021 DOI: 10.1371/journal.pone.0192953] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/01/2018] [Indexed: 01/25/2023] Open
Abstract
Reducing tillage and growing cover crops, widely recommended practices for boosting soil health, have major impacts on soil communities. Surprisingly little is known about their impacts on soil microbial functional diversity, and especially so in irrigated Mediterranean ecosystems. In long-term experimental plots at the West Side Research and Extension Center in California's Central Valley, we characterized soil microbial communities in the presence or absence of physical disturbance due to tillage, in the presence or absence of cover crops, and at three depths: 0-5, 5-15 and 15-30 cm. This characterization included qPCR for bacterial and archaeal abundances, DNA sequencing of the 16S rRNA gene, and phylogenetic estimation of two ecologically important microbial traits (rRNA gene copy number and genome size). Total (bacterial + archaeal) diversity was higher in no-till than standard till; diversity increased with depth in no-till but decreased with depth in standard till. Total bacterial numbers were higher in cover cropped plots at all depths, while no-till treatments showed higher numbers in 0-5 cm but lower numbers at lower depths compared to standard tillage. Trait estimates suggested that different farming practices and depths favored distinctly different microbial life strategies. Tillage in the absence of cover crops shifted microbial communities towards fast growing competitors, while no-till shifted them toward slow growing stress tolerators. Across all treatment combinations, increasing depth resulted in a shift towards stress tolerators. Cover crops shifted the communities towards ruderals-organisms with wider metabolic capacities and moderate rates of growth. Overall, our results are consistent with decreasing nutrient availability with soil depth and under no-till treatments, bursts of nutrient availability and niche homogenization under standard tillage, and increases in C supply and variety provided by cover crops. Understanding how agricultural practices shift microbial abundance, diversity and life strategies, such as presented here, can assist with designing farming systems that can support high yields, while enhancing C sequestration and increasing resilience to climate change.
Collapse
Affiliation(s)
- Radomir Schmidt
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, United States of America
| | - Kelly Gravuer
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Anne V. Bossange
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, United States of America
| | - Jeffrey Mitchell
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Kate Scow
- Department of Land, Air and Water Resources, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
29
|
Arcand MM, Levy-Booth DJ, Helgason BL. Resource Legacies of Organic and Conventional Management Differentiate Soil Microbial Carbon Use. Front Microbiol 2017; 8:2293. [PMID: 29230199 PMCID: PMC5711833 DOI: 10.3389/fmicb.2017.02293] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 01/06/2023] Open
Abstract
Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with 13C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.5 times higher available phosphorus, 5% more nitrate, and 36% more dissolved organic C. The two management systems harbored distinct glucose-utilizing populations of Proteobacteria and Actinobacteria, with a higher Proteobacteria:Actinobacteria ratio (2.4 vs. 0.7) in conventional soils. Organically managed soils also harbored notable activity of Firmicutes. Thermodynamic efficiency indices were similar between soils, indicating that glucose was metabolized at similar energetic cost. However, differentially abundant glucose utilizers in organically managed soils were positively correlated with soil organic matter (SOM) priming and negatively correlated to soil nutrient and carbon availability, respiration, and heat production. These correlation patterns were strongly reversed in the conventionally managed soils indicating clear differentiation of microbial functioning related to soil resource availability. Fresh C addition caused proportionally more priming of SOM decomposition (57 vs. 51%) in organically managed soils likely due to mineralization of organic nutrients to satisfy microbial demands during glucose utilization in these more resource deprived soils. The additional heat released from SOM oxidation may explain the similar community level thermodynamic efficiencies between management systems. Restoring fertility to soils with a legacy of nutrient limitation requires a balanced supply of both nutrients and energy to protect stable SOM from microbial degradation. These results highlight the need to consider managing C for the energy it provides to ıcritical biological processes that underpin soil health.
