1
|
Olivieri C, Ricardi F, Coletto A, Marica V, Serafino S, Marolo P, Reibaldi M, Borrelli E. Mucopolysaccharidosis type II B complicated by optic disc swelling, pigmentary retinopathy and macular edema. Eur J Ophthalmol 2024; 34:NP72-NP77. [PMID: 38803202 DOI: 10.1177/11206721241257967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
PURPOSE To report clinical and imaging features of optic nerve and retinal involvement in a patient with mucopolysaccharidosis (MPS) type II B. METHODS A 27-year-old man, diagnosed with MPS type II B and undergoing enzymatic substitution therapy for the past 19 years, was referred to the retina service. An ophthalmological evaluation, which included multimodal imaging, was conducted to investigate potential retinal and optic disc involvement. RESULTS The eye examination revealed a pigmentary retinopathy with a predominant loss of the outer retinal loss, primarily in the parafoveal and perifoveal regions. Notably, multimodal imaging identified macular edema without any signs of leakage, implying an association between macular edema and retinal neurodegeneration. Additionally, both eyes exhibited an optic disc with blurred margins. CONCLUSION We herein describe the multimodal imaging findings of retinal and optic disc involvement in a patient with MPS type II B. This report describes for the first-time the presence of macular edema without leakage alongside photoreceptor damage and optic disc swelling.
Collapse
Affiliation(s)
- Chiara Olivieri
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Federico Ricardi
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Andrea Coletto
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Valentina Marica
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Sonia Serafino
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Paola Marolo
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| |
Collapse
|
2
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). eLife 2024; 13:RP93510. [PMID: 39196614 DOI: 10.7554/elife.93510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of α-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-α-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal α-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in the HGSNAT-catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, United States
| | - Jaimin K Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, United States
| |
Collapse
|
3
|
Fink SP, Triggs-Raine B. Genetic Deficiencies of Hyaluronan Degradation. Cells 2024; 13:1203. [PMID: 39056785 PMCID: PMC11275217 DOI: 10.3390/cells13141203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) is a large polysaccharide that is broadly distributed and highly abundant in the soft connective tissues and embryos of vertebrates. The constitutive turnover of HA is very high, estimated at 5 g per day in an average (70 kg) adult human, but HA turnover must also be tightly regulated in some processes. Six genes encoding homologues to bee venom hyaluronidase (HYAL1, HYAL2, HYAL3, HYAL4, HYAL6P/HYALP1, SPAM1/PH20), as well as genes encoding two unrelated G8-domain-containing proteins demonstrated to be involved in HA degradation (CEMIP/KIAA1199, CEMIP2/TMEM2), have been identified in humans. Of these, only deficiencies in HYAL1, HYAL2, HYAL3 and CEMIP have been identified as the cause or putative cause of human genetic disorders. The phenotypes of these disorders have been vital in determining the biological roles of these enzymes but there is much that is still not understood. Deficiencies in these HA-degrading proteins have been created in mice and/or other model organisms where phenotypes could be analyzed and probed to expand our understanding of HA degradation and function. This review will describe what has been found in human and animal models of hyaluronidase deficiency and discuss how this has advanced our understanding of HA's role in health and disease.
Collapse
Affiliation(s)
- Stephen P. Fink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Barbara Triggs-Raine
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
4
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563672. [PMID: 37961489 PMCID: PMC10634761 DOI: 10.1101/2023.10.23.563672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of a-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-a-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal a-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in HGSNAT catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, Massachusetts, 02451, United States
| | - Jaimin K. Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
5
|
Montanari C, Tagi VM, D’Auria E, Guaia V, Di Gallo A, Ghezzi M, Verduci E, Fiori L, Zuccotti G. Lung Diseases and Rare Disorders: Is It a Lysosomal Storage Disease? Differential Diagnosis, Pathogenetic Mechanisms and Management. CHILDREN (BASEL, SWITZERLAND) 2024; 11:668. [PMID: 38929247 PMCID: PMC11201433 DOI: 10.3390/children11060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Pulmonologists may be involved in managing pulmonary diseases in children with complex clinical pictures without a diagnosis. Moreover, they are routinely involved in the multidisciplinary care of children with rare diseases, at baseline and during follow-up, for lung function monitoring. Lysosomal storage diseases (LSDs) are a group of genetic diseases characterised by a specific lysosomal enzyme deficiency. Despite varying pathogen and organ involvement, they are linked by the pathological accumulation of exceeding substrates, leading to cellular toxicity and subsequent organ damage. Less severe forms of LSDs can manifest during childhood or later in life, sometimes being underdiagnosed. Respiratory impairment may stem from different pathogenetic mechanisms, depending on substrate storage in bones, with skeletal deformity and restrictive pattern, in bronchi, with obstructive pattern, in lung interstitium, with altered alveolar gas exchange, and in muscles, with hypotonia. This narrative review aims to outline different pulmonary clinical findings and a diagnostic approach based on key elements for differential diagnosis in some treatable LSDs like Gaucher disease, Acid Sphingomyelinase deficiency, Pompe disease and Mucopolysaccharidosis. Alongside their respiratory clinical aspects, which might overlap, we will describe radiological findings, lung functional patterns and associated symptoms to guide pediatric pulmonologists in differential diagnosis. The second part of the paper will address follow-up and management specifics. Recent evidence suggests that new therapeutic strategies play a substantial role in preventing lung involvement in early-treated patients and enhancing lung function and radiological signs in others. Timely diagnosis, driven by clinical suspicion and diagnostic workup, can help in treating LSDs effectively.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Veronica Maria Tagi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Vincenzo Guaia
