1
|
Baroudi M, Rezk A, Daher M, Balmaceno-Criss M, Gregoryczyk JG, Sharma Y, McDonald CL, Diebo BG, Daniels AH. Management of traumatic spinal cord injury: A current concepts review of contemporary and future treatment. Injury 2024; 55:111472. [PMID: 38460480 DOI: 10.1016/j.injury.2024.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Spinal Cord Injury (SCI) is a condition leading to inflammation, edema, and dysfunction of the spinal cord, most commonly due to trauma, tumor, infection, or vascular disturbance. Symptoms include sensory and motor loss starting at the level of injury; the extent of damage depends on injury severity as detailed in the ASIA score. In the acute setting, maintaining mean arterial pressure (MAP) higher than 85 mmHg for up to 7 days following injury is preferred; although caution must be exercised when using vasopressors such as phenylephrine due to serious side effects such as pulmonary edema and death. Decompression surgery (DS) may theoretically relieve edema and reduce intraspinal pressure, although timing of surgery remains a matter of debate. Methylprednisolone (MP) is currently used due to its ability to reduce inflammation but more recent studies question its clinical benefits, especially with inconsistency in recommending it nationally and internationally. The choice of MP is further complicated by conflicting evidence for optimal timing to initiate treatment, and by the reported observation that higher doses are correlated with increased risk of complications. Thyrotropin-releasing hormone may be beneficial in less severe injuries. Finally, this review discusses many options currently being researched and have shown promising pre-clinical results.
Collapse
Affiliation(s)
- Makeen Baroudi
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anna Rezk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mohammad Daher
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mariah Balmaceno-Criss
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jerzy George Gregoryczyk
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yatharth Sharma
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher L McDonald
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bassel G Diebo
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alan H Daniels
- Department of Orthopedic Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Gopalakrishnan B, Galili U, Saenger M, Burket NJ, Koss W, Lokender MS, Wolfe KM, Husak SJ, Stark CJ, Solorio L, Cox A, Dunbar A, Shi R, Li J. α-Gal Nanoparticles in CNS Trauma: II. Immunomodulation Following Spinal Cord Injury (SCI) Improves Functional Outcomes. Tissue Eng Regen Med 2024; 21:437-453. [PMID: 38308742 PMCID: PMC10987462 DOI: 10.1007/s13770-023-00616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Previous investigations have shown that local application of nanoparticles presenting the carbohydrate moiety galactose-α-1,3-galactose (α-gal epitopes) enhance wound healing by activating the complement system and recruiting pro-healing macrophages to the injury site. Our companion in vitro paper suggest α-gal epitopes can similarly recruit and polarize human microglia toward a pro-healing phenotype. In this continuation study, we investigate the in vivo implications of α-gal nanoparticle administration directly to the injured spinal cord. METHODS α-Gal knock-out (KO) mice subjected to spinal cord crush were injected either with saline (control) or with α-gal nanoparticles immediately following injury. Animals were assessed longitudinally with neurobehavioral and histological endpoints. RESULTS Mice injected with α-gal nanoparticles showed increased recruitment of anti-inflammatory macrophages to the injection site in conjunction with increased production of anti-inflammatory markers and a reduction in apoptosis. Further, the treated group showed increased axonal infiltration into the lesion, a reduction in reactive astrocyte populations and increased angiogenesis. These results translated into improved sensorimotor metrics versus the control group. CONCLUSIONS Application of α-gal nanoparticles after spinal cord injury (SCI) induces a pro-healing inflammatory response resulting in neuroprotection, improved axonal ingrowth into the lesion and enhanced sensorimotor recovery. The data shows α-gal nanoparticles may be a promising avenue for further study in CNS trauma.
Collapse
Affiliation(s)
- Bhavani Gopalakrishnan
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Megan Saenger
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Noah J Burket
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Wendy Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Manjari S Lokender
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Kaitlyn M Wolfe
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Samantha J Husak
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Collin J Stark
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - August Dunbar
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Riyi Shi
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianming Li
- Center for Paralysis Research, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Sarkar A, Kim KT, Tsymbalyuk O, Keledjian K, Wilhelmy BE, Sherani NA, Jia X, Gerzanich V, Simard JM. A Direct Comparison of Physical Versus Dihydrocapsaicin-Induced Hypothermia in a Rat Model of Traumatic Spinal Cord Injury. Ther Hypothermia Temp Manag 2022; 12:90-102. [PMID: 35675523 PMCID: PMC9231662 DOI: 10.1089/ther.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition with no effective treatment. Hypothermia induced by physical means (cold fluid) is established as an effective therapy in animal models of SCI, but its clinical translation to humans is hampered by several constraints. Hypothermia induced pharmacologically may be noninferior or superior to physically induced hypothermia for rapid, convenient systemic temperature reduction, but it has not been investigated previously in animal models of SCI. We used a rat model of SCI to compare outcomes in three groups: (1) normothermic controls; (2) hypothermia induced by conventional physical means; (3) hypothermia induced by intravenous (IV) dihydrocapsaicin (DHC). Male rats underwent unilateral lower cervical SCI and were treated after a 4-hour delay with physical cooling or IV DHC (∼0.60 mg/kg total) cooling (both 33.0 ± 1.0°C) lasting 4 hours; controls were kept normothermic. Telemetry was used to monitor temperature and heart rate during and after treatments. In two separate experiments, one ending at 48 hours, the other at 6 weeks, “blinded” investigators evaluated rats in the three groups for neurological function followed by histopathological evaluation of spinal cord tissues. DHC reliably induced systemic cooling to 32–33°C. At both the time points examined, the two modes of hypothermia yielded similar improvements in neurological function and lesion size compared with normothermic controls. Our results indicate that DHC-induced hypothermia may be comparable with physical hypothermia in efficacy, but more clinically feasible to administer than physical hypothermia.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin T Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bradley E Wilhelmy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nageen A Sherani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J Marc Simard
- Department of Neurosurgery, Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Hypothermia as a potential remedy for canine and feline acute spinal cord injury: a review. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Severe spinal cord injury (SCI) resulting in permanent sensory-motor and autonomic dysfunction caudal to a damaged spinal cord (SC) segment is a catastrophic event in human as well as in veterinary medicine. The situation of paraplegic/tetraplegic people or animals is further impaired by serious complications and often displays an image of permanent suffering. Therapeutic hypothermia (TH) has shown neuroprotective capacity in numerous experimental and several clinical studies or case reports. Hence, the method draws increasing attention of neuroscientists as well as health care workers. While systemic TH is a too complex procedure for veterinary practice, local application of TH with a reduced risk of the whole body temperature fluctuations and minimal side effects can become one of the therapeutic tools considered in the treatment of acute traumatic SCIs in bigger animals, especially when surgical decompression of spinal medulla and vertebral column reconstruction is indicated. Still, additional large prospective randomized studies are essential for the standardization of therapeutic protocols and the introduction of the method into therapeutic armamentarium in canine and feline spinal traumatology. The research strategy involved a PubMed, MEDLINE (Ovid), EMBASE (Ovid), and ISI Web of Science search from January 2000 to July 2021 using the terms “canine and feline spinal cord injuryˮ, “hypothermiaˮ, and “targeted temperature managementˮ in the English language literature; also references from selected studies were scanned and relevant articles included.
