1
|
Alves CAPF, Sidpra J, Manteghinejad A, Sudhakar S, Massey FV, Aldinger KA, Haldipur P, Lucato LT, Ferraciolli SF, Teixeira SR, Öztekin Ö, Bhattacharya D, Taranath A, Prabhu SP, Mirsky DM, Andronikou S, Millen KJ, Barkovich AJ, Boltshauser E, Dobyns WB, Barkovich MJ, Whitehead MT, Mankad K. Dandy-Walker Phenotype with Brainstem Involvement: 2 Distinct Subgroups with Different Prognosis. AJNR Am J Neuroradiol 2023; 44:1201-1207. [PMID: 37591769 PMCID: PMC10549954 DOI: 10.3174/ajnr.a7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND AND PURPOSE Although cardinal imaging features for the diagnostic criteria of the Dandy-Walker phenotype have been recently defined, there is a large range of unreported malformations among these patients. The brainstem, in particular, deserves careful attention because malformations in this region have potentially important implications for clinical outcomes. In this article, we offer detailed information on the association of brainstem dysgenesis in a large, multicentric cohort of patients with the Dandy-Walker phenotype, defining different subtypes of involvement and their potential clinical impact. MATERIALS AND METHODS In this established multicenter cohort of 329 patients with the Dandy-Walker phenotype, we include and retrospectively review the MR imaging studies and clinical records of 73 subjects with additional brainstem malformations. Detailed evaluation of the different patterns of brainstem involvement and their potential clinical implications, along with comparisons between posterior fossa measurements for the diagnosis of the Dandy-Walker phenotype, was performed among the different subgroups of patients with brainstem involvement. RESULTS There were 2 major forms of brainstem involvement in patients with Dandy-Walker phenotype including the following: 1) the mild form with anteroposterior disproportions of the brainstem structures "only" (57/73; 78%), most frequently with pontine hypoplasia (44/57; 77%), and 2) the severe form with patients with tegmental dysplasia with folding, bumps, and/or clefts (16/73; 22%). Patients with severe forms of brainstem malformation had significantly increased rates of massive ventriculomegaly, additional malformations involving the corpus callosum and gray matter, and interhemispheric cysts. Clinically, patients with the severe form had significantly increased rates of bulbar dysfunction, seizures, and mortality. CONCLUSIONS Additional brainstem malformations in patients with the Dandy-Walker phenotype can be divided into 2 major subgroups: mild and severe. The severe form, though less prevalent, has characteristic imaging features, including tegmental folding, bumps, and clefts, and is directly associated with a more severe clinical presentation and increased mortality.
Collapse
Affiliation(s)
- C A P F Alves
- From the Division of Neuroradiology (C.A.P.F.A., A.M., S.R.T., S.A., M.T.W.), Department of Radiology, Children's Hospital of Philadelphia, Philadephia, Pennsylvania
| | - J Sidpra
- Unit of Neuroradiology (J.S., S.S., K.M.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, United Kingdom
- Developmental Biology & Cancer Section (J.S., K.M.), University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - A Manteghinejad
- From the Division of Neuroradiology (C.A.P.F.A., A.M., S.R.T., S.A., M.T.W.), Department of Radiology, Children's Hospital of Philadelphia, Philadephia, Pennsylvania
| | - S Sudhakar