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Anna Di Gallo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Michele Ghezzi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
| | - Laura Fiori
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| |
Collapse
|
6
|
Galluzzi F, Garavello W. Adenotonsillectomy for the treatment of OSA in children with mucopolysaccharidosis: A systematic review. Sleep Med 2024; 116:7-12. [PMID: 38402648 DOI: 10.1016/j.sleep.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE To study the role of adenotonsillectomy (ADT) for obstructive sleep apnea (OSA) in children with mucopolysaccharidosis (MPS). METHODS A systematic review were performed following the PRISMA guideline. PubMed and Embase were searched for studies regarding adenotonsillectomy for OSA in children with MPS. The MINOR Score were applied for quality assessment of the included studies. RESULTS Nineteen studies were eligible for inclusion: fifteen were retrospective and four prospective. A total of 1406 subjects were included. The samples size varied from 2 to 336, the male to female ratio is 1.2 and mean age varied from 2.4 to 11 years. Overall, 56.2 % (IC 95%: 53.6-58.8) of the included subjects underwent ADT. MPS I and II are the two most operated types. Three studies, including 50 children, reported improvement in polysomnographic parameters after surgery. Two authors described the duration of follow-up: 8.4 and 9.8 years, respectively. CONCLUSIONS More than half of children with MPS underwent ADT for the treatment of OSA, although few evidence demonstrated improvement in term of polysomnographic parameters. The two types of MPS most involved are type I and II. Considering the disease progression and anesthetic risks, multidisciplinary management may help identify the subgroup of children with MPS who benefit from ADT for the treatment of OSA.
Collapse
Affiliation(s)
- Francesca Galluzzi
- Department of Otorhinolaryngology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Werner Garavello
- Department of Otorhinolaryngology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy; Department of Otorhinolaryngology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
7
|
Jerves Serrano T, Gold J, Cooper JA, Church HJ, Tylee KL, Wu HY, Kim SY, Stepien KM. Hepatomegaly and Splenomegaly: An Approach to the Diagnosis of Lysosomal Storage Diseases. J Clin Med 2024; 13:1465. [PMID: 38592278 PMCID: PMC10932313 DOI: 10.3390/jcm13051465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.
Collapse
Affiliation(s)
| | - Jessica Gold
- Division of Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - James A. Cooper
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Heather J. Church
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Karen L. Tylee
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Hoi Yee Wu
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Karolina M. Stepien
- Salford Royal Organization, Northern Care Alliance NHS Foundation Trust, Adult Inherited Metabolic Diseases Department, Salford M6 8HD, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
8
|
Zabihi R, Zamani M, Aminzadeh M, Chamanrou N, Kiani FZ, Seifi T, Zeighami J, Yadegari T, Sedaghat A, Saberi A, Hamid M, Shariati G, Galehdari H. Identification of new variants in patients with mucopolysaccharidosis in consanguineous Iranian families. Front Genet 2024; 15:1343094. [PMID: 38425718 PMCID: PMC10902845 DOI: 10.3389/fgene.2024.1343094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction: Mucopolysaccharidoses are a group of lysosomal storage disorders that include seven types that are classified based on the enzymes that are disrupted. Malfunction of these enzymes leads to the accumulation of glycosaminoglycans (GAGs) in various tissues. Due to genetic and clinical heterogeneity, diagnosing and distinguishing the different types is challenging. Genetic methods such as whole exome sequencing (WES) and Sanger sequencing are accurate methods for detecting pathogenic variants in patients. Methods: Thirty-two cases of mucopolysaccharidosis, predominantly from families with consanguineous marriages, were genetically examined. Out of these, fourteen cases underwent targeted sequencing, while the rest underwent WES. The results of WES were analyzed and the pathogenicity of the variants was examined using bioinformatics tools. In addition, a segregation analysis within families was carried out. Results: In most cases, a pathogenic or likely pathogenic variant was detected. Sixteen previously reported variants and six new variants were detected in the known IDS (c.458G>C, c.701del, c.920T>G), GNS (c.1430A>T), GALNS (c.1218_1221dup), and SGSH (c.149T>C) genes. Furthermore, we discovered a c.259G>C substitution in the NAGLU gene for the first time in three homozygous patients. This substitution was previously reported as heterozygous. Except for the variants related to the IDS gene, which were hemizygous, all the other variants were homozygous. Discussion: It appears that the high rate of consanguineous marriages in the families being studied has had a significant impact on the occurrence of this disease. Overall, these findings could expand the spectrum of pathogenic variants in mucopolysaccharidoses. Genetic methods, especially WES, are very accurate and can be used alone or in conjunction with other diagnostic methods for a more precise and rapid diagnosis of mucopolysaccharidoses. Additionally, they could be beneficial for family screening and disease prevention.