Collapse
|
5
|
Hypothermia Therapy for Traumatic Spinal Cord Injury: An Updated Review. J Clin Med 2022; 11:jcm11061585. [PMID: 35329911 PMCID: PMC8949322 DOI: 10.3390/jcm11061585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Although hypothermia has shown to protect against ischemic and traumatic neuronal death, its potential role in neurologic recovery following traumatic spinal cord injury (TSCI) remains incompletely understood. Herein, we systematically review the safety and efficacy of hypothermia therapy for TSCI. The English medical literature was reviewed using PRISMA guidelines to identify preclinical and clinical studies examining the safety and efficacy of hypothermia following TSCI. Fifty-seven articles met full-text review criteria, of which twenty-eight were included. The main outcomes of interest were neurological recovery and postoperative complications. Among the 24 preclinical studies, both systemic and local hypothermia significantly improved neurologic recovery. In aggregate, the 4 clinical studies enrolled 60 patients for treatment, with 35 receiving systemic hypothermia and 25 local hypothermia. The most frequent complications were respiratory in nature. No patients suffered neurologic deterioration because of hypothermia treatment. Rates of American Spinal Injury Association (AIS) grade conversion after systemic hypothermia (35.5%) were higher when compared to multiple SCI database control studies (26.1%). However, no statistical conclusions could be drawn regarding the efficacy of hypothermia in humans. These limited clinical trials show promise and suggest therapeutic hypothermia to be safe in TSCI patients, though its effect on neurological recovery remains unclear. The preclinical literature supports the efficacy of hypothermia after TSCI. Further clinical trials are warranted to conclusively determine the effects of hypothermia on neurological recovery as well as the ideal means of administration necessary for achieving efficacy in TSCI.
Collapse
|
6
|
Shape-Memory Materials via Electrospinning: A Review. Polymers (Basel) 2022; 14:polym14050995. [PMID: 35267818 PMCID: PMC8914658 DOI: 10.3390/polym14050995] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
This review aims to point out the importance of the synergic effects of two relevant and appealing polymeric issues: electrospun fibers and shape-memory properties. The attention is focused specifically on the design and processing of electrospun polymeric fibers with shape-memory capabilities and their potential application fields. It is shown that this field needs to be explored more from both scientific and industrial points of view; however, very promising results have been obtained up to now in the biomedical field and also as sensors and actuators and in electronics.
Collapse
|
7
|
Topical application of CNTF, GDNF and BDNF in combination attenuates blood-spinal cord barrier permeability, edema formation, hemeoxygenase-2 upregulation, and cord pathology. PROGRESS IN BRAIN RESEARCH 2021; 266:357-376. [PMID: 34689864 DOI: 10.1016/bs.pbr.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) is one of the leading causes of disability in Military personnel for which no suitable therapeutic strategies are available till today. Thus, exploration of novel therapeutic measures is highly needed to enhance the quality of life of SCI victims. Previously, topical application of BDNF and GDNF in combination over the injured spinal cord after 90min induced marked neuroprotection. In present investigation, we added CNTF in combination with BDNF and/or GDNF treatment to examine weather the triple combination applied over the traumatic cord after 90 or 120min could thwart cord pathology. Since neurotrophins attenuate nitric oxide (NO) production in SCI, the role of carbon monoxide (CO) production that is similar to NO in inducing cell injury was explored using immunohistochemistry of the constitutive isoform of enzyme hemeoxygenase-2 (HO-2). SCI inflicted over the right dorsal horn of the T10-11 segments by making an incision of 2mm deep and 5mm long upregulated the HO-2 immunostaining in the T9 and T12 segments after 5h injury. These perifocal segments are associated with breakdown of the blood-spinal cord barrier (BSCB), edema development and cell injuries. Topical application of CNTF with BDNF and GDNF in combination (10ng each) after 90 and 120min over the injured spinal cord significantly attenuated the BSCB breakdown, edema formation, cell injury and overexpression of HO-2. These observations are the first to show that CNTF with BDNF and GDNF induced superior neuroprotection in SCI probably by downregulation of CO production, not reported earlier.
Collapse
|
8
|
Abstract
Neuroprotection after acute spinal cord injury is an important strategy to limit secondary injury. Animal studies have shown that systemic hypothermia is an effective neuroprotective strategy that can be combined with other therapies. Systemic hypothermia affects several processes at the cellular level to reduce metabolic activity, oxidative stress, and apoptotic neuronal cell death. Modest systemic hypothermia has been shown to be safe and feasible in the acute phase after cervical spinal cord injury. These data have provided the impetus for an active multicenter randomized controlled trial for modest systemic hypothermia in acute cervical spinal cord injury.