- Unit of Neuroradiology (J.S., S.S., K.M.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, United Kingdom
| | - F V Massey
- Unit of Functional Neurosurgery (F.V.M.), National Hospital for Neurology & Neurosurgery, London, United Kingdom
| | - K A Aldinger
- Center for Integrative Brain Research (K.A.A., P.H., K.J.M.), Seattle Children's Research Institute, Seattle, Washington
- Departments of Pediatrics and Neurology (K.A.A., P.H., K.J.M.), University of Washington, Seattle, Washington
| | - P Haldipur
- Center for Integrative Brain Research (K.A.A., P.H., K.J.M.), Seattle Children's Research Institute, Seattle, Washington
- Departments of Pediatrics and Neurology (K.A.A., P.H., K.J.M.), University of Washington, Seattle, Washington
| | - L T Lucato
- Department of Radiology, Division of Neuroradiology (L.T.L., S.F.F.), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - S F Ferraciolli
- Department of Radiology, Division of Neuroradiology (L.T.L., S.F.F.), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - S R Teixeira
- From the Division of Neuroradiology (C.A.P.F.A., A.M., S.R.T., S.A., M.T.W.), Department of Radiology, Children's Hospital of Philadelphia, Philadephia, Pennsylvania
| | - Ö Öztekin
- Department of Neuroradiology (Ö.Ö.), Bakırçay University, Çiğli Education and Research Hospital, İzmir, Turkey
| | - D Bhattacharya
- Department of Neuroradiology (D.B.), Royal Victoria Hospital, Belfast, UK
| | - A Taranath
- Department of Medical Imaging (A.T.), Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - S P Prabhu
- Department of Radiology, Neuroradiology Division (S.P.P.), Boston Children's Hospital, Boston, Massachusetts
| | - D M Mirsky
- Department of Radiology, Neuroradiology Division (D.M.M.), Children's Hospital Colorado, Aurora, Colorado
| | - S Andronikou
- From the Division of Neuroradiology (C.A.P.F.A., A.M., S.R.T., S.A., M.T.W.), Department of Radiology, Children's Hospital of Philadelphia, Philadephia, Pennsylvania
| | - K J Millen
- Center for Integrative Brain Research (K.A.A., P.H., K.J.M.), Seattle Children's Research Institute, Seattle, Washington
- Departments of Pediatrics and Neurology (K.A.A., P.H., K.J.M.), University of Washington, Seattle, Washington
| | - A J Barkovich
- Department of Neuroradiology (A.J.B., M.J.B.), University of California, San Francisco, San Francisco, California
| | - E Boltshauser
- Department of Pediatric Neurology (E.B.), University Children's Hospital, Zürich, Switzerland
| | - W B Dobyns
- Department of Genetics and Metabolism (W.B.D.), University of Minnesota, Minneaplis, Minnesota
| | - M J Barkovich
- Department of Neuroradiology (A.J.B., M.J.B.), University of California, San Francisco, San Francisco, California
| | - M T Whitehead
- From the Division of Neuroradiology (C.A.P.F.A., A.M., S.R.T., S.A., M.T.W.), Department of Radiology, Children's Hospital of Philadelphia, Philadephia, Pennsylvania
| | - K Mankad
- Unit of Neuroradiology (J.S., S.S., K.M.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, United Kingdom
- Developmental Biology & Cancer Section (J.S., K.M.), University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
2
|
Park KB, Chapman T, Aldinger KA, Mirzaa GM, Zeiger J, Beck A, Glass IA, Hevner RF, Jansen AC, Marshall DA, Oegema R, Parrini E, Saneto RP, Curry CJ, Hall JG, Guerrini R, Leventer RJ, Dobyns WB. The spectrum of brain malformations and disruptions in twins. Am J Med Genet A 2020; 185:2690-2718. [PMID: 33205886 DOI: 10.1002/ajmg.a.61972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.