Collapse
Affiliation(s)
- Rezvan Zabihi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Majid Aminzadeh
- Diabetes Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Chamanrou
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Fatemeh Zahra Kiani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Tahere Seifi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Jawaher Zeighami
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Tahere Yadegari
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Alireza Sedaghat
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Diabetes Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hamid
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
9
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
10
|
Rossi A, Brunetti-Pierri N. Gene therapies for mucopolysaccharidoses. J Inherit Metab Dis 2024; 47:135-144. [PMID: 37204267 DOI: 10.1002/jimd.12626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Current specific treatments for mucopolysaccharidoses (MPSs) include enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT). Both treatments are hampered by several limitations, including lack of efficacy on brain and skeletal manifestations, need for lifelong injections, and high costs. Therefore, more effective treatments are needed. Gene therapy in MPSs is aimed at obtaining high levels of the therapeutic enzyme in multiple tissues either by engrafted gene-modified hematopoietic stem progenitor cells (ex vivo) or by direct infusion of a viral vector expressing the therapeutic gene (in vivo). This review focuses on the most recent clinical progress in gene therapies for MPSs. The various gene therapy approaches with their strengths and limitations are discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Chacon-Camacho OF, Arce-Gonzalez R, Sanchez-de la Rosa F, Urióstegui-Rojas A, Hofmann-Blancas ME, Mata-Flores F, Zenteno JC. Genetic Aspects of Glaucoma: An Updated Review. Curr Mol Med 2024; 24:1231-1249. [PMID: 37272463 DOI: 10.2174/1566524023666230602143617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023]
Abstract
Glaucoma is a group of diverse diseases characterized by cupping of the optic nerve head due to the loss of retinal ganglion cells. It is the most common cause of irreversible blindness throughout the world; therefore, its timely diagnosis and early detection through an ophthalmological examination are very important. We, herein, present the information on the epidemiology, pathophysiology, clinical diagnosis, and treatment of glaucoma. We also emphasize the investigations of the last decades that have allowed identifying numerous genes and susceptibility genetic factors. We have also described in detail the genes whose mutations cause or contribute to the development of the disease.
Collapse
Affiliation(s)
- Oscar Francisco Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Laboratorio 5 Edificio A-4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocio Arce-Gonzalez
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Andrés Urióstegui-Rojas
- Department of Integral Ophthalmology, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Felipe Mata-Flores
- Department of Glaucoma, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
12
|
Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical applications of MnO 2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother 2023; 163:114833. [PMID: 37150035 DOI: 10.1016/j.biopha.2023.114833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023] Open
Abstract
Manganese dioxide (MnO2) nanoenzymes/nanozymes (MnO2-NEs) are 1-100 nm nanomaterials that mimic catalytic, oxidative, peroxidase, and superoxide dismutase activities. The oxidative-like activity of MnO2-NEs makes them suitable for developing effective and low-cost colorimetric detection assays of biomolecules. Interestingly, MnO2-NEs also demonstrate scavenging properties against reactive oxygen species (ROS) in various pathological conditions. In addition, due to the decomposition of MnO2-NEs in the tumor microenvironment (TME) and the production of Mn2+, they can act as a contrast agent for improving clinical imaging diagnostics. MnO2-NEs also can use as an in situ oxygen production system in TME, thereby overcoming hypoxic conditions and their consequences in the progression of cancer. Furthermore, MnO2-NEs as a shell and coating make the nanosystems smart and, therefore, in combination with other nanomaterials, the MnO2-NEs can be used as an intelligent nanocarrier for delivering drugs, photosensitizers, and sonosensitizers in vivo. Moreover, these capabilities make MnO2-NEs a promising candidate for the detection and treatment of different human diseases such as cancer, metabolic, infectious, and inflammatory pathological conditions. MnO2-NEs also have ROS-scavenging and anti-bacterial properties against Gram-positive and Gram-negative bacterial strains, which make them suitable for wound healing applications. Given the importance of nanomaterials and their potential applications in biomedicine, this review aimed to discuss the biochemical properties and the theranostic roles of MnO2-NEs and recent advances in their use in colorimetric detection assays of biomolecules, diagnostic imaging, drug delivery, and combinatorial therapy applications. Finally, the challenges of MnO2-NEs applications in biomedicine will be discussed.