Collapse
|
9
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Preventive hypothermia as a neuroprotective strategy for paclitaxel-induced peripheral neuropathy. Pain 2020; 160:1505-1521. [PMID: 30839425 DOI: 10.1097/j.pain.0000000000001547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect that occurs secondary to anticancer treatments and has no known preventive or therapeutic strategy. Therapeutic hypothermia has been shown to be effective in protecting against central and peripheral nervous system injuries. However, the effects of therapeutic hypothermia on CIPN have rarely been explored. We induced lower back hypothermia (LBH) in an established paclitaxel-induced CIPN rat model and found that the paclitaxel-induced impairments observed in behavioral, electrophysiological, and histological impairments were inhibited by LBH when applied at an optimal setting of 24°C to the sciatic nerve and initiated 90 minutes before paclitaxel infusion. Lower back hypothermia also inhibited the paclitaxel-induced activation of astroglia and microglia in the spinal cord and macrophage infiltration into and neuronal injury in the dorsal root ganglia and sciatic nerves. Furthermore, LBH decreased the local blood flow and local tissue concentrations of paclitaxel. Finally, in NOD/SCID mice inoculated with cancer cells, the antiproliferative effect of paclitaxel was not affected by the distal application of LBH. In conclusion, our findings indicate that early exposure to regional hypothermia alleviates paclitaxel-induced peripheral neuropathy. Therapeutic hypothermia may therefore represent an economical and nonpharmaceutical preventive strategy for CIPN in patients with localized solid tumors.
Collapse
|
11
|
Kafka J, Lukacova N, Sulla I, Maloveska M, Vikartovska Z, Cizkova D. Hypothermia in the course of acute traumatic spinal cord injury. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
MicroRNA-31 regulating apoptosis by mediating the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in treatment of spinal cord injury. Brain Dev 2019; 41:649-661. [PMID: 31036380 DOI: 10.1016/j.braindev.2019.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Apoptosis is a highly conservative energy demand program for non-inflammatory cell death, which is extremely significant in normal physiology and disease. There are many techniques used for studying apoptosis. MicroRNA (miRNA) is closely related to cell apoptosis, and especially microRNA-31 (miR-31) is involved in apoptosis by regulating a large number of target genes and signaling pathways. In many neurological diseases, cell apoptosis or programmed cell death plays an important role in the reduction of cell number, including the reduction of neurons in spinal cord injuries. In recent years, the phosphoinositol 3-kinase/AKT (PI3K/AKT) signal pathway, as a signal pathway involved in a variety of cell functions, has been studied in spinal cord injury diseases. The PI3K/AKT pathway directly or indirectly affects whether apoptosis occurs in a cell, thereby affecting a significant intracellular event sequence. This paper reviewed the interactions of miR-31 target sites in the PI3K/AKT signaling pathway, and explored new ways to prevent and treat spinal cord injury by regulating the effect of miR-31 on apoptosis.
Collapse
|
13
|
Park J, Yi D, Jang J, Hong J. The Value of MicroRNAs as an Indicator of the Severity and the Acute Phase of Spinal Cord Injury. Ann Rehabil Med 2019; 43:328-334. [PMID: 31311255 PMCID: PMC6637055 DOI: 10.5535/arm.2019.43.3.328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/25/2018] [Indexed: 11/26/2022] Open
Abstract
Objective To assess the role of miRNA-21 and miRNA-223 in a balloon-compression model of spinal cord injury (SCI). Methods A total of 50 male Wistar rats (n=50) were divided into the three groups: the group A (n=15, insertion of the unflated Fogarty balloon catheter), the group B (n=15, insertion of the Fogarty balloon catheter at a volume of 20 μL) and the group C (n=15, insertion of the Fogarty balloon catheter at a volume of 50 μL). After the behavioral test, RNA isolation, microRNA expression profiling using microarrays and quantitative polymerase chain reaction, measurements were compared between the three groups. Results Despite a lack of significant differences in time-dependent changes in miRNA-21 expression levels between the three groups at 4 hours, there were significant differences in them at 1, 3, and 7 days (p<0.05). Moreover, there were significant differences in time-dependent changes in miRNA-223 expression levels between the three groups at 4 hours and 1, 3, and 7 days (p<0.05). Furthermore, miRNA-223 expression levels reached the highest at 1 day but were decreased with time thereafter in all the three groups. Conclusion Expression levels of miRNA-21 and miRNA-223 might be associated with the severity and acute phase of SCI, respectively. It is mandatory, however, to analyze changes in levels of inflammatory markers and the relevant biological pathways.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Rehabilitation Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Dongsoo Yi
- Department of Rehabilitation Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jiyoon Jang
- Department of Rehabilitation Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jiseon Hong
- Department of Rehabilitation Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
14
|
Zavodska M, Galik J, Marsala M, Papcunova S, Pavel J, Racekova E, Martoncikova M, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Reichel P, Trbolova A, Capik I, Bimbova K, Bacova M, Stropkovska A, Kisucka A, Miklisova D, Lukacova N. Hypothermic treatment after computer-controlled compression in minipig: A preliminary report on the effect of epidural vs. direct spinal cord cooling. Exp Ther Med 2018; 16:4927-4942. [PMID: 30542449 PMCID: PMC6257352 DOI: 10.3892/etm.2018.6831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.
