1
|
Atoufi A, Banitalebi A, Badiei A, Mohammadi Ziarani G. Engineering yolk-double-shell Au@CN@ZnIn 2S 4 architecture with enhanced photocatalytic properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:266-278. [PMID: 39688761 DOI: 10.1007/s11356-024-35786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
The efficient utilization of light and the prolonged lifetime of photo-induced charge carriers are essential elements that contribute to superior photocatalytic activity. Yolk-shell nanostructures with porous shells and mobile cores offer significant structural advantages in achieving these goals. However, designing yolk-shell multicomponent nanocomposites with diverse architectures remains a persistent challenge. The present study involves the utilization of zinc indium sulfide (ZnIn2S4) flakes, which are uniformly incorporated into the yolk-shell Au@CN structure. The inclusion of ZnIn2S4 flakes in carbon nitride (CN) significantly enhances the performance of the overall system, allowing for efficient and rapid charge transfer. The uniform distribution of ZnIn2S4 flakes throughout the yolk-shell matrix ensures the catalytic activity is maximized, resulting in superior performance compared to conventional systems. The designed photocatalyst has a hollow interior which strengthens light absorption, a thin shell that shortens the electron migration distance, tight adhesion between shells, which makes it easier to separate and transfer carriers, and a movable Au core with localized surface plasmon resonance (LSPR) which can facilitate additional charge carrier generation for CN and ZnIn2S4. The yolk-shell microsphere composite of Au@CN@ZnIn2S4 shows a TC photodegradation rate of 72% within 2 h, which is more than double the photodegradation rate of hollow CN and ZnIn2S4. The present study's experimental demonstrations valuable insights into the rational design of sophisticated metal-semiconductors double yolk-shell nanocrystals, particularly those composed of metal sulfides cocatalyst, for superior photocatalytic applications.
Collapse
Affiliation(s)
- Ali Atoufi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Banitalebi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
2
|
Qi K, Imparato C, Almjasheva O, Khataee A, Zheng W. TiO 2-based photocatalysts from type-II to S-scheme heterojunction and their applications. J Colloid Interface Sci 2024; 675:150-191. [PMID: 38968635 DOI: 10.1016/j.jcis.2024.06.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Photocatalysis is a promising sustainable technology to remove organic pollution and convert solar energy into chemical energy. Titanium dioxide has drawn extensive attention in this field owing to its high activity under UV light, good chemical stability, large availability, low price and low toxicity. However, the poor quantum efficiency derived from fast electron/hole recombination, the limited utilization of sunlight, and a weak reducing ability still hinder its practical application. Among the modification strategies of TiO2 to enhance its performance, the construction of heterojunctions with other semiconductors is a powerful and versatile way to maximise the separation of photogenerated charge carriers and steer their transport toward enhanced efficiency and selectivity. Here, the research progress and current status of TiO2 modification are reviewed, focusing on heterojunctions. A rapid evolution of the understanding of the different charge transfer mechanisms is witnessed from traditional type II to the recently conceptualised S-scheme. Particular attention is paid to different synthetic approaches and interface engineering methods designed to improve and control the interfacial charge transfer, and several cases of TiO2 heterostructures with metal oxides, metal sulfides and carbon nitride are discussed. The application hotspots of TiO2-based photocatalysts are summarized, including hydrogen generation by water splitting, solar fuel production by CO2 conversion, and the degradation of organic water pollutants. Hints about less studied and emerging processes are also provided. Finally, the main issues and challenges related to the sustainability and scalability of photocatalytic technologies in view of their commercialization are highlighted, outlining future directions of development.
Collapse
Affiliation(s)
- Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Claudio Imparato
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Oksana Almjasheva
- Department of Physical Chemistry, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, 197022, Russia
| | - Alireza Khataee
- Department of Chemical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| | - Wenjun Zheng
- College of Chemistry, Nankai University, Tianjin 300071, Tianjin, China.
| |
Collapse
|
3
|
Yuan Z, Zhu X, Gao X, An C, Wang Z, Zuo C, Dionysiou DD, He H, Jiang Z. Enhancing photocatalytic CO 2 reduction with TiO 2-based materials: Strategies, mechanisms, challenges, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100368. [PMID: 38268554 PMCID: PMC10805649 DOI: 10.1016/j.ese.2023.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
The concentration of atmospheric CO2 has exceeded 400 ppm, surpassing its natural variability and raising concerns about uncontrollable shifts in the carbon cycle, leading to significant climate and environmental impacts. A promising method to balance carbon levels and mitigate atmospheric CO2 rise is through photocatalytic CO2 reduction. Titanium dioxide (TiO2), renowned for its affordability, stability, availability, and eco-friendliness, stands out as an exemplary catalyst in photocatalytic CO2 reduction. Various strategies have been proposed to modify TiO2 for photocatalytic CO2 reduction and improve catalytic activity and product selectivity. However, few studies have systematically summarized these strategies and analyzed their advantages, disadvantages, and current progress. Here, we comprehensively review recent advancements in TiO2 engineering, focusing on crystal engineering, interface design, and reactive site construction to enhance photocatalytic efficiency and product selectivity. We discuss how modifications in TiO2's optical characteristics, carrier migration, and active site design have led to varied and selective CO2 reduction products. These enhancements are thoroughly analyzed through experimental data and theoretical calculations. Additionally, we identify current challenges and suggest future research directions, emphasizing the role of TiO2-based materials in understanding photocatalytic CO2 reduction mechanisms and in designing effective catalysts. This review is expected to contribute to the global pursuit of carbon neutrality by providing foundational insights into the mechanisms of photocatalytic CO2 reduction with TiO2-based materials and guiding the development of efficient photocatalysts.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
| | - Xianglin Zhu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xianqiang Gao
- College of Forestry, Shandong Agricultural University, Taian, 271018, PR China
| | - Changhua An
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Zheng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Cheng Zuo
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
| | - Dionysios D. Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| |