Collapse
Affiliation(s)
| | - Matin Rahimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Pierzynowska K, Gaffke L, Żabińska M, Cyske Z, Rintz E, Wiśniewska K, Podlacha M, Węgrzyn G. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. Int J Mol Sci 2023; 24:ijms24043887. [PMID: 36835321 PMCID: PMC9966686 DOI: 10.3390/ijms24043887] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The oxytocin receptor (OXTR), encoded by the OXTR gene, is responsible for the signal transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development of the nervous system. Therefore, it is not a surprise that both the ligand and the receptor are involved in the modulation of behaviors, especially those related to sexual, social, and stress-induced activities. As in the case of every regulatory system, any disturbances in the structures or functions of oxytocin and OXTR may lead to the development or modulation of various diseases related to the regulated functions, which in this case include either mental problems (autism, depression, schizophrenia, obsessive-compulsive disorders) or those related to the functioning of reproductive organs (endometriosis, uterine adenomyosis, premature birth). Nevertheless, OXTR abnormalities are also connected to other diseases, including cancer, cardiac disorders, osteoporosis, and obesity. Recent reports indicated that the changes in the levels of OXTR and the formation of its aggregates may influence the course of some inherited metabolic diseases, such as mucopolysaccharidoses. In this review, the involvement of OXTR dysfunctions and OXTR polymorphisms in the development of different diseases is summarized and discussed. The analysis of published results led us to suggest that changes in OXTR expression and OXTR abundance and activity are not specific to individual diseases, but rather they influence processes (mostly related to behavioral changes) that might modulate the course of various disorders. Moreover, a possible explanation of the discrepancies in the published results of effects of the OXTR gene polymorphisms and methylation on different diseases is proposed.
Collapse
|
14
|
Djafar JV, Johnson AM, Elvidge KL, Farrar MA. Childhood Dementia: A Collective Clinical Approach to Advance Therapeutic Development and Care. Pediatr Neurol 2023; 139:76-85. [PMID: 36571866 DOI: 10.1016/j.pediatrneurol.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Childhood dementias are a group of over 100 rare and ultra-rare pediatric conditions that are clinically characterized by chronic global neurocognitive decline. This decline is associated with a progressive loss of skills and shortened life expectancy. With an estimated incidence of one in 2800 births and less than 5% of the conditions having disease-modifying therapies, the impact is profound for patients and their families. Traditional research, care, and advocacy efforts have focused on individual disorders, or groups classified by molecular pathogenesis, and this has established robust foundations for further progress and collaboration. This review describes the shared and disease-specific clinical changes contributing to childhood dementia and considers these as potential indicators of underlying pathophysiologic processes. Like adult neurodegenerative syndromes, the heterogeneous phenotypes extend beyond cognitive decline and may involve changes in eating, motor function, pain, sleep, and behavior, mediated by physiological changes in neural networks. Importantly, these physiological phenotypes are associated with significant carer stress, anxiety, and challenges in care. These phenotypes are also pertinent for the development of therapeutics and optimization of best practice management. A collective approach to childhood dementia is anticipated to identify relevant biomarkers of prognosis or therapeutic efficacy, streamline the path from preclinical studies to clinical trials, increase opportunities for the development of multiple therapeutics, and refine clinical care.
Collapse
Affiliation(s)
- Jason V Djafar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | | | - Michelle A Farrar
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Cyske Z, Gaffke L, Pierzynowska K, Węgrzyn G. Expression of Long Noncoding RNAs in Fibroblasts from Mucopolysaccharidosis Patients. Genes (Basel) 2023; 14:genes14020271. [PMID: 36833198 PMCID: PMC9957086 DOI: 10.3390/genes14020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/24/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this report, changes in the levels of various long non-coding RNAs (lncRNAs) were demonstrated for the first time in fibroblasts derived from patients suffering from 11 types/subtypes of mucopolysaccharidosis (MPS). Some kinds of lncRNA (SNHG5, LINC01705, LINC00856, CYTOR, MEG3, and GAS5) were present at especially elevated levels (an over six-fold change relative to the control cells) in several types of MPS. Some potential target genes for these lncRNAs were identified, and correlations between changed levels of specific lncRNAs and modulations in the abundance of mRNA transcripts of these genes (HNRNPC, FXR1, TP53, TARDBP, and MATR3) were found. Interestingly, the affected genes code for proteins involved in various regulatory processes, especially gene expression control through interactions with DNA or RNA regions. In conclusion, the results presented in this report suggest that changes in the levels of lncRNAs can considerably influence the pathomechanism of MPS through the dysregulation of the expression of certain genes, especially those involved in the control of the activities of other genes.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-523-6024
| |
Collapse
|
16
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Mucopolysaccharidosis: What Pediatric Rheumatologists and Orthopedics Need to Know. Diagnostics (Basel) 2022; 13:diagnostics13010075. [PMID: 36611367 PMCID: PMC9818175 DOI: 10.3390/diagnostics13010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Mucopolysaccharidosis (MPS) is a group of disorders caused by the reduced or absent activity of enzymes involved in the glycosaminoglycans (GAGs) degradation; the consequence is the progressive accumulation of the substrate (dermatan, heparan, keratan or chondroitin sulfate) in the lysosomes of cells belonging to several tissues. The rarity, the broad spectrum of manifestations, the lack of strict genotype-phenotype association, and the progressive nature of MPS make diagnosing this group of conditions challenging. Musculoskeletal involvement represents a common and prominent feature of MPS. Joint and bone abnormalities might be the main clue for diagnosing MPS, especially in attenuated phenotypes; therefore, it is essential to increase the awareness of these conditions among the pediatric rheumatology and orthopedic communities since early diagnosis and treatment are crucial to reduce the disease burden of these patients. Nowadays, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available for some MPS types. We describe the musculoskeletal characteristics of MPS patients through a literature review of MPS cases misdiagnosed as having rheumatologic or orthopedic conditions.