Collapse
Affiliation(s)
- Monika Zavodska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Martin Marsala
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Department of Anesthesiology, Neuroregeneration Laboratory, University of California-San Diego, San Diego, CA 92093, USA
| | - Stefania Papcunova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jaroslav Pavel
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Eniko Racekova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Marcela Martoncikova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Igor Sulla
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Hospital of Slovak Railways, 040 01 Košice, Slovakia
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Valent Ledecky
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Sulla
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Peter Reichel
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alexandra Trbolova
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Capik
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Katarina Bimbova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Maria Bacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Andrea Stropkovska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Dana Miklisova
- Department of Vector-borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
15
|
Pelletier JH, Mann CH, German BT, Williams JG, Piehl M. Therapeutic systemic hypothermia for a pediatric patient with an isolated cervical spinal cord injury. J Spinal Cord Med 2018; 43:264-267. [PMID: 30231216 PMCID: PMC7054913 DOI: 10.1080/10790268.2018.1520524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Context: While uncommon, spinal cord injuries most frequently occur in adolescent and young adult males. Established treatment options are limited and focused on supportive care. Therapeutic systemic hypothermia is an emerging experimental treatment currently undergoing clinical trials in adults.Findings: Here we report a case of a 13-year-old male with an American Spinal Injury Association Impairment Scale grade C traumatic cervical spinal cord injury treated with 48 hours of therapeutic systemic hypothermia who made a complete neurological recovery. To our knowledge, this is the youngest such case report.Clinical relevance: This case suggests that consideration should be given to including pediatric patients in future clinical trials of therapeutic hypothermia for spinal cord injury.
Collapse
Affiliation(s)
- Jonathan H. Pelletier
- Department of Pediatrics, Duke University Hospital, Durham, North Carolina, USA,Correspondence to: Jonathan H. Pelletier, Department of Pediatrics, Duke University Hospital, Durham, NC, USA.
| | - Courtney H. Mann
- WakeMed Health and Hospitals, Raleigh, North Carolina, USA,Department of Emergency Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Benjamin T. German
- WakeMed Health and Hospitals, Raleigh, North Carolina, USA,Department of Emergency Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jefferson G. Williams
- Department of Emergency Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA,Wake County Department of Emergency Medical Services, Raleigh, North Carolina, USA
| | - Mark Piehl
- WakeMed Health and Hospitals, Raleigh, North Carolina, USA,Department of Emergency Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Wang C, Yue H, Feng Q, Xu B, Bian L, Shi P. Injectable Nanoreinforced Shape-Memory Hydrogel System for Regenerating Spinal Cord Tissue from Traumatic Injury. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29299-29307. [PMID: 30091362 DOI: 10.1021/acsami.8b08929] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Traumatic injury in the central nervous system can lead to loss of functional neurons. Transplantation of neural progenitors is a promising therapeutic strategy. However, infusion of dissociated cells often suffers from low viability, uneven cell distribution, and poor in vivo engraftment that could be reinforced by a better cell delivery system. Here, we develop an injectable composite hydrogel system for use as a minimally invasive treatment of spinal cord injury (SCI) using motor neurons (MNs) derived from embryonic stem cells (ESCs). The composite hydrogel is based on a modified gelatin matrix integrated with shape-memory polymer fibers. The gelatin matrix creates a local microenvironment for cell assembly and also acts as a lubricant during injection through a fine catheter. Notably, shape-memory fiber scaffolds are able to recover to maintain the microstructures even after dramatic deformation from injection operation, providing the necessary support and guidance for motor neuron differentiation. We find that the composite hydrogel with an aligned fiber scaffold greatly improves the viability of ESCs and their differentiation toward MNs both in vitro and in vivo. When transplanted to SCI animals by injection, the ESC-loaded composite hydrogels are identified to significantly enhance tissue regeneration and motor function recovery in mice. With this proof-of-concept study, we believe that the injectable composite hydrogel system provides a promising solution for in vivo cell delivery with minimum invasiveness and can be readily extended to other stem-cell-based regenerative treatments.
Collapse
Affiliation(s)
- Chong Wang
- Department of Biomedical Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR 999077 , China
- College of Mechanical Engineering , Dongguan University of Technology , Dongguan 511700 , Guangdong , China
| | - Haibing Yue
- Department of Biomedical Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR 999077 , China
| | - Qian Feng
- Department of Biomedical Engineering , Chinese University of Hong Kong , Shatin, NT , Hong Kong SAR 999077 , China
| | - Bingzhe Xu
- Department of Biomedical Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR 999077 , China
| | - Liming Bian
- Department of Biomedical Engineering , Chinese University of Hong Kong , Shatin, NT , Hong Kong SAR 999077 , China
| | - Peng Shi
- Department of Biomedical Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR 999077 , China
- Shenzhen Research Institute , City University of Hong Kong , Shenzhen 518000 , China
| |
Collapse
|
17
|
Spinal Cord Injuries in Dogs Part II: Standards of Care, Prognosis and New Perspectives. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Severe spinal cord injuries (SCI), causing physical handicaps and accompanied by many serious complications, remains one of the most challenging problems in both, human and veterinary health care practices. The central nervous system in mammals does not regenerate, so the neurological deficits in a dog following SCI persists for the rest of its life and the affected animals display an image of permanent suffering. Diagnostics are based on: neurological examination, plain x-rays of vertebral column, x-rays of the vertebral column following intrathecal administration of a water-soluble contrast medium (myelography), x-rays of the vertebral column following epidural administration of a contrast medium (epidurography), computed tomography (CT) and/or magnetic resonance imaging (MRI). Currently, only limited therapeutic measures are available for the dogs with SCIs. They include: the administration of methylprednisolone sodium succinate (MPSS) during the acute stage; early spinal cord decompression; stabilisation of vertebral fractures or luxations; prevention and treatment of complications, and expert rehabilitation. Together with the progress in the understanding of pathophysiologic events occurring after SCI, different therapeutic strategies have been instituted, including the local delivery of MPSS, the utilisation of novel pharmacological agents, hypothermia, and stem/precursor cell transplantation have all been tested in the experimental models and preclinical trials with promising results. The aim of this review is the presentation of the generally accepted methods of diagnostics and management of dogs with SCIs, as well as to discuss new therapeutic modalities. The research strategy involved a PubMed, Medline (Ovid), Embase (Ovid) and ISI Web of Science literature search from January 2001 to December 2017 using the term “spinal cord injury”, in the English language literature; also references from selected papers were scanned and relevant articles included.