Collapse
Affiliation(s)
- Melissa M Arcand
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - David J Levy-Booth
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Bobbi L Helgason
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| |
Collapse
|
30
|
Trivedi P, Delgado‐Baquerizo M, Jeffries TC, Trivedi C, Anderson IC, Lai K, McNee M, Flower K, Pal Singh B, Minkey D, Singh BK. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ Microbiol 2017; 19:3070-3086. [DOI: 10.1111/1462-2920.13779] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/20/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Pankaj Trivedi
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797Penrith South NSW2751, Australia
- Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort Collins CO80523, USA
| | - Manuel Delgado‐Baquerizo
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797Penrith South NSW2751, Australia
- Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulder CO80309, USA
| | - Thomas C. Jeffries
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797Penrith South NSW2751, Australia
| | - Chanda Trivedi
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797Penrith South NSW2751, Australia
| | - Ian C. Anderson
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797Penrith South NSW2751, Australia
| | - Kaitao Lai
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797Penrith South NSW2751, Australia
| | - Matthew McNee
- Western Australian No‐Tillage Farmers AssociationLeeuwin Centre, CSIRO65, Brockway RoadFloreat WA6014, Australia
| | - Kenneth Flower
- School of Plant Biology and Institute of AgricultureThe University of Western Australia35 Stirling HighwayCrawley WA6009, Australia
| | - Bhupinder Pal Singh
- NSW Department of Primary IndustriesElizabeth Macarthur Agricultural InstituteMenangle NSW2568, Australia
| | - David Minkey
- Western Australian No‐Tillage Farmers AssociationLeeuwin Centre, CSIRO65, Brockway RoadFloreat WA6014, Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797Penrith South NSW2751, Australia
- Global Centre for Land Based InnovationWestern Sydney UniversityBuilding L9, Locked Bag 1797Penrith South NSW2751, Australia
| |
Collapse
|
31
|
Shen Y, Chen Y, Li S. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland. PLoS One 2016; 11:e0159144. [PMID: 27414400 PMCID: PMC4945083 DOI: 10.1371/journal.pone.0159144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/28/2016] [Indexed: 11/30/2022] Open
Abstract
Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the soil and its sustainability in the rainfall-limited semiarid region.
Collapse
Affiliation(s)
- Yufang Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
| | - Yingying Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
- * E-mail:
| |
Collapse
|
32
|
Frasier I, Noellemeyer E, Figuerola E, Erijman L, Permingeat H, Quiroga A. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration. Glob Ecol Conserv 2016. [DOI: 10.1016/j.gecco.2016.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
33
|
Williams A, Kane DA, Ewing PM, Atwood LW, Jilling A, Li M, Lou Y, Davis AS, Grandy AS, Huerd SC, Hunter MC, Koide RT, Mortensen DA, Smith RG, Snapp SS, Spokas KA, Yannarell AC, Jordan NR. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems. FRONTIERS IN PLANT SCIENCE 2016; 7:65. [PMID: 26904043 PMCID: PMC4743437 DOI: 10.3389/fpls.2016.00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/14/2016] [Indexed: 05/08/2023]
Abstract
There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in agricultural systems, allowing sustainable temporal intensification while protecting and enhancing soil functioning.
Collapse
Affiliation(s)
- Alwyn Williams
- Department of Agronomy and Plant Genetics, University of Minnesota, St PaulMN, USA
| | - Daniel A. Kane
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East LansingMI, USA
| | - Patrick M. Ewing
- Department of Agronomy and Plant Genetics, University of Minnesota, St PaulMN, USA
| | - Lesley W. Atwood
- Department of Natural Resources and the Environment, University of New Hampshire, DurhamNH, USA
| | - Andrea Jilling
- Department of Natural Resources and the Environment, University of New Hampshire, DurhamNH, USA
| | - Meng Li
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, UrbanaIL, USA
| | - Yi Lou
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, UrbanaIL, USA
| | - Adam S. Davis
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture – Agricultural Research Service, UrbanaIL, USA
| | - A. Stuart Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, DurhamNH, USA
| | - Sheri C. Huerd
- Department of Agronomy and Plant Genetics, University of Minnesota, St PaulMN, USA
| | - Mitchell C. Hunter
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Roger T. Koide
- Department of Biology, Brigham Young University, ProvoUT, USA
| | - David A. Mortensen
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Richard G. Smith
- Department of Natural Resources and the Environment, University of New Hampshire, DurhamNH, USA
| | - Sieglinde S. Snapp
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East LansingMI, USA
| | - Kurt A. Spokas
- Soil and Water Management Unit, United States Department of Agriculture – Agricultural Research Service, St PaulMN, USA
| | - Anthony C. Yannarell
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, UrbanaIL, USA
| | - Nicholas R. Jordan
- Department of Agronomy and Plant Genetics, University of Minnesota, St PaulMN, USA
| |
Collapse
|
34
|
Wu X, Wu F, Zhou X, Fu X, Tao Y, Xu W, Pan K, Liu S. Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity. FRONTIERS IN PLANT SCIENCE 2016; 7:846. [PMID: 27379133 PMCID: PMC4909156 DOI: 10.3389/fpls.2016.00846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/30/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. METHODS The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. RESULTS Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p < 0.05) in the rhizosphere of TI. The populations and diversities of PSB, PMB, and ALP genes increased significantly in the rhizosphere of TI, compared to the rhizosphere of TM. CONCLUSION The results indicated that intercropping with potato onion promoted the growth and P uptake of tomato in phosphorus-rich soil and affected the community structure and function of phosphobacteria in tomato rhizosphere. Intercropping with potato onion also improved soil quality by lowering levels of soil acidification and salinization.