Collapse
|
4
|
Rahmani Khalili N, Banitalebi Dehkordi A, Amiri A, Mohammadi Ziarani G, Badiei A, Cool P. Tailored Covalent Organic Framework Platform: From Multistimuli, Targeted Dual Drug Delivery by Architecturally Engineering to Enhance Photothermal Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28245-28262. [PMID: 38770930 DOI: 10.1021/acsami.4c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Engineering bulk covalent organic frameworks (COFs) to access specific morphological structures holds paramount significance in boosting their functions in cancer treatment; nevertheless, scant effort has been dedicated to exploring this realm. Herein, silica core-shell templates and multifunctional COF-based reticulated hollow nanospheres (HCOFs) are novelly designed as a versatile nanoplatform to investigate the simultaneous effect of dual-drug chemotherapy and photothermal ablation. Taking advantage of the distinct structural properties of the template, the resulting two-dimensional (2D) HCOF, featuring large internal voids and a peripheral interconnected mesoporous shell, presents intriguing benefits over its bulk counterparts for cancer treatment, including a well-defined morphology, an outstanding drug loading capability (99.6%) attributed to its ultrahigh surface area (2087 m2/g), great crystallinity, improved tumor accumulation, and an adjustable drug release profile. After being loaded with hydrophilic doxorubicin with a remarkable loading capacity, the obtained drug-loaded HCOFs were coated with gold nanoparticles (Au NPs) to confer them with three properties, including pore entrance blockage, active-targeting capability, and improved biocompatibility via secondary modification, besides high near infrared (NIR) absorption for efficient photothermal hyperthermia cancer suppression. The resultant structure was functionalized with mono-6-thio-β-cyclodextrin (β-CD) as a second pocket to load docetaxel as the hydrophobic anticancer agent (combination index = 0.33). The dual-drug-loaded HCOF displayed both pH- and near-infrared-responsive on-demand drug release. In vitro and in vivo evaluations unveiled the prominent synergistic performance of coloaded HCOF in cancer elimination upon NIR light irradiation. This work opens up a new avenue for exciting applications of structurally engineered HCOFs as hydrophobic/hydrophilic drug carriers as well as multimodal treatment agents.
Collapse
Affiliation(s)
| | - Ali Banitalebi Dehkordi
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ahmad Amiri
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran 19938-93973, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Pegie Cool
- Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
5
|
Zhao L, Huang Z, Zeng X, He X, Wang D, Fang W, Li W, Du X, Chen H. In-situ grown carbon as charge transfer medium for enhanced photoinduced electrons extraction from polymer carbon nitride toward TiO 2. J Colloid Interface Sci 2024; 653:1236-1245. [PMID: 37797499 DOI: 10.1016/j.jcis.2023.09.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Interfacial charge transfer resistance is one of the main limiting factors for realizing high photocatalytic efficiency of heterostructures system. Herein, an activated carbon layer is successfully introduced between the interface of polymer carbon nitride (CN) and TiO2 heterostructure (CNP-x) as charge transfer medium by in situ pyrolysis carbonization method. Because of the lower spatial resistance of the crystalline/amorphous interface and the fast carrier transportation character of activated carbon, the efficiency of TiO2 in extracting photoinduced electrons from CN was significantly improved. That is, the separation/transport of photocarriers in CNP-x heterostructure is accelerated, and the recombination time of photogenerated electrons and holes is prolonged. The CNP-1 exhibits a H2 evolution rate of 1298.5 μmol h-1 with apparent quantum yield (AQY) of 34.5 %, 20.3 % and 12.6 % at 365 nm, 380 nm and 400 nm, respectively. This work offers a novel and unique strategy to promote interface charge separation and transport of CN-based heterostructures by accurately introduction charge transfer medium.
Collapse
Affiliation(s)
- Lei Zhao
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Zhaohui Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Xianghui Zeng
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Xuan He
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Daheng Wang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Wei Fang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Weixin Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Xing Du
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Hui Chen
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China.
| |
Collapse
|
6
|
Nair R, Gokuladoss V. Synergistic adsorption and kinetic studies of heterostructured g-C 3N 4/TiO 2 nano-photocatalyst under visible light for enhanced CO 2 reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2495-2510. [PMID: 38063962 DOI: 10.1007/s11356-023-31163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
Graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) were synthesized using sol-gel and ultrasonic impregnation technique followed by calcination for photocatalytic CO2 reduction. The nano-photocatalysts were analyzed for their morphological, structural, and optical characteristics. Scanning electron microscopy (SEM) revealed the presence of spherical and layered sheet-like nanoparticles, as well as the occurrence of minor aggregations. The ultraviolet-visible spectroscopy (UV-vis) revealed that g-C3N4 has good photocatalytic properties with a medium band gap (2.7 eV), and TiO2 has high charge transfer potentials, robust oxidation properties, and high band gap (3.20 eV). However, the larger band gap makes it unresponsive in the visible light spectrum. In order to circumvent this constraint, a hybrid heterostructured g-C3N4/TiO2 catalyst with different compositions, viz., 1:1, 1:2, and 2:1, were fabricated using the ultrasonic impregnation technique followed by calcination process. The optical band gap of g-C3N4/TiO2 nanocomposite shows a red shift towards 2.85 eV from 3.20 eV for bare TiO2, inferring enhanced absorption in the visible light region. Further, the photocatalytic experiments were performed using visible light sources for all the catalysts. The g-C3N4/TiO2 (2:1) reported higher photocatalytic activity due to its reduced crystallite size of 12.94 nm which were investigated using X-ray diffraction analysis (XRD) and lower band gap of 2.85 eV. The study infers that hybrid photocatalyst enhances the visible light absorption, electron-hole (e - /h +) pair separation rate, and photocatalytic reduction of CO2. In addition, two adsorption models Langmuir and Freundlich were used and adsorption kinetic data were fitted to pseudo-first-order reaction for all the five catalysts. The adsorption isotherm of CO2 by g-C3N4/TiO2 (2:1) well fitted by the Freundlich adsorption equation. On the basis of adsorption magnitude (n) values (1.74), it was found that the interaction between CO2 molecules and g-C3N4/TiO2 occurs according to the chemisorption mechanism. The kinetic study infers that the highest value of apparent rate constant (kapp) was exhibited by g-C3N4/TiO2 (2:1), which indicates that the products predominate at equilibrium.