Collapse
|
18
|
Teh DBL, Chua SM, Prasad A, Kakkos I, Jiang W, Yue M, Liu X, All AH. Neuroprotective assessment of prolonged local hypothermia post contusive spinal cord injury in rodent model. Spine J 2018; 18:507-514. [PMID: 29074466 DOI: 10.1016/j.spinee.2017.10.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Although general hypothermia is recognized as a clinically applicable neuroprotective intervention, acute moderate local hypothermia post contusive spinal cord injury (SCI) is being considered a more effective approach. Previously, we have investigated the feasibility and safety of inducing prolonged local hypothermia in the central nervous system of a rodent model. PURPOSE Here, we aimed to verify the efficacy and neuroprotective effects of 5 and 8 hours of local moderate hypothermia (30±0.5°C) induced 2 hours after moderate thoracic contusive SCI in rats. STUDY DESIGN Rats were induced with moderate SCI (12.5 mm) at its T8 section. Local hypothermia (30±0.5°C) was induced 2 hours after injury induction with an M-shaped copper tube with flow of cold water (12°C), from the T6 to the T10 region. Experiment groups were divided into 5-hour and 8-hour hypothermia treatment groups, respectively, whereas the normothermia control group underwent no hypothermia treatment. METHODS The neuroprotective effects were assessed through objective weekly somatosensory evoked potential (SSEP) and motor behavior (basso, beattie and bresnahan Basso, Beattie and Bresnahan (BBB) scoring) monitoring. Histology on spinal cord was performed until at the end of day 56. All authors declared no conflict of interest. This work was supported by the Singapore Institute for Neurotechnology Seed Fund (R-175-000-121-733), National University of Singapore, Ministry of Education, Tier 1 (R-172-000-414-112.). RESULTS Our results show significant SSEP amplitudes recovery in local hypothermia groups starting from day 14 post-injury onward for the 8-hour treatment group, which persisted up to days 28 and 42, whereas the 5-hour group showed significant improvement only at day 42. The functional improvement plateaued after day 42 as compared with control group of SCI with normothermia. This was supported by both 5-hour and 8-hour improvement in locomotion as measured by BBB scores. Local hypothermia also observed insignificant changes in its SSEP latency, as compared with the control. In addition, 5- and 8-hour hypothermia rats' spinal cord showed higher percentage of parenchyma preservation. CONCLUSIONS Early local moderate hypothermia can be induced for extended periods of time post SCI in the rodent model. Such intervention improves functional electrophysiological outcome and motor behavior recovery for a long time, lasting until 8 weeks.
Collapse
Affiliation(s)
- Daniel Boon Loong Teh
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore
| | - Soo Min Chua
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore
| | - Ankshita Prasad
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore; Department of Biomedical Engineering, National University of Singapore, E4, 4 Engineering Dr 3, Singapore 117583, Singapore
| | - Ioannis Kakkos
- Department of Electrical and Computing Engineering, National Technical University of Athens, Zografos, 15773, Athens, Greece
| | - Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mu Yue
- Department of Statistics and Applied Probability, National University of Singapore, Level 7, Block S16,6 Science Dr 2, Singapore 117546, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Dr 3, Singapore 117543, Singapore
| | - Angelo Homayoun All
- Department of Medicine & Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Dr, 5-COR, Singapore 117456, Singapore; Department of Biomedical Engineering and Department of Neurology, John Hopkins School of Medicine, 701C Rutland Ave 720, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Zhu L. Hypothermia Used in Medical Applications for Brain and Spinal Cord Injury Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:295-319. [PMID: 30315552 DOI: 10.1007/978-3-319-96445-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite more than 80 years of animal experiments and clinical practice, efficacy of hypothermia in improving treatment outcomes in patients suffering from cell and tissue damage caused by ischemia is still ongoing. This review will first describe the history of utilizing cooling in medical treatment, followed by chemical and biochemical mechanisms of cooling that can lead to neuroprotection often observed in animal studies and some clinical studies. The next sections will be focused on current cooling approaches/devices, as well as cooling parameters recommended by researchers and clinicians. Animal and clinical studies of implementing hypothermia to spinal cord and brain tissue injury patients are presented next. This section will review the latest outcomes of hypothermia in treating patients suffering from traumatic brain injury (TBI), spinal cord injury (SCI), stroke, cardiopulmonary surgery, and cardiac arrest, followed by a summary of available evidence regarding both demonstrated neuroprotection and potential risks of hypothermia. Contributions from bioengineers to the field of hypothermia in medical treatment will be discussed in the last section of this review. Overall, an accumulating body of clinical evidence along with several decades of animal research and mathematical simulations has documented that the efficacy of hypothermia is dependent on achieving a reduced temperature in the target tissue before or soon after the injury-precipitating event. Mild hypothermia with temperature reduction of several degrees Celsius is as effective as modest or deep hypothermia in providing therapeutic benefit without introducing collateral/systemic complications. It is widely demonstrated that the rewarming rate must be controlled to be lower than 0.5 °C/h to avoid mismatch between local blood perfusion and metabolism. In the past several decades, many different cooling methods and devices have been designed, tested, and used in medical treatments with mixed results. Accurately designing treatment protocols to achieve specific cooling outcomes requires collaboration among engineers, researchers, and clinicians. Although this problem is quite challenging, it presents a major opportunity for bioengineers to create methods and devices that quickly and safely produce hypothermia in targeted tissue regions without interfering with routine medical treatment.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
20
|
Gedrova S, Galik J, Marsala M, Zavodska M, Pavel J, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Karasova M, Reichel P, Trbolova A, Capik I, Lukacova V, Bimbova K, Bacova M, Stropkovska A, Lukacova N. Neuroprotective effect of local hypothermia in a computer-controlled compression model in minipig: Correlation of tissue sparing along the rostro-caudal axis with neurological outcome. Exp Ther Med 2017; 15:254-270. [PMID: 29399061 PMCID: PMC5769223 DOI: 10.3892/etm.2017.5432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/20/2017] [Indexed: 11/05/2022] Open
Abstract
This study investigated the neuroprotective efficacy of local hypothermia in a minipig model of spinal cord injury (SCI) induced by a computer-controlled impactor device. The tissue integrity observed at the injury epicenter, and up to 3 cm cranially and caudally from the lesion site correlated with motor function. A computer-controlled device produced contusion lesions at L3 level with two different degrees of tissue sparing, depending upon pre-set impact parameters (8N- and 15N-force impact). Hypothermia with cold (4°C) saline or Dulbecco's modified Eagle's medium (DMEM)/F12 culture medium was applied 30 min after SCI (for 5 h) via a perfusion chamber (flow 2 ml/min). After saline hypothermia, the 8N-SCI group achieved faster recovery of hind limb function and the ability to walk from one to three steps at nine weeks in comparison with non-treated animals. Such improvements were not observed in saline-treated animals subjected to more severe 15N-SCI or in the group treated with DMEM/F12 medium. It was demonstrated that the tissue preservation in the cranial and caudal segments immediately adjacent to the lesion, and neurofilament protection in the lateral columns may be essential for modulation of the key spinal microcircuits leading to a functional outcome. Tissue sparing observed only in the caudal sections, even though significant, was not sufficient for functional improvement in the 15N-SCI model.
