1
|
Xu Y, Chen Y, Liu H, Zhang H, Yin Z, Liu D, Zhu G, Diao Y, Wu D, Xie H, Hu W, Zhang X, Shao X, Zhang K, Zhang J, Yang A. The clinical application of neuro-robot in the resection of epileptic foci: a novel method assisting epilepsy surgery. J Robot Surg 2023; 17:2259-2269. [PMID: 37308790 DOI: 10.1007/s11701-023-01615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023]
Abstract
During surgery for foci-related epilepsy, neurosurgeons face significant difficulties in identifying and resecting MRI-negative or deep-seated epileptic foci. Here, we present a neuro-robotic navigation system that is specifically designed for resection of MRI negative epileptic foci. We recruited 52 epileptic patients, and randomly assigned them to treatment group with either neuro-robotic navigation or conventional neuronavigation system. For each patient, in the neuro-robotic navigation group, we integrated multimodality imaging including MRI and PET-CT into the robotic workstation and marked the boundary of foci from the fused image. During surgery, this boundary was delineated by the robotic laser device with high accuracy, guiding resection for the surgeon. For deeply seated foci, we exploited the neuro-robotic navigation system to localize the deepest point with biopsy needle insertion and methylene dye application to locate the boundary of the foci. Our results show that, compared with the conventional neuronavigation, the neuro-robotic navigation system performs equally well in MRI positive epilepsy patients (ENGEL I ratio: 71.4% vs 100%, p = 0.255) systems and show better performance in patients with MRI-negative focal cortical dysplasia (ENGEL I ratio: 88.2% vs 50%, p = 0.0439). At present, there are no documented neurosurgery robots with similar function and application in the field of epilepsy. Our research highlights the added value of using neuro-robotic navigation systems in resection surgery for epilepsy, particularly in cases that involve MRI-negative or deep-seated epileptic foci.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yingchuan Chen
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huanguang Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hua Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zixiao Yin
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Defeng Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guanyu Zhu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu Diao
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Delong Wu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hutao Xie
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wenhan Hu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kai Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| | - Anchao Yang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
2
|
Jadav D, Gupta V, Khera S, Meshram V. Focal Cortical Dysplasia with hippocampal sclerosis. AUTOPSY AND CASE REPORTS 2023; 13:e2023420. [PMID: 36741591 PMCID: PMC9886384 DOI: 10.4322/acr.2023.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/02/2023] [Indexed: 02/07/2023] Open
Abstract
Focal Cortical Dysplasia (FCD) is a group of focal developmental malformations of the cerebral cortex cytoarchitecture. FCD usually manifests as medically intractable epilepsy, especially in young children. Live patients are diagnosed by radiological examination such as magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG PET), magnetoencephalography (MEG), diffusion-tensor imaging (DTI), and intracranial electroencephalogram (EEG). While some cases can be missed by radiological examination, they are usually diagnosed on the histopathological examination of the surgically removed specimens of medically intractable epilepsy patients. We report a case of a young girl with cerebral palsy, mental retardation, and seizure disorder who died in her sleep. The deceased was diagnosed with FCD type III with hippocampal sclerosis on histopathological examination at autopsy. H & E stain and NeuN immunohistochemistry neuronal cell marker were used to demonstrate the findings of FCD.
Collapse
Affiliation(s)
- Devendra Jadav
- All India Institute of Medical Sciences, Department of Forensic Medicine and Toxicology, Jodhpur, Rajasthan, India
| | - Vaibhav Gupta
- Vardhman Mahavir Medical College and Safdarjung Hospital, Department of Forensic Medicine and Toxicology, New Delhi, India
| | - Sudeep Khera
- All India Institute of Medical Sciences, Department of Pathology and Lab Medicine, Jodhpur, Rajasthan, India
| | - Vikas Meshram
- All India Institute of Medical Sciences, Department of Forensic Medicine and Toxicology, Jodhpur, Rajasthan, India
| |
Collapse
|
3
|
Katsarou AM, Kubova H, Auvin S, Mantegazza M, Barker-Haliski M, Galanopoulou AS, Reid CA, Semple BD. A companion to the preclinical common data elements for rodent models of pediatric acquired epilepsy: A report of the TASK3-WG1B, Pediatric and Genetic Models Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35950641 DOI: 10.1002/epi4.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
Abstract