Collapse
Affiliation(s)
- Kaylee B Park
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Teresa Chapman
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kimberly A Aldinger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington, USA
| | - Ghayda M Mirzaa
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Jordan Zeiger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington, USA
| | - Anita Beck
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Desiree A Marshall
- Department of Anatomic Pathology and Neuropathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Renske Oegema
- University Medical Center Utrecht, Department of Genetics, Utrecht, The Netherlands
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Russell P Saneto
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California San Francisco, Fresno, California, USA
| | - Judith G Hall
- Departments of Medical Genetics and Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, Canada
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne, Australia
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Blake's Pouch Cysts and Differential Diagnoses in Prenatal and Postnatal MRI : A Pictorial Review. Clin Neuroradiol 2020; 30:435-445. [PMID: 31942658 DOI: 10.1007/s00062-019-00871-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE The clinical variability of Blake's pouch cysts (BPC) may range from asymptomatic via ataxia to sequelae of decompensated hydrocephalus. On the other hand, Dandy-Walker malformation (DWM) and cerebellar vermis hypoplasia generally correlate with less favorable neurologic development. The aim was to illustrate the potential of prenatal and postnatal neuroimaging to distinguish a BPC or persistent BP from other posterior fossa malformations. METHODS This pictorial review addresses the inconsistent nomenclature, clinical features, and magnetic resonance imaging (MRI) patterns of BPC and five differential diagnoses. The MRI findings of 11 patients, acquired at up to 3 T in 3 institutions, are demonstrated. Furthermore, the literature was searched for recent improvements in genetic and embryological background knowledge. RESULTS Posterior fossa malformations often resemble each other and may even be imitated by sequelae of hemorrhagic, ischemic or infectious disruptions, i.e. congenital anomalies of morphology despite normal developmental potential. Hydrocephalus is a typical, albeit not always congenital finding in BPC. It is frequently associated with cerebellar disruptions and DWM; however, it is also a rare complication of posterior fossa arachnoid cysts. A moderately elevated vermis needs follow-up to confirm persistent BP versus vermian hypoplasia or DWM. The fetal cerebellar tail, previously assumed to be specific for DWM, may be imitated in cases of persistent BP. CONCLUSION The accurate diagnosis of isolated BPC is not always straightforward, which is especially critical in the context of fetomaternal medicine. A detailed description of posterior fossa malformations is to be preferred over unspecific terminology.
Collapse
|
4
|
Abstract
Neonatal brain sonography is part of routine clinical practice in neonatal intensive care units, but ultrasound imaging of the posterior fossa has gained increasing attention since the burden of perinatal acquired posterior fossa abnormalities and their impact on motor and cognitive neurodevelopmental outcome have been recognized. Although magnetic resonance imaging (MRI) is often superior, posterior fossa abnormalities can be suspected or detected by optimized cranial ultrasound (CUS) scans, which allow an early and bed-side diagnosis and monitoring through sequential scans over a long period of time. Different ultrasound appearances and injury patterns of posterior fossa abnormalities are described according to gestational age at birth and characteristics of the pathogenetic insult. The aim of this review article is to describe options to improve posterior fossa sequential CUS image quality, including the use of supplemental acoustic windows, to show standard views and normal ultrasound anatomy of the posterior fossa, and to describe the ultrasound characteristics of acquired posterior fossa lesions in preterm and term infants with effect on long-term outcome. The limitations and pitfalls of CUS and the role of MRI are discussed.
Collapse
|
5
|
Aldinger KA, Timms AE, Thomson Z, Mirzaa GM, Bennett JT, Rosenberg AB, Roco CM, Hirano M, Abidi F, Haldipur P, Cheng CV, Collins S, Park K, Zeiger J, Overmann LM, Alkuraya FS, Biesecker LG, Braddock SR, Cathey S, Cho MT, Chung BHY, Everman DB, Zarate YA, Jones JR, Schwartz CE, Goldstein A, Hopkin RJ, Krantz ID, Ladda RL, Leppig KA, McGillivray BC, Sell S, Wusik K, Gleeson JG, Nickerson DA, Bamshad MJ, Gerrelli D, Lisgo SN, Seelig G, Ishak GE, Barkovich AJ, Curry CJ, Glass IA, Millen KJ, Doherty D, Dobyns WB. Redefining the Etiologic Landscape of Cerebellar Malformations. Am J Hum Genet 2019; 105:606-615. [PMID: 31474318 PMCID: PMC6731369 DOI: 10.1016/j.ajhg.2019.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/26/2019] [Indexed: 11/15/2022] Open
Abstract
Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.