Collapse
Affiliation(s)
- Stefania Gedrova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Jan Galik
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Martin Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic.,Neuroregeneration Laboratory, Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92037, USA
| | - Monika Zavodska
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Jaroslav Pavel
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Igor Sulla
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic.,Hospital of Slovak Railways, 040 01 Kosice, Slovak Republic
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Kosice, Slovak Republic
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Kosice, Slovak Republic
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Kosice, Slovak Republic
| | - Valent Ledecky
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Igor Sulla
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Martina Karasova
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Peter Reichel
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Alexandra Trbolova
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Igor Capik
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Viktoria Lukacova
- Faculty of Economics, Technical University of Kosice, 040 01 Kosice, Slovak Republic
| | - Katarina Bimbova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Maria Bacova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Andrea Stropkovska
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Nadezda Lukacova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| |
Collapse
|
21
|
Ulndreaj A, Badner A, Fehlings MG. Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. F1000Res 2017; 6:1907. [PMID: 29152227 PMCID: PMC5664995 DOI: 10.12688/f1000research.11633.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition of motor, sensory, and autonomic dysfunction. The significant cost associated with the management and lifetime care of patients with SCI also presents a major economic burden. For these reasons, there is a need to develop and translate strategies that can improve outcomes following SCI. Given the challenges in achieving regeneration of the injured spinal cord, neuroprotection has been at the forefront of clinical translation. Yet, despite many preclinical advances, there has been limited translation into the clinic apart from methylprednisolone (which remains controversial), hypertensive therapy to maintain spinal cord perfusion, and early decompressive surgery. While there are several factors related to the limited translational success, including the clinical and mechanistic heterogeneity of human SCI, the misalignment between animal models of SCI and clinical reality continues to be an important factor. Whereas most clinical cases are at the cervical level, only a small fraction of preclinical research is conducted in cervical models of SCI. Therefore, this review highlights the most promising neuroprotective and neural reparative therapeutic strategies undergoing clinical assessment, including riluzole, hypothermia, granulocyte colony-stimulating factor, glibenclamide, minocycline, Cethrin (VX-210), and anti-Nogo-A antibody, and emphasizes their efficacy in relation to the anatomical level of injury. Our hope is that more basic research will be conducted in clinically relevant cervical SCI models in order to expedite the transition of important laboratory discoveries into meaningful treatment options for patients with SCI.
Collapse
Affiliation(s)
- Antigona Ulndreaj
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Anna Badner
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
22
|
Martirosyan NL, Patel AA, Carotenuto A, Kalani MYS, Bohl MA, Preul MC, Theodore N. The role of therapeutic hypothermia in the management of acute spinal cord injury. Clin Neurol Neurosurg 2017; 154:79-88. [PMID: 28131967 DOI: 10.1016/j.clineuro.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 12/18/2022]
Abstract
This review paper investigates the history, efficacy, and administration of systemic and local hypothermia for spinal cord injury (SCI). It summarizes the published experimental and clinical evidence on hypothermia for SCI and analyzes the potential for further research. Early experimental animal research showed that local hypothermia improved recovery and gain of function after acute SCI. However, in the early 1970s, clinical research findings did not coincide with results of these animal trials, which led to a loss of interest in local hypothermia. Since the 1980s, systemic hypothermia has been successfully used to treat SCI in both animals and humans. An abundance of positive evidence suggests that clinical trials are needed to determine the effectiveness of hypothermia for SCI. As a first step, we investigated the published clinical and experimental evidence on the use of hypothermia for SCI patients, who have few available treatment options. We searched PubMed for English-language reports published from 1940 to 2016 containing terms related to SCI treatment using hypothermia. We reviewed all articles on local hypothermia and acute SCI or on systemic hypothermia and acute SCI. Bibliographies of retrieved publications were also screened for additional citations. Ninety-six papers were selected. The clinical use of hypothermia is most successful if applied according to certain optimized parameters (e.g., duration, temperature, time from injury to initiation of cooling, and rewarming time). Preliminary data suggest that modest systemic hypothermia applied for 48h provides the best therapeutic value, but the parameters for use of local hypothermia vary greatly. Experimental evidence and some clinical evidence suggest that both local hypothermia and systemic hypothermia are beneficial for acute SCI. Future research should focus on defining the optimal levels of parameters. Large, multicenter, controlled clinical trials are needed to investigate its therapeutic potential.