Collapse
Affiliation(s)
- Rishika Nair
- School of Electrical Engineering, Vellore Institute of Technology (VIT), Vellore, 632 014, India
- CO2 Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Velvizhi Gokuladoss
- CO2 Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, India.
| |
Collapse
|
7
|
Moradian S, Badiei A, Mohammadi Ziarani G, Mohajer F, Varma RS, Iravani S. Black Phosphorus-based Photocatalysts: Synthesis, Properties, and Applications. ENVIRONMENTAL RESEARCH 2023; 237:116910. [PMID: 37597834 DOI: 10.1016/j.envres.2023.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Photocatalysis is considered as an eco-friendly and sustainable strategy, since it uses abundant light for the advancement of the reaction, which is freely accessible and is devoid of environmental pollution. During the last decades, (nano)photocatalysts have gained broad industrial applications in terms of purification and detoxification of water as well as production of green fuels and hydrogen gas due to their special attributes. The degradation or remediation of toxic and hazardous compounds from the environment or changing them into non-toxic entities is a significant endeavor and necessary for the safety of humans, animals, and the environment. Black phosphorus (BP), a two-dimensional single-element material, has a marvelous structure, tunable bandgap, changeable morphology from bulk to nanosheet/quantum dot, and unique physicochemical properties, which makes it attractive material for photocatalytic applications, especially for sustainable development purposes. Since it can serve as a photocatalyst with or without coupling with other semiconductors, various aspects for multidimensional exploitation of BP are deliberated including their preparation via solvothermal, ball milling, calcination, and sonication methods to obtain BP from red phosphorus. The techniques for improving the photocatalytic and stability of BP-based composites are discussed along with their multifaceted applications for environmental remediation, pollution degradation, water splitting, N2 fixation, CO2 reduction, bacterial disinfection, H2 generation, and photodynamic therapy. Herein, most recent advancements pertaining to the photocatalytic applications of BP-based photocatalyst are cogitated, with a focus on their synthesis and properties as well as crucial challenges and future perspectives.
Collapse
Affiliation(s)
- Sahar Moradian
- School of Chemistry, College of Science, University of Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Iran.
| | | | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
8
|
Paul DR, Sharma R, Rao VS, Panchal P, Gautam S, Sharma A, Nehra SP. Mg/Li@GCN as highly active visible light responding 2D photocatalyst for wastewater remediation application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98540-98547. [PMID: 35666418 DOI: 10.1007/s11356-022-21203-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, a highly visible light responding 2D photocatalytic material has been prepared and analysed for its potential for photodegradation of organic pollutants. The pristine GCN has been co-doped with Mg/Li using the facile synthesis route. The prepared photocatalytic materials were then analysed using characterisation techniques like X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflectance spectra (DRS) and photoluminescence spectroscopy (PL) analysis. The prepared samples were analysed for photocatalytic degradation analysis towards methylene blue dye. The apparent rate constant value increased up to 5.4 times in the case of the GCNML (0.5,2) sample in comparison to GCNP. In addition, the GCNML (0.5,2) sample was also analysed for degradation of crystal violet (CV) (97% in 80 min), rose bengal (RB) (84% in 120 min) and methyl orange (MO) (45% in 120 min) dyes. The result obtained from the study confirmed that GCNML (0.5,2) can act as a potential photocatalyst for wastewater remediation application.
Collapse
Affiliation(s)
- Devina Rattan Paul
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Rishabh Sharma
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Vikrant Singh Rao
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Priyanka Panchal
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Shubham Gautam
- Materials Research Center, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology (SoET), Central University of Haryana, Mahendragarh, 123031, India
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| |
Collapse
|
9
|
Goren AY, Recepoglu YK, Vatanpour V, Yoon Y, Khataee A. Insights into engineered graphitic carbon nitride quantum dots for hazardous contaminants degradation in wastewater. ENVIRONMENTAL RESEARCH 2023; 223:115408. [PMID: 36740151 DOI: 10.1016/j.envres.2023.115408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/07/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Increased environmental pollution is a critical issue that must be addressed. Photocatalytic, adsorption, and membrane filtration methods are suitable in environmental governance because of their high selectivity, low cost, environment-friendly nature, and excellent treatment efficiency. Graphitic carbon nitride (g-C3N4) quantum dots (QDs) have been considered as photocatalysts, adsorbents, and membrane materials for wastewater treatments, owing to their stability, adsorption capacity, photochemical properties, and low toxicity and cost. This review summarizes g-C3N4 QD synthesis techniques, operating parameters affecting the removal performance in the treatment process, modification effects with other semiconductors, and benefits and drawbacks of g-C3N4 QD-based materials. Furthermore, this review discusses the practical applications of g-C3N4 QDs as adsorbents, photocatalysts, and membrane materials for organic and inorganic contaminant treatments and their value-added product formation potential. Modified g-C3N4 QD-based material adsorbents, photocatalysts, and membranes present potentially applicable effects, such as removal of most waterborne contaminants. Excellent results were obtained for the reduction of methyl orange, bisphenol A, tetracycline, ciprofloxacin, phenol, rhodamine B, E. coli, and Hg. Overall, this paper provides comprehensive background on g-C3N4 QD-based materials and their diverse applications in wastewater treatment, and it presents a foundation for the enhancement of similar unique materials in the future.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Yasar K Recepoglu
- Department of Chemical Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, 1, Yonseidae-gil, Wonju-si, 26493, Gangwon-do, Republic of Korea.