Collapse
|
18
|
Fachel FNS, Frâncio L, Poletto É, Schuh RS, Teixeira HF, Giugliani R, Baldo G, Matte U. Gene editing strategies to treat lysosomal disorders: The example of mucopolysaccharidoses. Adv Drug Deliv Rev 2022; 191:114616. [PMID: 36356930 DOI: 10.1016/j.addr.2022.114616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Lysosomal storage disorders are a group of progressive multisystemic hereditary diseases with a combined incidence of 1:4,800. Here we review the clinical and molecular characteristics of these diseases, with a special focus on Mucopolysaccharidoses, caused primarily by the lysosomal storage of glycosaminoglycans. Different gene editing techniques can be used to ameliorate their symptoms, using both viral and nonviral delivery methods. Whereas these are still being tested in animal models, early results of phase I/II clinical trials of gene therapy show how this technology may impact the future treatment of these diseases. Hurdles related to specific hard-to-reach organs, such as the central nervous system, heart, joints, and the eye must be tackled. Finally, the regulatory framework necessary to advance into clinical practice is also discussed.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil
| | - Édina Poletto
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Fisiologia, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Gaudioso Á, Silva TP, Ledesma MD. Models to study basic and applied aspects of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 190:114532. [PMID: 36122863 DOI: 10.1016/j.addr.2022.114532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/05/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
The lack of available treatments and fatal outcome in most lysosomal storage disorders (LSDs) have spurred research on pathological mechanisms and novel therapies in recent years. In this effort, experimental methodology in cellular and animal models have been developed, with aims to address major challenges in many LSDs such as patient-to-patient variability and brain condition. These techniques and models have advanced knowledge not only of LSDs but also for other lysosomal disorders and have provided fundamental insights into the biological roles of lysosomes. They can also serve to assess the efficacy of classical therapies and modern drug delivery systems. Here, we summarize the techniques and models used in LSD research, which include both established and recently developed in vitro methods, with general utility or specifically addressing lysosomal features. We also review animal models of LSDs together with cutting-edge technology that may reduce the need for animals in the study of these devastating diseases.
Collapse
Affiliation(s)
- Ángel Gaudioso
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Teresa P Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | |
Collapse
|
20
|
Lipiński P, Szczałuba K, Buda P, Zakharova EY, Baydakova G, Ługowska A, Różdzyńska-Świątkowska A, Cyske Z, Węgrzyn G, Pollak A, Płoski R, Tylki-Szymańska A. Mucopolysaccharidosis-Plus Syndrome: Report on a Polish Patient with a Novel VPS33A Variant with Comparison with Other Described Patients. Int J Mol Sci 2022; 23:ijms231911424. [PMID: 36232726 PMCID: PMC9570340 DOI: 10.3390/ijms231911424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Eleven patients from Yakutia with a new lysosomal disease assumed then as mucopolysaccharidosis-plus syndrome (MPS-PS) were reported by Gurinova et al. in 2014. Up to now, a total number of 39 patients have been reported; in all of them, the c.1492C>T (p.Arg498Trp) variant of the VPS33A gene was detected. Here, we describe the first Polish MPS-PS patient with a novel homozygous c.599G>C (p.Arg200Pro) VPS33A variant presenting over 12 years of follow-up with some novel clinical features, including fetal ascites (resolved spontaneously), recurrent joint effusion and peripheral edemas, normal growth, and visceral obesity. Functional analyses revealed a slight presence of chondroitin sulphate (only) in urine glycosaminoglycan electrophoresis, presence of sialooligosaccharides in urine by thin-layer chromatography, and normal results of lysosomal enzymes activity and lysosphingolipids concentration in dried blood spot. The comparison with other MPS-PS described cases was also provided. The presented description of the natural history of MPS-PS in our patient may broaden the spectrum of phenotypes in this disease.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Piotr Buda
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | | | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
- Correspondence:
| |
Collapse
|
21
|
Cyske Z, Anikiej-Wiczenbach P, Wisniewska K, Gaffke L, Pierzynowska K, Mański A, Wegrzyn G. Sanfilippo Syndrome: Optimizing Care with a Multidisciplinary Approach. J Multidiscip Healthc 2022; 15:2097-2110. [PMID: 36158637 PMCID: PMC9505362 DOI: 10.2147/jmdh.s362994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a disease grouping five genetic disorders, four of them occurring in humans and one known to date only in a mouse model. In every subtype of MPS III (designed A, B, C, D or E), a lack or drastically decreased activity of an enzyme involved in the degradation of heparan sulfate (HS) (a compound from the group of glycosaminoglycans (GAGs)) arises from a genetic defect. This leads to primary accumulation of HS, and secondary storage of other compounds, combined with changes in expressions of hundreds of genes and many defects in organelles and various biochemical processes in the cell. As a result, dysfunctions of tissues and organs occur, leading to severe symptoms in