Collapse
Affiliation(s)
- Xia Wu
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
- Department of Agronomy, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Fengzhi Wu
- Heilongjiang Provincial Key University Laboratory of Cold Area Vegetable Biology, Northeast Agricultural UniversityHarbin, China
- *Correspondence: Fengzhi Wu
| | - Xingang Zhou
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
- Heilongjiang Provincial Key University Laboratory of Cold Area Vegetable Biology, Northeast Agricultural UniversityHarbin, China
| | - Xuepeng Fu
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
- Department of Life Science and Agroforestry, Qiqihar UniversityQiqihar, China
| | - Yue Tao
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Weihui Xu
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
- Department of Life Science and Agroforestry, Qiqihar UniversityQiqihar, China
| | - Kai Pan
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Shouwei Liu
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
35
|
Addition of crop residues affects a detritus-based food chain depending on litter type and farming system. Basic Appl Ecol 2015. [DOI: 10.1016/j.baae.2015.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Stagnari F, Perpetuini G, Tofalo R, Campanelli G, Leteo F, Della Vella U, Schirone M, Suzzi G, Pisante M. Long-term impact of farm management and crops on soil microorganisms assessed by combined DGGE and PLFA analyses. Front Microbiol 2014; 5:644. [PMID: 25540640 PMCID: PMC4261825 DOI: 10.3389/fmicb.2014.00644] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/07/2014] [Indexed: 11/29/2022] Open
Abstract
In the present study, long-term organic and conventional managements were compared at the experimental field of Monsampolo del Tronto (Marche region, Italy) with the aim of investigating soil chemical fertility and microbial community structure. A polyphasic approach, combining soil fertility indicators with microbiological analyses (plate counts, PCR-denaturing gradient gel electrophoresis [DGGE] and phospholipid fatty acid analysis [PLFA]) was applied. Organic matter, N as well as some important macro and micronutrients (K, P, Mg, Mn, Cu, and Zn) for crop growth, were more available under organic management. Bacterial counts were higher in organic management. A significant influence of management system and management x crop interaction was observed for total mesophilic bacteria, nitrogen fixing bacteria and actinobacteria. Interestingly, cultivable fungi were not detected in all analyzed samples. PLFA biomass was higher in the organic and Gram positive bacteria dominated the microbial community in both systems. Even if fungal biomass was higher in organic management, fungal PCR-DGGE fingerprinting revealed that the two systems were very similar in terms of fungal species suggesting that 10 years were not enough to establish a new dynamic equilibrium among ecosystem components. A better knowledge of soil biota and in particular of fungal community structure will be useful for the development of sustainable management strategies.