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
10
|
Faryad S, Azhar U, Tahir MB, Ali W, Arif M, Sagir M. Spinach-derived boron-doped g-C 3N 4/TiO 2 composites for efficient photo-degradation of methylene blue dye. CHEMOSPHERE 2023; 320:138002. [PMID: 36731675 DOI: 10.1016/j.chemosphere.2023.138002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Green synthesis of nanoparticles can be beneficial due to their low toxicity, cost-effectiveness, and environment-friendliness. Its synthesis involves the use of eco-friendly and biodegradable materials such as plant extracts, natural products, and microorganisms to reduce the negative environmental impacts of traditional nanoparticle synthesis methods. Herein, Spinacia oleracea leaves are used as a boron source, and a visible light active photo-catalyst is produced. The effect of Co-Catalyst Boron in Graphitic carbon nitride based nanocomposites for methylene blue dye photo-degradation in water is examined. Titanium dioxide (TiO2) was activated by changing the hydrogen potential value while utilizing a typical orange dye as a sensitizer. The graphitic carbon nitride/TiO2 nanocomposites were synthesized through a hydrothermal technique. To improve their performance, Boron used as a co-catalyst and B-doped g-C3N4/TiO2nanocomposites prepared through wet chemical co-percipitate mathod. UV-visible spectroscopy, SEM and FTIR spectroscopy were used to analyze the photocatalyst and boron-doped composites in detail. The photocatalytic performance of pristine photocatalyst CNTx (x = 2%,4%,6%,8%) and B-doped CNTx composites were examined for Methylene Blue degradation in the presence of a light source. The spectroscopy analysis showed that B-doped g-C3N4/TiO2 -8% nano-composites performed better than all other synthesized pristine catalysts and composites in this research. This research has demonstrated that B-doped g-C3N4/TiO2 composites can provide an ideal solution for treating polluted water using visible light as a source to activate these photocatalysts.
Collapse
Affiliation(s)
- Sadia Faryad
- Institute of Physics, Center for Innovative Material Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Umair Azhar
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | - Muhammad Bilal Tahir
- Institute of Physics, Center for Innovative Material Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Muhammad Arif
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan.
| | - Muhammad Sagir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| |
Collapse
|
11
|
Arjomandi-Behzad L, Alinejad Z, Zandragh MR, Golmohamadi A, Vojoudi H. Facile synthesis of hollow spherical g-C 3N 4@LDH/NCQDs ternary nanostructure for multifunctional antibacterial and photodegradation activities. iScience 2023; 26:106213. [PMID: 36909669 PMCID: PMC9993033 DOI: 10.1016/j.isci.2023.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Heterojunction nanostructure construction and morphology engineering are considered to be effective approaches to improve photocatalytic performance. Herein, ternary hierarchical hollow structures consisting of cobalt-aluminum-layered double hydroxide (CoAl-LDH) nanoplates grown on hollow carbon nitride spheres (HCNS) and decorated with N-doped carbon quantum dots (NCQDs) were prepared using a templating method and a subsequent solvothermal process. The obtained HCNS@LDH/NCQD composites presented an improved performance in photocatalytic degradation of tetracycline and inactivation of E. coli compared with pure HCNS and LDH under visible light illumination. The enhanced photocatalytic activity of the designed photocatalyst could be attributed to the following reasons: (1) A special hollow structure provides more active sites and has multiple capabilities of light reflection by helping with a high specific surface area that improves the harvesting efficiency of solar light and (2) the strong synergistic effect among the constituents, which promotes separation and transfer of charge carriers and broadens the photo-response range.
Collapse
Affiliation(s)
| | | | | | - Amir Golmohamadi
- College of Health Sciences, West Chester University of Pennsylvania, West Chester, PA, USA
| | - Hossein Vojoudi
- College of Health Sciences, West Chester University of Pennsylvania, West Chester, PA, USA
- Corresponding author
| |
Collapse
|
12
|
Khan J, Sun Y, Han L. A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. SMALL METHODS 2022; 6:e2201013. [PMID: 36336653 DOI: 10.1002/smtd.202201013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Inspired by natural photosynthesis, harnessing the wide range of natural solar energy and utilizing appropriate semiconductor-based catalysts to convert carbon dioxide into beneficial energy species, for example, CO, CH4 , HCOOH, and CH3 COH have been shown to be a sustainable and more environmentally friendly approach. Graphitic carbon nitride (g-C3 N4 ) has been regarded as a highly effective photocatalyst for the CO2 reduction reaction, owing to its cost-effectiveness, high thermal and chemical stability, visible light absorption capability, and low toxicity. However, weaker electrical conductivity, fast recombination rate, smaller visible light absorption window, and reduced surface area make this catalytic material unsuitable for commercial photocatalytic applications. Therefore, certain procedures, including elemental doping, structural modulation, functional group adjustment of g-C3 N4 , the addition of metal complex motif, and others, may be used to improve its photocatalytic activity towards effective CO2 reduction. This review has investigated the scientific community's perspectives on synthetic pathways and material optimization approaches used to increase the selectivity and efficiency of the g-C3 N4 -based hybrid structures, as well as their benefits and drawbacks on photocatalytic CO2 reduction. Finally, the review concludes a comparative discussion and presents a promising picture of the future scope of the improvements.