patients. Although changes in somatic organs are considerable, the central nervous system is especially severely affected, and neurological, cognitive and behavioral disorders are the most significant changes, making the disease enormously burdensome for patients and their families. In the light of the current lack of any registered therapy for Sanfilippo syndrome (despite various attempts of many research groups to develop effective treatment, still no specific drug or procedure is available for MPS III), optimizing care with a multidisciplinary approach is crucial for managing this disease and making quality of patients’ life passable. This includes efforts to make/organize (i) accurate diagnosis as early as possible (which is not easy due to various possible misdiagnosis events caused by similarity of MPS III symptoms to those of other diseases and variability of patients), (ii) optimized symptomatic treatment (which is challenging because of complexity of symptoms and often untypical responses of MPS III patients to various drugs), and (iii) psychological care (for both patients and family members and/or caregivers). In this review article, we focus on these approaches, summarizing and discussing them.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | | | - Karolina Wisniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Arkadiusz Mański
- Psychological Counselling Centre of Rare Genetic Diseases, University of Gdansk, Gdansk, 80-309, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| |
Collapse
|
22
|
Brokowska J, Gaffke L, Pierzynowska K, Cyske Z, Węgrzyn G. Cell cycle disturbances in mucopolysaccharidoses: Transcriptomic and experimental studies on cellular models. Exp Biol Med (Maywood) 2022; 247:1639-1649. [PMID: 36000158 PMCID: PMC9597211 DOI: 10.1177/15353702221114872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases caused by defects in genes coding for proteins involved in degradation of glycosaminoglycans (GAGs). These complex carbohydrates accumulate in cells causing their serious dysfunctions. Apart from the physical GAG storage, secondary and tertiary changes may contribute significantly to the pathomechanism of the disease. Among processes which were not systematically investigated in MPS cells to date there is the cell cycle. Here, we studied perturbances in this crucial cellular process in majority of MPS types. Transcriptomic analyses indicated that expression of many genes coding for proteins involved in the cell cycle is dysregulated in all tested MPS cells. Importantly, levels of transcripts of particular genes were changed in the same manner (i.e. either up- or down-regulated) in most or all types of the disease, indicating a common mechanism of the dysregulation. Flow cytometric studies demonstrated that the cell cycle is disturbed in all MPS types, with increased fractions of cells in the G0/G1 phase in most types and decreased fractions of cells in the G2/M phase in all types. We found that increased levels of cyclin D1 and disturbed timing of its appearance during the cell cycle may contribute to the mechanism of dysregulation of this process in MPS. Reduction of GAG levels by either a specific enzyme or genistein-mediated inhibition of synthesis of these compounds improved, but not fully corrected, the cell cycle in MPS fibroblasts. Therefore, it is suggested that combination of the therapeutic approaches devoted to reduction of GAG levels with cyclin D1 inhibitors might be considered in further works on developing effective treatment procedures for MPS.
Collapse
|
23
|
Splicing Modulation as a Promising Therapeutic Strategy for Lysosomal Storage Disorders: The Mucopolysaccharidoses Example. Life (Basel) 2022; 12:life12050608. [PMID: 35629276 PMCID: PMC9146820 DOI: 10.3390/life12050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Over recent decades, the many functions of RNA have become more evident. This molecule has been recognized not only as a carrier of genetic information, but also as a specific and essential regulator of gene expression. Different RNA species have been identified and novel and exciting roles have been unveiled. Quite remarkably, this explosion of novel RNA classes has increased the possibility for new therapeutic strategies that tap into RNA biology. Most of these drugs use nucleic acid analogues and take advantage of complementary base pairing to either mimic or antagonize the function of RNAs. Among the most successful RNA-based drugs are those that act at the pre-mRNA level to modulate or correct aberrant splicing patterns, which are caused by specific pathogenic variants. This approach is particularly tempting for monogenic disorders with associated splicing defects, especially when they are highly frequent among affected patients worldwide or within a specific population. With more than 600 mutations that cause disease affecting the pre-mRNA splicing process, we consider lysosomal storage diseases (LSDs) to be perfect candidates for this type of approach. Here, we introduce the overall rationale and general mechanisms of splicing modulation approaches and highlight the currently marketed formulations, which have been developed for non-lysosomal genetic disorders. We also extensively reviewed the existing preclinical studies on the potential of this sort of therapeutic strategy to recover aberrant splicing and increase enzyme activity in our diseases of interest: the LSDs. Special attention was paid to a particular subgroup of LSDs: the mucopolysaccharidoses (MPSs). By doing this, we hoped to unveil the unique therapeutic potential of the use of this sort of approach for LSDs as a whole.