Epilepsy syndromes during the early years of life may be attributed to an acquired insult, such as hypoxic-ischemic injury, infection, status epilepticus, or brain trauma. These conditions are frequently modeled in experimental rodents to delineate mechanisms of epileptogenesis and investigate novel therapeutic strategies. However, heterogeneity and subsequent lack of reproducibility of such models across laboratories is an ongoing challenge to maintain scientific rigor and knowledge advancement. To address this, as part of the TASK3-WG1B Working Group of the International League Against Epilepsy/American Epilepsy Society Joint Translational Task Force, we have developed a series of case report forms (CRFs) to describe common data elements for pediatric acquired epilepsy models in rodents. The "Rodent Models of Pediatric Acquired Epilepsy" Core CRF was designed to capture cohort-general information; while two Specific CRFs encompass physical induction models and chemical induction models, respectively. This companion manuscript describes the key elements of these models and why they are important to be considered and reported consistently. Together, these CRFs provide investigators with the tools to systematically record critical information regarding their chosen model of acquired epilepsy during early life, for improved standardization and transparency across laboratories. These outcomes will support the ultimate goal of such research; that is, to understand the childhood onset-specific biology of epileptogenesis after acquired insults, and translate this knowledge into therapeutics to improve pediatric patient outcomes and minimize the lifetime burden of epilepsy.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hana Kubova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stéphane Auvin
- Service de Neurologie Pédiatrique, Hôpital Robert-Debré, INSERM UMR 1141, APHP, Université de Paris, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Massimo Mantegazza
- Inserm, LabEx ICST, Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, Université Côte d'Azur, Valbonne-Sophia Antipolis, France
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher A Reid
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Tao H, Zhou X, Chen J, Zhou H, Huang L, Cai Y, Fu J, Liu Z, Chen Y, Sun C, Zhao B, Zhong W, Li K. Genetic Effects of the Schizophrenia-Related Gene DTNBP1 in Temporal Lobe Epilepsy. Front Genet 2021; 12:553974. [PMID: 33679873 PMCID: PMC7933566 DOI: 10.3389/fgene.2021.553974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have reported patients who concurrently exhibit conditions of epilepsy and schizophrenia, indicating certain shared pathologies between them. This study aimed to investigate the genetic effects of the schizophrenia-related gene DTNBP1 in temporal lobe epilepsy (TLE). A total of 496 TLE patients and 528 healthy individuals were successfully genotyped for six DTNBP1 polymorphisms (rs760665, rs1011313, rs2619528, rs2619522, rs909706, and rs2619538), including 335 TLE patients and 325 healthy controls in cohort 1, and 161 TLE patients and 203 healthy controls in cohort 2. The frequency of the TT genotype at rs909706 T > C was lower in TLE patients than in normal controls in the initial cohort (cohort 1), which was confirmed in an independent cohort (cohort 2). However, the intronic T allele failed to be in linkage disequilibrium (LD) with any functional variations nearby; thus, together with the CCAC and TCAT haplotypes (rs1011313-rs2619528-rs2619522-rs909706) observed in the study, this allele acts only as a protective factor against susceptibility to TLE. Meanwhile, a novo mutant allele rs2619538 T > A was exclusively observed in TLE patients, and a dual-luciferase assay revealed that the mutant allele was increased by approximately 22% in the DTNBP2 promoter compared with the wild-type allele. Together with the trend of increasing DTNBP1 expression in epilepsy patients and animal models in this study, these are the first findings to demonstrate the genetic association of DTNBP1 with TLE. Homozygous mutation of rs2619538 T > A likely promotes DTNBP1 expression and facilitates subsequent processes in epilepsy pathologies. Thus, the role of DTNBP1 in TLE deserves further exploration in the future.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xu Zhou
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jun Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lidan Huang
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Chaowen Sun
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Neurology and Neurosurgery Division, Stroke Center, The First Affiliated Hospital, Clinical Medicine Research Institute, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
|
6
|
Zhou X, Tao H, Cai Y, Cui L, Zhao B, Li K. Stage-dependent involvement of ADAM10 and its significance in epileptic seizures. J Cell Mol Med 2019; 23:4494-4504. [PMID: 31087543 PMCID: PMC6584734 DOI: 10.1111/jcmm.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/05/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
The prevalence of epileptic seizures in Alzheimer's disease (AD) has attracted an increasing amount of attention in recent years, and many cohort studies have found several risk factors associated with the genesis of seizures in AD. Among these factors, young age and severe dementia are seemingly contradictory and independent risk factors, indicating that the pathogenesis of epileptic seizures is, to a certain extent, stage‐dependent. A disintegrin and metalloproteinase domain‐containing protein 10 (ADAM10) is a crucial α‐secretase responsible for ectodomain shedding of its substrates; thus, the function of this protein depends on the biological effects of its substrates. Intriguingly, transgenic models have demonstrated ADAM10 to be associated with epilepsy. Based on the biological effects of its substrates, the potential pathogenic roles of ADAM10 in epileptic seizures can be classified into amyloidogenic processes in the ageing stage and cortical dysplasia in the developmental stage. Therefore, ADAM10 is reviewed here as a stage‐dependent modulator in the pathogenesis of epilepsy. Current data regarding ADAM10 in epileptic seizures were collected and reviewed for potential pathogenic roles (ie amyloidogenic processes and cortical dysplasia) and regulatory mechanisms (ie transcriptional and posttranscriptional regulation). These findings are then discussed in terms of the significance of the stage‐dependent functions of ADAM10 in epilepsy. Several potential targets for seizure control, such as candidate transcription factors and microRNAs that regulate ADAM10, as well as potential genetic screening tools for the early recognition of cortical dysplasia, have been suggested but must be studied in more detail.