Collapse
Affiliation(s)
- Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| |
Collapse
|
13
|
Gao Y, Wu J, Wang G, He P, Sun Y, Liu Q, Wang Q. Construction of the charge transfer channels for enhanced photocatalytic CO2 reduction reaction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Asgari S, Mohammadi Ziarani G, Badiei A, Ajalloueian F, Vasseghian Y. Electrospun composite nanofibers as novel high-performance and visible-light photocatalysts for removal of environmental pollutants: A review. ENVIRONMENTAL RESEARCH 2022; 215:114296. [PMID: 36116501 DOI: 10.1016/j.envres.2022.114296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution caused by industries and human manipulations is coming a serious global challenge. On the other hand, the world is facing an energy crisis caused by population growth. Designing solar-driven photocatalysts which are inspired by the photosynthesis of plant leaves is a fantastic solution to use solar energy as green, available, and unlimited energy containing ∼50% visible light for the removal of environmental pollutants. The polymeric and non-polymeric-based electrospun composite nanofibers (NFs) are as innovative photocatalytic candidates which increase photocatalytic activity and transition from UV light to visible light and overcome the aggregation, photocorrosion, toxicity, and hard recycling and separation of the nanosized powder form of photocatalysts. The composite NFs are fabricated easily by either embedding the photocatalytic agents into the NFs during electrospinning or via their decorating on the surface of NFs post-electrospinning. Polyacrylonitrile-based, tungsten trioxide-based, zinc oxide-based, and titanium dioxide-based composite NFs were revealed as the most reported composite NFs. All the lately investigated electrospun composite NFs indicated long-term stability, high photocatalytic efficiency (∼> 80%) within a short time of light radiation (10-430 min), and high stability after several cycles of use. They were applied in various applications including degradation of dyes/antibiotics, water splitting, wastewater treatment, antibacterial usage, etc. The photogenerated species especially holes, O2∙-, and .OH were mostly responsible for the photocatalytic mechanism and pathway. The electrospun composite NFs have the potential to use in large-scale productions in condition that their thickness and recycling conditions are optimized, and their toxicity and detaching are resolved.
Collapse
Affiliation(s)
- Shadi Asgari
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran.
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Ajalloueian
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800, Kgs, Lyngby, Denmark
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
15
|
Rattan Paul D, Sharma R, Sharma A, Nehra SP. Li doped graphitic carbon nitride based solar light responding photocatalyst for organic water pollutants degradation. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
17
|
Razaghi M, Khorasani M. Boosting the quaternary ammonium halides catalyzed CO2 coupling with epoxides on the hollow mesoporous silica sphere. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Nekooie R, Ghasemi JB, Badiei A, Shamspur T, Mostafavi A, Moradian S. Design and synthesis of g-C3N4/(Cu/TiO2) nanocomposite for the visible light photocatalytic degradation of endosulfan in aqueous solutions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Chandra M, Guharoy U, Pradhan D. Boosting the Photocatalytic H 2 Evolution and Benzylamine Oxidation using 2 D/1D g-C 3N 4/TiO 2 Nanoheterojunction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22122-22137. [PMID: 35506450 DOI: 10.1021/acsami.2c03230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present research aims at the elevation of solar-to-chemical energy conversion with extortionate performance and sustainability. The nanostructured materials are revolutionizing the water splitting technology into decoupled hydrogen with simultaneous value-added organic chemical production. Yet, the bottleneck in semiconductor photocatalysis is rapid charge recombination and sluggish reaction kinetics. Herein, we demonstrate an efficient and non-noble metal-based catalyst for successful redox reaction with a theoretical modeling through density functional theory (DFT) study. Implementing this robust approach on 2D/1D ultrathin g-C3N4 nanosheets and TiO2 nanowires heterojunction, we achieved H2 production of 5.1 mmol g-1 h-1 with apparent quantum efficiency of 7.8% under visible light illumination and 93% of benzylamine conversion to N-benzylidene benzylamine in situ. The interface of 2D g-C3N4 nanosheets and 1D nanowires provide ample active sites and extends the visible light absorption with requisite band edge position for the separation of photoinduced charge carriers with superior stability. The electronic properties, band structure, and stability of the heterojunction are further investigated via DFT calculations which corroborate the experimental results and in good agreement for the enhanced activity of the heterojunction.
Collapse
Affiliation(s)
- Moumita Chandra
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Utsab Guharoy
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Debabrata Pradhan
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
20
|
N-TiO2-δ/g-C3N4 Dual Photocatalysts for Efficient Oxytetracycline Hydrochloride Photodegradation and CO2 Photoreduction. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3057189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of
(wt) N-TiO2-δ/g-C3N4 composites was synthesized by calcination and hydrothermal methods (labeled
TiCN,
: 5, 10, and 15). All composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity of these composites was evaluated through oxytetracycline hydrochloride (denoted as OTC) photodegradation and CO2 photoreduction. The
TiCN composites exhibited higher OTC photodegradation than bulk g-C3N4. 10TiCN was slightly more active than 5TiCN and 15TiCN, with a photodegradation yield of 97% after 5 h of light irradiation and constant rate of 0.647 h-1. For CO2 photoreduction, it was observed that 5TiCN exhibited the highest activity among the synthesized composites, with 7.0 ppm CH4 formed. This CH4 concentration was 7.8 times higher than the concentration formed by bulk g-C3N4 (0.9 ppm). A
-scheme mechanism was proposed to explain the enhanced photocatalysis by
(wt) N-TiO2-δ/g-C3N4 composites. The
-scheme structure increased redox ability, caused better separation of photogenerated electron-hole pairs, and broadened the light absorption zone of the photocatalysts.
Collapse
|
21
|
Bao J, Bai W, Wu M, Gong W, Yu Y, Zheng K, Liu L. Template-mediated copper doped porous g-C 3N 4 for efficient photodegradation of antibiotic contaminants. CHEMOSPHERE 2022; 293:133607. [PMID: 35032511 DOI: 10.1016/j.chemosphere.2022.133607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Graphite carbon nitride (g-C3N4) has great potential to treat antibiotic wastewater, but limited by small specific surface area, rapid recombination of photogenerated carriers and narrow visible light absorption range. In order to solve above problems, we designed a simple template-mediated approach by supramolecular self-assembly (Cu-melamine-cyanuric acid) to prepare copper doped porous graphitic carbon nitride (Cu-pCN) photocatalyst. The pre-organized template self-assembly driven by hydrogen bonds and electrostatic interaction, resulted in highly porous structure. The specific surface area of Cu-pCN increased to 142.8 m2/g from 11.37 m2/g of conventional bulk g-C3N4. In addition, the doping of Cu endowed them with better light absorption, higher separation and transfer rate of photogenerated carriers. Consequently, the obtained Cu-pCN displayed the superior photocatalytic degradation rate for tetracycline (TC) and high recycling stability.