Collapse
Affiliation(s)
- Fabio Stagnari
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Gabriele Campanelli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Unità di Ricerca per l'Orticoltura (CRA - ORA) Monsampolo del Tronto, Italy
| | - Fabrizio Leteo
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Unità di Ricerca per l'Orticoltura (CRA - ORA) Monsampolo del Tronto, Italy
| | - Umberto Della Vella
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Maria Schirone
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Giovanna Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| | - Michele Pisante
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo Mosciano Sant'Angelo, Italy
| |
Collapse
|
37
|
Primary effects of extracellular enzyme activity and microbial community on carbon and nitrogen mineralization in estuarine and tidal wetlands. Appl Microbiol Biotechnol 2014; 99:2895-909. [DOI: 10.1007/s00253-014-6187-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 11/28/2022]
|
38
|
Chemidlin Prévost-Bouré N, Dequiedt S, Thioulouse J, Lelièvre M, Saby NPA, Jolivet C, Arrouays D, Plassart P, Lemanceau P, Ranjard L. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale. PLoS One 2014; 9:e111667. [PMID: 25365044 PMCID: PMC4218796 DOI: 10.1371/journal.pone.0111667] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 10/01/2014] [Indexed: 11/24/2022] Open
Abstract
Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes<Burgundy≤Brittany<<South-East) using the systematic grid of French Soil Quality Monitoring Network to evaluate the communities’ composition turnovers. The relative importance of processes and filters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to 120 km radius) and/or medium (40 to 65 km radius) spatial scales, suggesting dispersal limitations at these scales.
Collapse
Affiliation(s)
- Nicolas Chemidlin Prévost-Bouré
- Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique-AgroSup Dijon-Université de Bourgogne, Dijon, France
- * E-mail:
| | - Samuel Dequiedt
- Unité Mixte de Recherche 1347 Agroécologie-Plateforme GenoSol, Institut National de la Recherche Agronomique-AgroSup Dijon-Université de Bourgogne, Dijon, France
| | - Jean Thioulouse
- Unité Mixte de Recherche 555 Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1-Centre National de la Recherche Scientifique, Villeurbanne, France
| | - Mélanie Lelièvre
- Unité Mixte de Recherche 1347 Agroécologie-Plateforme GenoSol, Institut National de la Recherche Agronomique-AgroSup Dijon-Université de Bourgogne, Dijon, France
| | - Nicolas P. A. Saby
- Unité de Services 1106 InfoSol, Institut National de la Recherche Agronomique, Orléans, France
| | - Claudy Jolivet
- Unité de Services 1106 InfoSol, Institut National de la Recherche Agronomique, Orléans, France
| | - Dominique Arrouays
- Unité de Services 1106 InfoSol, Institut National de la Recherche Agronomique, Orléans, France
| | - Pierre Plassart
- Unité Mixte de Recherche 1347 Agroécologie-Plateforme GenoSol, Institut National de la Recherche Agronomique-AgroSup Dijon-Université de Bourgogne, Dijon, France
| | - Philippe Lemanceau
- Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique-AgroSup Dijon-Université de Bourgogne, Dijon, France
| | - Lionel Ranjard
- Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique-AgroSup Dijon-Université de Bourgogne, Dijon, France
- Unité Mixte de Recherche 1347 Agroécologie-Plateforme GenoSol, Institut National de la Recherche Agronomique-AgroSup Dijon-Université de Bourgogne, Dijon, France
| |
Collapse
|
39
|
McDaniel MD, Tiemann LK, Grandy AS. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2014; 24:560-70. [PMID: 24834741 DOI: 10.1890/13-0616.1] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Our increasing dependence on a small number of agricultural crops, such as corn, is leading to reductions in agricultural biodiversity. Reductions in the number of crops in rotation or the replacement of rotations by monocultures are responsible for this loss of biodiversity. The belowground implications of simplifying agricultural plant communities remain unresolved; however, agroecosystem sustainability will be severely compromised if reductions in biodiversity reduce soil C and N concentrations, alter microbial communities, and degrade soil ecosystem functions as reported in natural communities. We conducted a meta-analysis of 122 studies to examine crop rotation effects on total soil C and N concentrations, and the faster cycling microbial biomass C and N pools that play key roles in soil nutrient cycling and physical processes such as aggregate formation. We specifically examined how rotation crop type and management practices influence C and N dynamics in different climates and soil types. We found that adding one or more crops in rotation to a monoculture increased total soil C by 3.6% and total N by 5.3%, but when rotations included a cover crop (i.e., crops that are not harvested but produced to enrich the soil and capture inorganic N), total C increased by 8.5% and total N 12.8%. Rotations substantially increased the soil microbial biomass C (20.7%) and N (26.1%) pools, and these overwhelming effects on microbial biomass were not moderated by crop type or management practices. Crop rotations, especially those that include cover crops, sustain soil quality and productivity by enhancing soil C, N, and microbial biomass, making them a cornerstone for sustainable agroecosystems.