Collapse
Affiliation(s)
- Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Division of Neurosurgery, University of Arizona, Tucson, AZ, United States
| | - Arpan A Patel
- College of Medicine, University of Arizona, Tucson, AZ, United States
| | | | - M Yashar S Kalani
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael A Bohl
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Division of Neurosurgery, University of Arizona, Tucson, AZ, United States; College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Nicholas Theodore
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.
| |
Collapse
|
23
|
Blaško J, Szekiova E, Slovinska L, Kafka J, Cizkova D. Axonal outgrowth stimulation after alginate/mesenchymal stem cell therapy in injured rat spinal cord. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Alkabie S, Boileau AJ. The Role of Therapeutic Hypothermia After Traumatic Spinal Cord Injury—A Systematic Review. World Neurosurg 2016; 86:432-49. [DOI: 10.1016/j.wneu.2015.09.079] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/16/2022]
|
25
|
Dietary Supplementation with Organoselenium Accelerates Recovery of Bladder Expression, but Does Not Improve Locomotor Function, following Spinal Cord Injury. PLoS One 2016; 11:e0147716. [PMID: 26824231 PMCID: PMC4732689 DOI: 10.1371/journal.pone.0147716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/07/2016] [Indexed: 01/08/2023] Open
Abstract
Selenium is an essential element required for activity of several antioxidant enzymes, including glutathione peroxidase. Because of the critical role of the antioxidant system in responding to traumatic events, we hypothesized that dietary selenium supplementation would enhance neuroprotection in a rodent model of spinal cord injury. Rats were maintained on either a control or selenium-enriched diet prior to, and following, injury. Dietary selenium supplementation, provided as selenized yeast added to normal rat chow, resulted in a doubling of selenium levels in the spinal cord. Dietary selenium reduced the time required for recovery of bladder function following thoracic spinal cord injury. However, this was not accompanied by improvement in locomotor function or tissue sparing.
Collapse
|
26
|
Grulova I, Slovinska L, Blaško J, Devaux S, Wisztorski M, Salzet M, Fournier I, Kryukov O, Cohen S, Cizkova D. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair. Sci Rep 2015; 5:13702. [PMID: 26348665 PMCID: PMC4562265 DOI: 10.1038/srep13702] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate -based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth factor (EGF) and basic Fibroblast Growth Factor (bFGF) released from injected alginate biomaterial to the central lesion site significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons (choline acetyltransferase positive motoneurons) and sensory fibres. In addition, we document enhanced outgrowth of corticospinal tract axons and presence of blood vessels at the central lesion. Tissue proteomics was performed at 3, 7 and 10 days after SCI in rats indicated the presence of anti-inflammatory factors in segments above the central lesion site, whereas in segments below, neurite outgrowth factors, inflammatory cytokines and chondroitin sulfate proteoglycan of the lectican protein family were overexpressed. Collectively, based on our data, we confirm that functional recovery was significantly improved in SCI groups receiving alginate scaffold with affinity-bound growth factors (ALG +GFs), compared to SCI animals without biomaterial treatment.
Collapse
Affiliation(s)
- I Grulova
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - L Slovinska
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - J Blaško
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - S Devaux
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia.,Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - M Wisztorski
- Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - M Salzet
- Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - I Fournier
- Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - O Kryukov
- The Center of Regenerative Medicine and Stem Cell Research and The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - S Cohen
- The Center of Regenerative Medicine and Stem Cell Research and The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - D Cizkova
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia.,Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| |
Collapse
|
27
|
Abstract
Spinal cord injury (SCI) is a major health problem and is associated with a diversity of neurological symptoms. Pathophysiologically, dysfunction after SCI results from the culmination of tissue damage produced both by the primary insult and a range of secondary injury mechanisms. The application of hypothermia has been demonstrated to be neuroprotective after SCI in both experimental and human studies. The myriad of protective mechanisms of hypothermia include the slowing down of metabolism, decreasing free radical generation, inhibiting excitotoxicity and apoptosis, ameliorating inflammation, preserving the blood spinal cord barrier, inhibiting astrogliosis, promoting angiogenesis, as well as decreasing axonal damage and encouraging neurogenesis. Hypothermia has also been combined with other interventions, such as antioxidants, anesthetics, alkalinization and cell transplantation for additional benefit. Although a large body of work has reported on the effectiveness of hypothermia as a neuroprotective approach after SCI and its application has been translated to the clinic, a number of questions still remain regarding its use, including the identification of hypothermia's therapeutic window, optimal duration and the most appropriate rewarming rate. In addition, it is necessary to investigate the neuroprotective effect of combining therapeutic hypothermia with other treatment strategies for putative synergies, particularly those involving neurorepair.
Collapse
Affiliation(s)
- Jiaqiong Wang
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| |
Collapse
|
28
|
Hosier H, Peterson D, Tsymbalyuk O, Keledjian K, Smith BR, Ivanova S, Gerzanich V, Popovich PG, Simard JM. A Direct Comparison of Three Clinically Relevant Treatments in a Rat Model of Cervical Spinal Cord Injury. J Neurotrauma 2015; 32:1633-44. [PMID: 26192071 PMCID: PMC4638208 DOI: 10.1089/neu.2015.3892] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent preclinical studies have identified three treatments that are especially promising for reducing acute lesion expansion following traumatic spinal cord injury (SCI): riluzole, systemic hypothermia, and glibenclamide. Each has demonstrated efficacy in multiple studies with independent replication, but there is no way to compare them in terms of efficacy or safety, since different models were used, different laboratories were involved, and different outcomes were evaluated. Here, using a model of lower cervical hemicord contusion, we compared safety and efficacy for the three treatments, administered beginning 4 h after trauma. Treatment-associated mortality was 30% (3/10), 30% (3/10), 12.5% (1/8), and 0% (0/7) in the control, riluzole, hypothermia, and glibenclamide groups, respectively. For survivors, all three treatments showed overall favorable efficacy, compared with controls. On open-field locomotor scores (modified Basso, Beattie, and Bresnahan scores), hypothermia- and glibenclamide-treated animals were largely indistinguishable throughout the study, whereas riluzole-treated rats underperformed for the first two weeks; during the last four weeks, scores for the three treatments were similar, and significantly different from controls. On beam balance, hypothermia and glibenclamide treatments showed significant advantages over riluzole. After trauma, rats in the glibenclamide group rapidly regained a normal pattern of weight gain that differed markedly and significantly from that in all other groups. Lesion volumes at six weeks were: 4.8±0.7, 3.5±0.4, 3.1±0.3 and 2.5±0.3 mm3 in the control, riluzole, hypothermia, and glibenclamide groups, respectively; measurements of spared spinal cord tissue confirmed these results. Overall, in terms of safety and efficacy, systemic hypothermia and glibenclamide were superior to riluzole.