Collapse
Affiliation(s)
- Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Zachary Thomson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - James T Bennett
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Alexander B Rosenberg
- Department of Electrical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Matthew Hirano
- Department of Electrical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Fatima Abidi
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Chi V Cheng
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sarah Collins
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kaylee Park
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jordan Zeiger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Lynne M Overmann
- Institute of Genetic Medicine, Newcastle University, International Centre for life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital Research Center, Riyadh, 11211, Saudi Arabia
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Stephen R Braddock
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sara Cathey
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Brian H Y Chung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | | | | | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert J Hopkin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ian D Krantz
- The Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA; Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Roger L Ladda
- Department of Pediatrics, Milton S Hershey Medical Center, Hershey, PA 17033, USA; Departments of Pathology, Milton S Hershey Medical Center, Hershey, PA 17033, USA
| | - Kathleen A Leppig
- Genetic Services, Kaiser Permanente Washington, Seattle, WA 98112, USA
| | - Barbara C McGillivray
- Department of Medical Genetics, Children's and Women's Health Centre of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Susan Sell
- Department of Pediatrics, Milton S Hershey Medical Center, Hershey, PA 17033, USA
| | - Katherine Wusik
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; University of Washington Center for Mendelian Genomics, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; University of Washington Center for Mendelian Genomics, Seattle, WA 98195, USA
| | - Dianne Gerrelli
- University College London Institute of Child Health, London WC1N 1EH, UK
| | - Steven N Lisgo
- Institute of Genetic Medicine, Newcastle University, International Centre for life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, WA 98105, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gisele E Ishak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - A James Barkovich
- Departments of Radiology, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California San Francisco, Fresno, CA, 93701, USA
| | - Ian A Glass
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Dan Doherty
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Neurology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
6
|
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJT, Hawkes R. Consensus Paper: Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2016; 15:789-828. [PMID: 26439486 PMCID: PMC4846577 DOI: 10.1007/s12311-015-0724-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy.
| | - Marife Arancillo
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Esther B E Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN, 37232, USA
| | - Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, USA
| | - Isabelle Dusart
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Institut de Biologie Paris Seine, France, 75005, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR8246, INSERM U1130, Neuroscience Paris Seine, France, 75005, Paris, France
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, 10065, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Salvador Martinez
- Department Human Anatomy, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Karl Schilling
- Anatomie und Zellbiologie, Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Gabriella Sekerková
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy V Sillitoe
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Constantino Sotelo
- Institut de la Vision, UPMC Université de Paris 06, Paris, 75012, France
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Annika Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4NI, AB, Canada
| |
Collapse
|
7
|
Sanapo L, Wien M, Whitehead MT, Blask A, Gallagher M, DeBiasi RL, Du Plessis A. Fetal anemia, cerebellar hemorrhage and hypoplasia associated with congenital Parvovirus infection. J Matern Fetal Neonatal Med 2016; 30:1887-1890. [PMID: 27558443 DOI: 10.1080/14767058.2016.1228103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We report a case of fetal cerebellar hemorrhage and hypoplasia, identified by fetal MRI after intrauterine blood transfusion at 21 weeks' gestation for treatment of severe anemia due to congenital Parvovirus infection. Postnatal MRI confirmed atrophy of bilateral cerebellar hemispheres and inferior vermis. Cerebellar capillaries may be extremely susceptible to hemodynamic changes in the setting of intrauterine blood transfusion due to severe anemia. Although the correlation between fetal intracranial anomalies and Parvovirus infection remains unclear, in this population, a detailed evaluation of the brain parenchyma should be considered prior to and after intrauterine blood transfusion.