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Choi SA, Kim SY, Kim H, Kim WJ, Kim H, Hwang H, Choi JE, Lim BC, Chae JH, Chong S, Lee JY, Phi JH, Kim SK, Wang KC, Kim KJ. Surgical outcome and predictive factors of epilepsy surgery in pediatric isolated focal cortical dysplasia. Epilepsy Res 2017; 139:54-59. [PMID: 29197666 DOI: 10.1016/j.eplepsyres.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/26/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) is a common cause of medically intractable epilepsy in children. Epilepsy surgery has been a valuable treatment option to achieve seizure freedom in these intractable epilepsy patients. We aimed to present long-term surgical outcome, in relation to pathological severity, and to assess predictive factors of epilepsy surgery in pediatric isolated FCD. METHODS We retrospectively analyzed the data of 58 children and adolescents, with FCD International League Against Epilepsy (ILAE) task force classification types I and II, who underwent resective epilepsy surgery and were followed for at least 2 years after surgery. RESULTS The mean age at epilepsy onset was 4.3 years (0-14.2 years), and mean age at epilepsy surgery was 9.4 years (0.4-17.5 years). The mean duration of postoperative follow-up was 5.1±2.6 years (2-12.4 years). Of 58 patients, 62% of patients achieved Engel class I at 2 years postoperatively, 58% at 5 years postoperatively, and 53% at the last follow up. Forty eight percent of our cohort successfully discontinued antiepileptic medication. Of 30 patients with seizure recurrence, 83% of seizures recurred within 2 years after surgery. We observed that FCD type IIb was significantly associated with a better surgical outcome. At fifth postoperative year, 88% of FCD IIb patients were seizure free compared with 21% of type I and 57% of type IIa patients (P=0.043). By multivariate analysis, lesion on MRI (P=0.02) and complete resection (P<0.01) were the most important predictive factors for a seizure-free outcome. SIGNIFICANCE Epilepsy surgery is highly effective; more than half of medically intractable epilepsy patients achieved seizure freedom after surgery. In addition, we found significant difference in surgical outcomes according to the ILAE task force classification. Lesion on MRI and complete resection were the most important predictive factors for favorable seizure outcome in isolated FCD patients.
Collapse
Affiliation(s)
- Sun Ah Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Ji Eun Choi
- Department of Pediatrics, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangjoon Chong
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Qin L, Liu X, Liu S, Liu Y, Yang Y, Yang H, Chen Y, Chen L. Differentially expressed proteins underlying childhood cortical dysplasia with epilepsy identified by iTRAQ proteomic profiling. PLoS One 2017; 12:e0172214. [PMID: 28222113 PMCID: PMC5319751 DOI: 10.1371/journal.pone.0172214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Cortical dysplasia accounts for at least 14% of epilepsy cases, and is mostly seen in children. However, the understanding of molecular mechanisms and pathogenesis underlying cortical dysplasia is limited. The aim of this cross-sectional study is to identify potential key molecules in the mechanisms of cortical dysplasia by screening the proteins expressed in brain tissues of childhood cortical dysplasia patients with epilepsy using isobaric tags for relative and absolute quantitation-based tandem mass spectrometry compared to controls, and several differentially expressed proteins that are not reported to be associated with cortical dysplasia previously were selected for validation using real-time polymerase chain reaction, immunoblotting and immunohistochemistry. 153 out of 3340 proteins were identified differentially expressed between childhood cortical dysplasia patients and controls. And FSCN1, CRMP1, NDRG1, DPYSL5, MAP4, and FABP3 were selected for validation and identified to be increased in childhood cortical dysplasia patients, while PRDX6 and PSAP were identified decreased. This is the first report on differentially expressed proteins in childhood cortical dysplasia. We identified differential expression of FSCN1, CRMP1, NDRG1, DPYSL5, MAP4, FABP3, PRDX6 and PSAP in childhood cortical dysplasia patients, these proteins are involved in various processes and have various function. These results may provide new directions or targets for the research of childhood cortical dysplasia, and may be helpful in revealing molecular mechanisms and pathogenesis and/or pathophysiology of childhood cortical dysplasia if further investigated.
Collapse
Affiliation(s)
- Lu Qin
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shiyong Liu
- Department of Neurosurgery, The Xinqiao Hospital of Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yixuan Yang
- Department of Infectious Disease, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hui Yang
- Department of Neurosurgery, The Xinqiao Hospital of Third Military Medical University, Chongqing, People’s Republic of China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|