Collapse
Affiliation(s)
- Jie Bao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou, 310018, China
| | - Wending Bai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou, 310018, China
| | - Mingbang Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou, 310018, China
| | - Wenli Gong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou, 310018, China
| | - Yucong Yu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou, 310018, China
| | - Kang Zheng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou, 310018, China
| | - Lin Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou, 310018, China.
| |
Collapse
|
22
|
Li X, Li N, Gao Y, Ge L. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63863-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Kamali N, Ghasemi JB, Mohamadi Ziarani G, Moradian S, Badiei A. Design, Synthesis, and Nanoengineered Modification of Spherical Graphene Surface by LDH for Removal of As(III) from Aqueous Solutions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Dehkordi AB, Badiei A. Insight into the activity of TiO 2@nitrogen-doped hollow carbon spheres supported on g-C 3N 4 for robust photocatalytic performance. CHEMOSPHERE 2022; 288:132392. [PMID: 34624354 DOI: 10.1016/j.chemosphere.2021.132392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/12/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Designing an advance nanostructure semiconductor is an efficient strategy to promote the charge separation and thus improve the photocatalytic activity. Herein, a relatively high recombination rate of electron-hole pairs and low specific surface area of g-C3N4 (GCN) were subjected to the surface deposition of the core shell nanoparticles composed of nitrogen doped hollow carbon spheres (N-HCSs) as the supporting scaffold and TiO2 nanoparticles as the photoactive layer. The ternary composites with different TiO2@N-HCS content were prepared through a simplified nanocasting method followed by the two consecutive hydrothermal process. The effects of nitrogen doping in carbon framework, and nanoparticles amount were evaluated on the photocatalytic ability through the photodegradation of tetracycline (TC) molecules under the visible light irradiation. At the optimum content of core shell nanoparticles (7 wt%), the solar-driven TC photocatalytic degradation for ternary composite was approximately 85%, which was much better (about three times) than that of the pure GCN. More interestingly, the experimental results revealed that doping of nitrogen atoms has a positive role on the charge separation and the resulting photocatalytic efficiency. The employed hollow carbon spheres here play three important roles: (1) providing a substrate to uniformly dispersion of TiO2 nanoparticles without any aggregation; (2) reducing the combination of charge carriers and improving the separation of photoinduced carriers; (3) formation of larger surface area and more active sites on the photocatalyst surface. Furthermore, the underlying photocatalytic degradation mechanism was introduced by the controlled experiments using photoluminescent and radical scavenger tests.
Collapse
Affiliation(s)
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
25
|
Barrocas BT, Ambrožová N, Kočí K. Photocatalytic Reduction of Carbon Dioxide on TiO 2 Heterojunction Photocatalysts-A Review. MATERIALS 2022; 15:ma15030967. [PMID: 35160913 PMCID: PMC8839688 DOI: 10.3390/ma15030967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022]
Abstract
The photocatalytic reduction of carbon dioxide to renewable fuel or other valuable chemicals using solar energy is attracting the interest of researchers because of its great potential to offer a clean fuel alternative and solve global warming problems. Unfortunately, the efficiency of CO2 photocatalytic reduction remains not very high due to the fast recombination of photogenerated electron–hole and small light utilization. Consequently, tremendous efforts have been made to solve these problems, and one possible solution is the use of heterojunction photocatalysts. This review begins with the fundamental aspects of CO2 photocatalytic reduction and the fundamental principles of various heterojunction photocatalysts. In the following part, we discuss using TiO2 heterojunction photocatalysts with other semiconductors, such as C3N4, CeO2, CuO, CdS, MoS2, GaP, CaTiO3 and FeTiO3. Finally, a concise summary and presentation of perspectives in the field of heterojunction photocatalysts are provided. The review covers references in the years 2011–2021.
Collapse
|
26
|
Arumugam M, Tahir M, Praserthdam P. Effect of nonmetals (B, O, P, and S) doped with porous g-C 3N 4 for improved electron transfer towards photocatalytic CO 2 reduction with water into CH 4. CHEMOSPHERE 2022; 286:131765. [PMID: 34371351 DOI: 10.1016/j.chemosphere.2021.131765] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic conversion of carbon dioxide (CO2) into gaseous hydrocarbon fuels is an auspicious way to produce renewable fuels in addition to greenhouse gas emission mitigation. In this work, non-metals (B, O, P, and S) doped graphitic carbon nitride (g-C3N4) was prepared via solid-state polycondensation of urea for photocatalytic CO2 reduction into highly needed methane (CH4) with water under UV light irradiation. The various physicochemical characterization results reveal the successful incorporation of B, O, P, and S elements in the g-C3N4 matrix. The maximum CH4 yield of 55.10 nmol/(mLH2O.gcat) over S-doped g-C3N4 has been obtained for CO2 reduction after 7 h of irradiation. This amount of CH4 production was 1.9, 1.4, 1.7, and 2.4-folds higher than B, O, P and bare g-C3N4 samples. The doping of S did not enlarge the surface area and photon absorption ability of the g-C3N4 sample, but this significant improvement was evidently due to effective charge separation and migration. The observed results imply that the doping of non-metal elements provides improved charge separation and is an effective way to boost photocatalyst performance. This work offers an auspicious approach to design non-metal doped g-C3N4 photocatalysts for renewable fuel production and would be promising for other energy application.