Collapse
Affiliation(s)
| | - Michael Wien
- b Division of Radiology , Children's National Health System , Washington , DC , USA
| | - Matthew T Whitehead
- b Division of Radiology , Children's National Health System , Washington , DC , USA
| | - Anna Blask
- b Division of Radiology , Children's National Health System , Washington , DC , USA
| | - Michael Gallagher
- c Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology , The George Washington University School of Medicine and Health Science , Washington , DC , USA
| | - Roberta L DeBiasi
- d Division of Pediatric Infectious Diseases , Children's National Health System , Washington , DC , USA , and.,e Department of Pediatrics, Microbiology, Immunology and Tropical Medicine , The George Washington University School of Medicine and Health Science , Washington , DC , USA
| | | |
Collapse
|
8
|
|
9
|
Prenatal MR imaging features of isolated cerebellar haemorrhagic lesions. Eur Radiol 2015; 26:2685-96. [PMID: 26474987 DOI: 10.1007/s00330-015-4053-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/15/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Prenatal features of isolated cerebellar haemorrhagic lesions have not been sufficiently characterised. We aimed to better define their MR imaging characteristics, documenting the location, extension, evolution stage and anatomic sequelae, and to better understand cerebellar haemorrhage pathophysiology. MATERIALS AND METHODS We screened our foetal MR imaging database (3200 cases) for reports of haemorrhagic lesions affecting only the cerebellum (without any supratentorial bleeding or other clastic lesions), defined as one of the following: T2-weighted hypointense or mixed hypo-/hyperintense signal; rim of T2-weighted hypointense signal covering the surface of volume-reduced parenchyma; T1-weighted hyperintense signal; increased DWI signal. RESULTS Seventeen cases corresponded to the selection criteria. All lesions occurred before the 26th week of gestation, with prevalent origin from the peripheral-caudal portion of the hemispheres and equal frequency of unilateral/bilateral involvement. The caudal vermis appeared affected in 2/3 of cases, not in all cases confirmed postnatally. Lesions evolved towards malformed cerebellar foliation. The aetiology and pathophysiology were unknown, although in a subset of cases intra- and extracranial venous engorgement seemed to play a key role. CONCLUSIONS Onset from the peripheral and caudal portion of the hemispheres seems characteristic of prenatal cerebellar haemorrhagic lesions. Elective involvement of the peripheral germinal matrix is hypothesised. KEY POINTS • The cerebellum can be vulnerable to bleeding during foetal development. • Isolated cerebellar haemorrhages can be seen on prenatal MRI. • In our cohort, isolated foetal cerebellar haemorrhages occurred before the 26th gestational week. • Haemorrhagic lesions happening in utero could look like malformations on post-natal MRI. • Venous engorgement could have a role in causing cerebellar haemorrhagic lesions.
Collapse
|
10
|
Robinson AJ. Inferior vermian hypoplasia--preconception, misconception. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2014; 43:123-136. [PMID: 24497418 DOI: 10.1002/uog.13296] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Ashley J Robinson
- Department of Radiology, Children's Hospital of British Columbia, 4480 Oak Street, Vancouver, V6H 3V4, Canada.
| |
Collapse
|
11
|
Abstract
We report a case of complete bilateral cerebellar infarction diagnosed in utero by routine prenatal ultrasound and magnetic resonance imaging in a 26-week-old fetus. This posterior fossa ischemic stroke with secondary hemorrhage caused transient obstructive hydrocephalus and likely occurred subsequent to vertebrobasilar artery thrombosis. Such posterior fossa ischemic insults diagnosed in utero are rare with scarce clinical reports. The serial imaging characteristics, clinical, and developmental implications of this case are reviewed.
Collapse
Affiliation(s)
- Safdar A. Ansari
- Department of Neurology, at Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Jill V. Hunter
- Department of Radiology, Section of Pediatric Neuroradiology, at Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Lisa M. Nassif
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, at Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Gary D. Clark
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, at Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Melissa B. Ramocki
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, at Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| |
Collapse
|