Collapse
Affiliation(s)
- Hillary Hosier
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - David Peterson
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Orest Tsymbalyuk
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Kaspar Keledjian
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Bradley R Smith
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | - Svetlana Ivanova
- 1 Department of Neurosurgery, University of Maryland , Baltimore, Maryland
| | | | - Phillip G Popovich
- 2 Center for Brain and Spinal Cord Repair, the Ohio State University , Columbus, Ohio
| | - J Marc Simard
- 3 Departments of Neurosurgery, Pathology and Physiology, University of Maryland , Baltimore, Maryland
| |
Collapse
|
29
|
Vipin A, Kortelainen J, Al-Nashash H, Chua SM, Thow X, Manivannan J, Astrid, Thakor NV, Kerr CL, All AH. Prolonged Local Hypothermia Has No Long-Term Adverse Effect on the Spinal Cord. Ther Hypothermia Temp Manag 2015; 5:152-62. [PMID: 26057714 DOI: 10.1089/ther.2015.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypothermia is known to be neuroprotective and is one of the most effective and promising first-line treatments for central nervous system (CNS) trauma. At present, induction of local hypothermia, as opposed to general hypothermia, is more desired because of its ease of application and safety; fewer side effects and an absence of severe complications have been noted. Local hypothermia involves temperature reduction of a small and specific segment of the spinal cord. Our group has previously shown the neuroprotective effect of short-term, acute moderate general hypothermia through improvements in electrophysiological and motor behavioral assessments, as well as histological examination following contusive spinal cord injury (SCI) in rats. We have also shown the benefit of using short-term local hypothermia versus short-term general hypothermia post-acute SCI. The overall neuroprotective benefit of hypothermia can be categorized into three main components: (1) induction modality, general versus local, (2) invasive, semi-invasive or noninvasive, and (3) duration of hypothermia induction. In this study, a series of experiments were designed to investigate the feasibility, long-term safety, as well as eventual complications and side effects of prolonged, semi-invasive, moderate local hypothermia (30°C±0.5°C for 5 and 8 hours) in rats with uninjured spinal cord while maintaining their core temperature at 37°C±0.5°C. The weekly somatosensory evoked potential and motor behavioral (Basso, Beattie and Bresnahan) assessments of rats that underwent 5 and 8 hours of semi-invasive local hypothermia, which revealed no statistically significant changes in electrical conductivity and behavioral outcomes. In addition, 4 weeks after local hypothermia induction, histological examination showed no anatomical damages or morphological changes in their spinal cord structure and parenchyma. We concluded that this method of prolonged local hypothermia is feasible, safe, and has the potential for clinical translation.
Collapse
Affiliation(s)
- Ashwati Vipin
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Jukka Kortelainen
- 2 Biomedical Engineering Research Group, Department of Computer Science and Engineering, University of Oulu , Oulu, Finland
| | - Hasan Al-Nashash
- 3 Department of Electrical Engineering, American University of Sharjah , Sharjah, United Arab Emirates
| | - Soo Min Chua
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Xinyuan Thow
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Janani Manivannan
- 4 Department of Orthopedic Surgery, National University of Singapore , Singapore, Singapore
| | - Astrid
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Nitish V Thakor
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore .,5 Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Candace L Kerr
- 6 Department of Biochemistry and Molecular Biology, University of Maryland , Baltimore, Maryland
| | - Angelo H All
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore, Singapore .,4 Department of Orthopedic Surgery, National University of Singapore , Singapore, Singapore .,5 Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland.,7 Department of Biomedical Engineering, National University of Singapore , Singapore, Singapore .,8 Division of Neurology, Department of Medicine, National University of Singapore , Singapore, Singapore .,9 Department of Neurology, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
30
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
31
|
Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol 2014; 258:5-16. [PMID: 25017883 DOI: 10.1016/j.expneurol.2014.01.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/12/2022]
Abstract
Pattern recognition receptors (PRRs) are part of the innate immune response and were originally discovered for their role in recognizing pathogens by ligating specific pathogen associated molecular patterns (PAMPs) expressed by microbes. Now the role of PRRs in sterile inflammation is also appreciated, responding to endogenous stimuli referred to as "damage associated molecular patterns" (DAMPs) instead of PAMPs. The main families of PRRs include Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-like receptors (RLRs), AIM2-like receptors (ALRs), and C-type lectin receptors. Broad expression of these PRRs in the CNS and the release of DAMPs in and around sites of injury suggest an important role for these receptor families in mediating post-injury inflammation. Considerable data now show that PRRs are among the first responders to CNS injury and activation of these receptors on microglia, neurons, and astrocytes triggers an innate immune response in the brain and spinal cord. Here we discuss how the various PRR families are activated and can influence injury and repair processes following CNS injury.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Department of Neuroscience - Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, USA
| | | | - W Dalton Dietrich
- Department of Neurological Surgery - The Miami Project to Cure Paralysis, USA
| | - Phillip G Popovich
- Department of Neuroscience - Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, USA.
| | - Robert W Keane
- Department of Physiology & Biophysics - University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
32
|
Tan LA, Kasliwal MK, Fontes RBV, Fessler RG. Local cooling for traumatic spinal cord injury. J Neurosurg Spine 2014; 21:845-7. [PMID: 25170650 DOI: 10.3171/2014.5.spine14472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lee A Tan
- Rush University Medical Center, Chicago, IL
| | | | | | | |
Collapse
|