Collapse
Affiliation(s)
- Malathi Arumugam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Muhammad Tahir
- Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
Zhang T, Han X, Nguyen NT, Yang L, Zhou X. TiO2-based photocatalysts for CO2 reduction and solar fuel generation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64045-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Zhao GQ, Hu J, Long X, Zou J, Yu JG, Jiao FP. A Critical Review on Black Phosphorus-Based Photocatalytic CO 2 Reduction Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102155. [PMID: 34309180 DOI: 10.1002/smll.202102155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Energy shortages and greenhouse effects are two unavoidable problems that need to be solved. Photocatalytically converting CO2 into a series of valuable chemicals is considered to be an effective means of solving the above dilemmas. Among these photocatalysts, the utilization of black phosphorus for CO2 photocatalytic reduction deserves a lightspot not only for its excellent catalytic activity through different reaction routes, but also on account of the great preponderance of this relatively cheap catalyst. Herein, this review offers a summary of the recent advances in synthesis, structure, properties, and application for CO2 photocatalytic reduction. In detail, the review starts from the basic principle of CO2 photocatalytic reduction. In the following section, the synthesis, structure, and properties, as well as CO2 photocatalytic reduction process of black phosphorus-based photocatalyst are discussed. In addition, some possible influencing factors and reaction mechanism are also summarized. Finally, a summary and the possible future perspectives of black phosphorus-based photocatalyst for CO2 reduction are established.
Collapse
Affiliation(s)
- Guo-Qing Zhao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xuan Long
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jiao Zou
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jin-Gang Yu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Fei-Peng Jiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
29
|
Park BH, Kim M, Park NK, Ryu HJ, Baek JI, Kang M. Single layered hollow NiO-NiS catalyst with large specific surface area and highly efficient visible-light-driven carbon dioxide conversion. CHEMOSPHERE 2021; 280:130759. [PMID: 33964757 DOI: 10.1016/j.chemosphere.2021.130759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
A sea urchin-shaped, single-layer, and hollow NiO-NiS photocatalyst with a large surface area was designed for carbon dioxide (CO2) conversion in this study. A d-glucose polymeric hollow frame was fabricated using a d-glucose monomer, and NiO particles were stably grown on it using the hydrothermal method to form a hollow NiO surface. The d-glucose frame was removed by heat treatment to create hollowed NiO; hollowed NiO-NiS (h-NiO-NiS) was subsequently obtained through ion exchange between the O ions in NiO and S ions in the sulfur powder. Additionally, we attempted to determine the correlation among the surface area of the h-NiO-NiS catalyst, CO2 gas adsorption capacity, and catalyst performance. The surface area of the h-NiO-NiS catalyst was ten times larger than that of the nanometer-sized NiO-NiS (n-NiO-NiS, 21.2 m2 g-1) catalyst. The CO2 photocatalytic conversion performance of the hollowed catalyst was approximately seven times larger than that of the nanosized catalyst. As the amount of ion-exchanged S increased, methane selectivity increased, and optimal methane production was obtained when the weight ratio of NiO and sulfur powder was 1 : 4. Using temperature-programmed desorption (TPD) analyses of CO2 and H2O, the adsorption of water molecules on the Ni-S surface and that of CO2 gas on the Ni-O surface during CO2 conversion reaction were confirmed. The h-NiO-NiS catalyst facilitated an effective charge separation through a well-developed interfacial transition between the linked NiS and NiO, and resulted in increased CO2 photoreduction performance under sunlight.
Collapse
Affiliation(s)
- Byung Hyun Park
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Minkyu Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - No-Kuk Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ho-Jung Ryu
- Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Jeom-In Baek
- Korea Electric Power Corporation Research Institute, 105 Munji-ro, Yuseong-gu, Daejeon, 34056, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
30
|
Rostami M, Nasab AS, Fasihi-Ramandi M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F. Cur-loaded magnetic ZnFe2O4@mZnO-Ox-p-g-C3N4 composites as dual pH- and ultrasound responsive nano-carriers for controlled and targeted cancer chemotherapy. MATERIALS CHEMISTRY AND PHYSICS 2021; 271:124863. [DOI: 10.1016/j.matchemphys.2021.124863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
31
|
Development of g-C3N4-TiO2 visible active hybrid photocatalyst for the photodegradation of methyl orange. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04561-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Zhao Y, Li Y, Sun L. Recent advances in photocatalytic decomposition of water and pollutants for sustainable application. CHEMOSPHERE 2021; 276:130201. [PMID: 33725623 DOI: 10.1016/j.chemosphere.2021.130201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Photoinduced reduction and oxidation, the important processes in photocatalytic water splitting and organic degradation, have generated increasing interest to address the energy and environmental issues. In this review, the recent developments in bandgap and interfacial engineering for enhanced light absorption, efficient charge separation and interfacial reaction are focused toward the applications in photocatalytic water splitting and organic degradation. In photoinduced reduction for hydrogen evolution, three major strategies are discussed: cocatalysts, sacrificial agents and heterojunctions. In photoinduced oxidation for organic degradation, three types of emerging pollutants of current concerns are highlighted: organic dyes, pharmaceuticals and volatile organic compounds. The key challenges of promising photocatalysts are discussed for future development and practical application.
Collapse
Affiliation(s)
- Yujie Zhao
- School of Materials Science and Engineering, Beihang Unviersity, Beijing, 100191, China
| | - Yan Li
- School of Materials Science and Engineering, Beihang Unviersity, Beijing, 100191, China.
| | - Lidong Sun
- School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
33
|
Que M, Cai W, Chen J, Zhu L, Yang Y. Recent advances in g-C 3N 4 composites within four types of heterojunctions for photocatalytic CO 2 reduction. NANOSCALE 2021; 13:6692-6712. [PMID: 33885474 DOI: 10.1039/d0nr09177d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studies of photocatalytic conversion of CO2 into hydrocarbon fuels, as a promising solution to alleviate global warming and energy issues, are booming in recent years. Researchers have focused their interest in developing g-C3N4 composite photocatalysts with intriguing features of robust light harvesting ability, excellent catalysis, and stable performance. Four types of heterojunctions (type-II, Z-scheme, S-scheme and Schottky) of the g-C3N4 composites are widely adopted. This review aims at presenting and comparing the photocatalytic mechanisms, characteristics, and performances of g-C3N4 composites concerning these four types of heterojunctions. Besides, perspectives and undergoing efforts for further development of g-C3N4 composite photocatalysts are discussed. This review would be helpful for researchers to gain a comprehensive understanding of the progress and future development trends of g-C3N4 composite heterojunctions for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Meidan Que
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.