Collapse
|
40
|
Li Y, Dong S, Wen L, Wang X, Wu Y. The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:393-399. [PMID: 23792816 DOI: 10.1016/j.jenvman.2013.05.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 03/18/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Quantifying the carbon storage of grasslands under different management strategies can help us understand how this ecosystem responds to different land management practices. To assess the C cycle and the importance of soil microbial biomass carbon, we measured the levels of soil organic carbon, biomass carbon (above- and underground) and soil microbial biomass carbon in areas with different grazing intensities and different management strategy (fenced and unfenced) in the Qinghai-Tibetan Plateau. We also calculated the ratio of soil microbial biomass carbon to soil organic carbon as an indicator of the soil organic matter availability and quality. Results showed that degradation had significant effects on the soil organic carbon, biomass carbon and microbial biomass carbon (P < 0.05). However, fencing only had a significant effect on the non-degraded and moderately degraded grasslands (P < 0.05). We also found that the level of soil microbial biomass carbon was positively correlated with the biomass carbon and soil organic carbon. From our research, we concluded that the level of soil microbial biomass carbon was crucial to the C cycle in the alpine grasslands and that fencing may be an important management strategy for restoring lightly or moderately degraded grassland in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Environment, Beijing Normal University, 100875, China
| | | | | | | | | |
Collapse
|
41
|
Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. Appl Environ Microbiol 2012; 79:1284-92. [PMID: 23241975 DOI: 10.1128/aem.03393-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various agriculture management practices may have distinct influences on soil microbial communities and their ecological functions. In this study, we utilized GeoChip, a high-throughput microarray-based technique containing approximately 28,000 probes for genes involved in nitrogen (N)/carbon (C)/sulfur (S)/phosphorus (P) cycles and other processes, to evaluate the potential functions of soil microbial communities under conventional (CT), low-input (LI), and organic (ORG) management systems at an agricultural research site in Michigan. Compared to CT, a high diversity of functional genes was observed in LI. The functional gene diversity in ORG did not differ significantly from that of either CT or LI. Abundances of genes encoding enzymes involved in C/N/P/S cycles were generally lower in CT than in LI or ORG, with the exceptions of genes in pathways for lignin degradation, methane generation/oxidation, and assimilatory N reduction, which all remained unchanged. Canonical correlation analysis showed that selected soil (bulk density, pH, cation exchange capacity, total C, C/N ratio, NO(3)(-), NH(4)(+), available phosphorus content, and available potassium content) and crop (seed and whole biomass) variables could explain 69.5% of the variation of soil microbial community composition. Also, significant correlations were observed between NO(3)(-) concentration and denitrification genes, NH(4)(+) concentration and ammonification genes, and N(2)O flux and denitrification genes, indicating a close linkage between soil N availability or process and associated functional genes.
Collapse
|
42
|
Leff JW, Wieder WR, Taylor PG, Townsend AR, Nemergut DR, Grandy AS, Cleveland CC. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. GLOBAL CHANGE BIOLOGY 2012; 18:2969-79. [PMID: 24501071 DOI: 10.1111/j.1365-2486.2012.02749.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/19/2012] [Indexed: 05/14/2023]
Abstract
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C-rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (-22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.
Collapse
Affiliation(s)
- Jonathan W Leff
- Department of Ecosystem and Conservation Sciences, University of Montana, CHCB423, Missoula, MT, 59812, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Birkhofer K, Bezemer T, Hedlund K, Setälä H. Community composition of soil organisms under different wheat farming systems. MICROBIAL ECOLOGY IN SUSTAINABLE AGROECOSYSTEMS 2012. [DOI: 10.1201/b12339-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|