Collapse
|
24
|
Complex Changes in the Efficiency of the Expression of Many Genes in Monogenic Diseases, Mucopolysaccharidoses, May Arise from Significant Disturbances in the Levels of Factors Involved in the Gene Expression Regulation Processes. Genes (Basel) 2022; 13:genes13040593. [PMID: 35456399 PMCID: PMC9029754 DOI: 10.3390/genes13040593] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Monogenic diseases are primarily caused by mutations in a single gene; thus, they are commonly recognized as genetic disorders with the simplest mechanisms. However, recent studies have indicated that the molecular mechanisms of monogenic diseases can be unexpectedly complicated, and their understanding requires complex studies at the molecular level. Previously, we have demonstrated that in mucopolysaccharidoses (MPS), a group of monogenic lysosomal storage diseases, several hundreds of genes reveal significant changes in the expression of various genes. Although the secondary effects of the primary biochemical defect and the inefficient degradation of glycosaminoglycans (GAGs) might be considered, the scale of the changes in the expression of a large fraction of genes cannot be explained by a block in one biochemical pathway. Here, we demonstrate that in cellular models of 11 types of MPS, the expression of genes coding for proteins involved in the regulation of the expression of many other genes at various stages (such as signal transduction, transcription, splicing, RNA degradation, translation, and others) is significantly disturbed relative to the control cells. This conclusion was based on transcriptomic studies, supported by biochemical analyses of levels of selected proteins encoded by genes revealing an especially high level of dysregulation in MPS (EXOSC9, SRSF10, RPL23, and NOTCH3 proteins were investigated). Interestingly, the reduction in GAGs levels, through the inhibition of their synthesis normalized the amounts of EXOSC9, RPL23, and NOTCH3 in some (but not all) MPS types, while the levels of SRSF10 could not be corrected in this way. These results indicate that different mechanisms are involved in the dysregulation of the expression of various genes in MPS, pointing to a potential explanation for the inability of some therapies (such as enzyme replacement therapy or substrate reduction therapy) to fully correct the physiology of MPS patients. We suggest that the disturbed expression of some genes, which appears as secondary or tertiary effects of GAG storage, might not be reversible, even after a reduction in the amounts of the storage material.
Collapse
|
25
|
Tylki-Szymańska A, Almássy Z, Christophidou-Anastasiadou V, Avdjieva-Tzavella D, Barisic I, Cerkauskiene R, Cuturilo G, Djiordjevic M, Gucev Z, Hlavata A, Kieć-Wilk B, Magner M, Pecin I, Plaiasu V, Samardzic M, Zafeiriou D, Zaganas I, Lampe C. The landscape of Mucopolysaccharidosis in Southern and Eastern European countries: a survey from 19 specialistic centers. Orphanet J Rare Dis 2022; 17:136. [PMID: 35331284 PMCID: PMC8943501 DOI: 10.1186/s13023-022-02285-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/13/2022] [Indexed: 01/20/2023] Open
Abstract
Background Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by defects in genes coding for different lysosomal enzymes which degrade glycosaminoglycans. Impaired lysosomal degradation causes cell dysfunction leading to progressive multiorgan involvement, disabling consequences and poor life expectancy. Enzyme replacement therapy (ERT) is now available for most MPS types, offering beneficial effects on disease progression and improving quality of life of patients. The landscape of MPS in Europe is not completely described and studies on availability of treatment show that ERT is not adequately implemented, particularly in Southern and Eastern Europe. In this study we performed a survey analysis in main specialist centers in Southern and Eastern European countries, to outline the picture of disease management in the region and understand ERT implementation. Since the considerable number of MPS IVA patients in the region, particularly adults, the study mainly focused on MPS IVA management and treatment. Results 19 experts from 14 Southern and Eastern European countries in total responded to the survey. Results outlined a picture of MPS management in the region, with a high number of MPS patients managed in the centers and a high level of care. MPS II was the most prevalent followed by MPS IVA, with a particular high number of adult patients. The study particularly focused on management and treatment of MPS IVA patients. Adherence to current European Guidelines for follow-up of MPS IVA patients is generally adequate, although some important assessments are reported as difficult due to the lack of MPS skilled specialists. Availability of ERT in Southern and Eastern European countries is generally in line with other European regions, even though regulatory, organizational and reimbursement constrains are demanding. Conclusions The landscape of MPS in Southern and Eastern European countries is generally comparable to that of other European regions, regarding epidemiology, treatment accessibility and follow up difficulties. However, issues limiting ERT availability and reimbursement should be simplified, to start treatment as early as possible and make it available for more patients. Besides, educational programs dedicated to specialists should be implemented, particularly for pediatricians, clinical geneticists, surgeons, anesthesiologists and neurologists.