| | | | | | | | | |
Collapse
|
34
|
Liu Q, Shi T, Cheng Y, Wen Z, Ding C, Li Y, Wang K. Amplified photocurrent signal for fabricating photoelectrochemical sulfadimethoxine aptasensor based on carbon nitride photosensitization with visible/near-infrared light responsive zinc phthalocyanine. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124749. [PMID: 33333380 DOI: 10.1016/j.jhazmat.2020.124749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Developing effective analytical method for sulfadimethoxine (SDM) detection is highly desirable and vitally crucial for protecting environment safety and human health. Herein, a highly selective and sensitive photoelectrochemical (PEC) aptasensor for accurate detection of SDM was proposed, which employed zinc phthalocyanine/graphitic carbon nitride (ZnPc/CN) nanocomposite as photosensitive material. The ZnPc/CN nanocomposite was constructed by modification of CN nanosheet with visible/near-infrared light responsive photosensitizer ZnPc. The introduction of ZnPc into CN exhibited amplified PEC response, which was 5.7 and 18.3 times than pure ZnPc and CN, attributed to the enhanced light harvesting ability and improved photoelectric conversion efficiency of such nanocomposite. By using ZnPc/CN and sulfadimethoxine (SDM) aptamer as PEC response material and specific probe, a PEC aptasensor was established for SDM detection. The aptamer was connected to the surface of chitosan/ZnPc/CN/ITO through the formation of phosphoramidate bonds between the amino group of the chitosan and phosphate group of the aptamer at 5' end. The fabricated aptasensor displayed good detection linearity of 0.1 ~ 300 nM and low detection limit of 0.03 nM (S/N = 3) under optimized conditions, and the potential applicability of the PEC aptasensor was confirmed by detecting SDM in milk powder samples.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tingyan Shi
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yong Cheng
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zuorui Wen
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Caifeng Ding
- Qingdao University of Science and Technology, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao 266042, PR China
| | - Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Qingdao University of Science and Technology, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao 266042, PR China.
| |
Collapse
|
35
|
Wang S, Zhao T, Tian Y, Yan L, Su Z. Mechanistic insight into photocatalytic CO 2 reduction by a Z-scheme g-C 3N 4/TiO 2 heterostructure. NEW J CHEM 2021. [DOI: 10.1039/d0nj05681b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Z-scheme g-C3N4/TiO2 heterostructure has remarkable catalytic activity for reducing CO2 to CH4 and CH3OH.
Collapse
Affiliation(s)
- Shuo Wang
- Institute of Functional Materials Chemistry and Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Tingting Zhao
- Institute of Functional Materials Chemistry and Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Yu Tian
- Institute for Interdisciplinary Quantum Information Technology
- Jilin Engineering Normal University
- Changchun
- China
| | - Likai Yan
- Institute of Functional Materials Chemistry and Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| | - Zhongmin Su
- Institute of Functional Materials Chemistry and Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- China
| |
Collapse
|
36
|
Zhang X, Wang M, Song X, Yan Y, Huo P, Yan Y, Yang B. Boosting charge carrier separation efficiency by constructing an intramolecular DA system towards efficient photoreduction of CO 2. NEW J CHEM 2021. [DOI: 10.1039/d0nj05968d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge carrier excitation–recombination process between the donor and acceptor, and the photocatalytic reduction of CO2 to CO over CN based DA composites.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Science
- Beihua University
- Jilin 132013
- P. R. China
- Institute of the Green Chemistry and Chemical Technology
| | - Mei Wang
- Institute of the Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Xianghai Song
- Institute of the Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yongsheng Yan
- College of Science
- Beihua University
- Jilin 132013
- P. R. China
- Institute of the Green Chemistry and Chemical Technology
| | - Pengwei Huo
- Institute of the Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yan Yan
- Institute of the Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Boting Yang
- College of Science
- Beihua University
- Jilin 132013
- P. R. China
| |
Collapse
|
37
|
Meng F, Qin Y, Lu J, Lin X, Meng M, Sun G, Yan Y. Biomimetic design and synthesis of visible-light-driven g-C 3N 4 nanotube @polydopamine/NiCo-layered double hydroxides composite photocatalysts for improved photocatalytic hydrogen evolution activity. J Colloid Interface Sci 2020; 584:464-473. [PMID: 33096412 DOI: 10.1016/j.jcis.2020.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
In the practical process of photocatalytic H2 evolution, optimizing the ability of light absorption and charge spatial separation is the top priority for improving the photocatalytic performance. In this study, we elaborately engineer neoteric g-C3N4 nanotube@polydopamine(pDA)/NiCo-LDH (LPC) composite photocatalyst by combining hydrothermal and calcination method. In the LPC composite system, the one-dimensional (1D) g-C3N4 nanotubes with larger specific surface area can afford more active sites and conduce to shorten the charge migration distance, as well as the high-speed mass transfer in the nanotube can accelerate the reaction course. The g-C3N4/NiCo-LDH type-II heterojunction can efficaciously stimulate the spatial separation of photo-produced charge. In addition, pDA as heterojunction metal-free interface mediums can provide multiple action (π-π* electron delocalization effect, adhesive action and photosensitization). The optimized LPC nanocomposite displays about 3.3-fold high photoactivity for H2 evolution compared with the g-C3N4 nanotube under solar light irradiation. In addition, the cycle experiment result shows that the LPC composite photocatalyst possesses superior stability and recyclability. The resultant g-C3N4@pDA/NiCo-LDH composite photocatalyst displays the potential practical application in the field of energy conversion.
Collapse
Affiliation(s)
- Fanying Meng
- College of Science, Beihua University, Jilin 132013, PR China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingying Qin
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, PR China
| | - Jian Lu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Lin
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, PR China
| | - Minjia Meng
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gang Sun
- College of Science, Beihua University, Jilin 132013, PR China.
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|