Collapse
Affiliation(s)
- Anna Tylki-Szymańska
- Department of Pediatric Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Zsuzsanna Almássy
- Department of Toxicology and Metabolic Diseases, Heim Pal Children's Hospital Budapest, Budapest, Hungary
| | | | | | - Ingeborg Barisic
- Centre of Excellence for Reproductive and Regenerative Medicine, Children's Hospital Zagreb, Medical School University of Zagreb, Zagreb, Croatia
| | - Rimante Cerkauskiene
- Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Goran Cuturilo
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,University Children's Hospital, Belgrade, Serbia
| | - Maja Djiordjevic
- Mother and Child Health Care Institute of Serbia, Medical University of Belgrade, Belgrade, Serbia
| | - Zoran Gucev
- University Children's Hospital, Skopje, North Macedonia
| | - Anna Hlavata
- National Institute of Children's Diseases, Department of Paediatrics, Medical Faculty Comenius University, Centre for Inherited Metabolic Disorders, Bratislava, Slovakia
| | - Beata Kieć-Wilk
- Unit of Rare Metabolic Diseases, Department of Metabolic Diseases, Jagiellonian University Medical College, University Hospital, Krakow, Poland
| | - Martin Magner
- Department of Paediatrics, University Thomayer Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Pediatrics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivan Pecin
- University Hospital Centre Zagreb, Department of Internal Medicine, Division of Metabolic Diseases, Zagreb School of Medicine, Zagreb, Croatia
| | - Vasilica Plaiasu
- Regional Centre of Medical Genetics, INSMC Alessandrescu-Rusescu, Bucharest, Romania
| | - Mira Samardzic
- Institute for Sick Children, Department of Pediatric Endocrinology and Metabolism, Medical School, University of Montenegro, Podgorica, Montenegro
| | - Dimitrios Zafeiriou
- First Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Ioannis Zaganas
- Neurogenetics Laboratory, Neurology Department, University Hospital of Heraklion, University of Crete, Heraklion, Greece
| | - Christina Lampe
- Department of Child Neurology, Epileptology and Social Pediatrics, Centre for Rare Diseases, University of Giessen, Standort Giessen, Feulgenstr. 12, 35389, Giessen, Germany.
| |
Collapse
|
26
|
Węgrzyn G, Pierzynowska K, Pavone LM. Editorial: Molecular Aspects of Mucopolysaccharidoses. Front Mol Biosci 2022; 9:874267. [PMID: 35295844 PMCID: PMC8918541 DOI: 10.3389/fmolb.2022.874267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
- *Correspondence: Grzegorz Węgrzyn,
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
van Gool R, Tucker-Bartley A, Yang E, Todd N, Guenther F, Goodlett B, Al-Hertani W, Bodamer OA, Upadhyay J. Targeting neurological abnormalities in lysosomal storage diseases. Trends Pharmacol Sci 2021; 43:495-509. [PMID: 34844772 DOI: 10.1016/j.tips.2021.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Central nervous system (CNS) abnormalities and corresponding neurological and psychiatric symptoms are frequently observed in lysosomal storage disorders (LSDs). The genetic background of individual LSDs is indeed unique to each illness. However, resulting defective lysosomal function within the CNS can transition normal cellular processes (i.e., autophagy) into aberrant mechanisms, facilitating overlapping downstream consequences including neurocircuitry dysfunction, neurodegeneration as well as sensory, motor, cognitive, and psychological symptoms. Here, the neurological and biobehavioral phenotypes of major classes of LSDs are discussed alongside therapeutic strategies in development that aim to tackle neuropathology among other disease elements. Finally, focused ultrasound blood-brain barrier opening is proposed to enhance therapeutic delivery thereby overcoming the key hurdle of central distribution of disease modifying therapies in LSDs.
Collapse
Affiliation(s)
- Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - Anthony Tucker-Bartley
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Todd
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank Guenther
- Department of Speech, Language and Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Benjamin Goodlett
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walla Al-Hertani
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olaf A Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
28
|
Oxidative Stress in Mucopolysaccharidoses: Pharmacological Implications. Molecules 2021; 26:molecules26185616. [PMID: 34577086 PMCID: PMC8468662 DOI: 10.3390/molecules26185616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Although mucopolysaccharidoses (MPS) are caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans, storage of these compounds is crucial but is not the only pathomechanism of these severe, inherited metabolic diseases. Among various factors and processes influencing the course of MPS, oxidative stress appears to be a major one. Oxidative imbalance, occurring in MPS and resulting in increased levels of reactive oxidative species, causes damage of various biomolecules, leading to worsening of symptoms, especially in the central nervous system (but not restricted to this system). A few therapeutic options are available for some types of MPS, including enzyme replacement therapy and hematopoietic stem cell transplantation, however, none of them are fully effective in reducing all symptoms. A possibility that molecules with antioxidative activities might be useful accompanying drugs, administered together with other therapies, is discussed in light of the potential efficacy of MPS treatment.
Collapse
|
29
|
Balikov DA, Jacobson A, Prasov L. Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders. Genes (Basel) 2021; 12:genes12091403. [PMID: 34573386 PMCID: PMC8471311 DOI: 10.3390/genes12091403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Monogenic syndromic disorders frequently feature ocular manifestations, one of which is glaucoma. In many cases, glaucoma in children may go undetected, especially in those that have other severe systemic conditions that affect other parts of the eye and the body. Similarly, glaucoma may be the first presenting sign of a systemic syndrome. Awareness of syndromes associated with glaucoma is thus critical both for medical geneticists and ophthalmologists. In this review, we highlight six categories of disorders that feature glaucoma and other ocular or systemic manifestations: anterior segment dysgenesis syndromes, aniridia, metabolic disorders, collagen/vascular disorders, immunogenetic disorders, and nanophthalmos. The genetics, ocular and systemic features, and current and future treatment strategies are discussed. Findings from rare diseases also uncover important genes and pathways that may be involved in more common forms of glaucoma, and potential novel therapeutic strategies to target these pathways.
Collapse
Affiliation(s)
- Daniel A. Balikov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Adam Jacobson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|