1
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 PMCID: PMC11758090 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2
|
Wang H, Chen S, Liu Z, Meng Q, Sobreiro-Almeida R, Liu L, Haugen HJ, Li J, Mano JF, Hong Y, Crouzier T, Yan H, Li B. Preserving the Immune-Privileged Niche of the Nucleus Pulposus: Safeguarding Intervertebral Discs from Degeneration after Discectomy with Synthetic Mucin Hydrogel Injection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404496. [PMID: 39207014 DOI: 10.1002/advs.202404496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Intervertebral disc (IVD) herniation is a prevalent spinal disorder, often necessitating surgical intervention such as microdiscectomy for symptomatic relief and nerve decompression. IVDs comprise a gel-like nucleus pulposus (NP) encased by an annulus fibrosus (AF), and their avascular nature renders them immune-privileged. Microdiscectomy exposes the residual NP to the immune system, precipitating an immune cell infiltration and attack that exacerbates IVD degeneration. While many efforts in the tissue engineering field are directed toward IVD regeneration, the inherently limited regenerative capacity due to the avascular and low-cellularity nature of the disc and the challenging mechanical environment of the spine often impedes success. This study, aiming to prevent IVD degeneration post-microdiscectomy, utilizes mucin-derived gels (Muc-gels) that form a gel at the surgical site, inspired by the natural mucin coating on living organisms to evade immune reorganization. It is shown that type I macrophages are present in severely degenerated human discs. Encapsulating IVDs within Muc-gels prevents fibrous encapsulation and macrophage infiltration in a mouse subcutaneous model. The injection of Muc-gels prevents IVD degeneration in a rat tail IVD degeneration model up to 24 weeks post-operation. Mechanistic investigations indicate that Muc-gels attenuate immune cell infiltration into NPs, offering durable protection against immune attack post-microdiscectomy.
Collapse
Affiliation(s)
- Huan Wang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Song Chen
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhao Liu
- National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215000, China
| | - Qingchen Meng
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Rita Sobreiro-Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ling Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, Oslo, 0376, Norway
| | - Jiaying Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Youzhi Hong
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Thomas Crouzier
- Department of Health Technology, DTU, Ørsteds Plads, building 345C DK-2800 Kgs, Lyngby, Copenhagen, Denmark
| | - Hongji Yan
- Department of Medical Cell Biology, Uppsala University, Uppsala, 75123, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institute and KTH Royal Institute of Technology, Stockholm, 17177, Sweden
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
3
|
Zhang Y, Chi J, Manley B, Oh E, Yang H, Wang J, Li X. Inflammatory Bowel Disease as a Risk Factor for Complications and Revisions Following Lumbar Discectomy. Global Spine J 2024:21925682241270069. [PMID: 39069374 PMCID: PMC11571289 DOI: 10.1177/21925682241270069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES Patients with IBD are at an increased risk for postoperative complications following surgery. The goal of this study is to investigate if inflammatory bowel disease (IBD) is a risk factor for complications following lumbar discectomy. METHODS We identified IBD patients who underwent lumbar discectomy for lumbar disc herniation (LDH) and matched to them with controls without IBD in a1:5 ratio. We excluded patients with a history of spinal injury, cancer, infection, trauma, or surgery to remove the digestive tract. We used multivariate logistic regression analyses to compare postoperative outcomes, including 90-day complications, 90-day emergency department visits, and 90-day readmissions. In addition, 2-year re-discectomy rates and a 3-year lumbar fusion rate were compared between the cohorts. RESULTS After applying the study criteria, we identified 6134 IBD patients with LDH for further analysis. With the exception of dura tears, patients with IBD had significantly higher rates of medical complications, incision-related complications, ED visits, and readmission rates compared to patients without IBD, especially for the 2-year and 3-year rates of disc recurrence and revision surgery. CONCLUSIONS Patients with IBD who underwent lumbar discectomy are at a significantly higher rate of complications. Therefore, spine surgeons and other health care providers should be aware of this higher risk associated with IBD patients and properly treat the patients' IBD before surgery to lower these risks.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Jialun Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Brock Manley
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Eunha Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Hanzhi Yang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Jesse Wang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| |
Collapse
|
4
|
Jiang S, Li W, Song M, Liang J, Liu G, Du Q, Wang L, Meng H, Tang L, Yang Y, Zhang B. CXCL1-CXCR2 axis mediates inflammatory response after sciatic nerve injury by regulating macrophage infiltration. Mol Immunol 2024; 169:50-65. [PMID: 38493581 DOI: 10.1016/j.molimm.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1β) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.
Collapse
Affiliation(s)
- Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
5
|
Koroth J, Chitwood C, Kumar R, Lin WH, Reves BT, Boyce T, Reineke TM, Ellingson AM, Johnson CP, Stone LS, Chaffin KC, Simha NK, Ogle BM, Bradley EW. Identification of a novel, MSC-induced macrophage subtype via single-cell sequencing: implications for intervertebral disc degeneration therapy. Front Cell Dev Biol 2024; 11:1286011. [PMID: 38274272 PMCID: PMC10808728 DOI: 10.3389/fcell.2023.1286011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Intervertebral disc (IVD) degeneration is a common pathological condition associated with low back pain. Recent evidence suggests that mesenchymal signaling cells (MSCs) promote IVD regeneration, but underlying mechanisms remain poorly defined. One postulated mechanism is via modulation of macrophage phenotypes. In this manuscript, we tested the hypothesis that MSCs produce trophic factors that alter macrophage subsets. To this end, we collected conditioned medium from human, bone marrow-derived STRO3+ MSCs. We then cultured human bone marrow-derived macrophages in MSC conditioned medium (CM) and performed single cell RNA-sequencing. Comparative analyses between macrophages cultured in hypoxic and normoxic MSC CM showed large overlap between macrophage subsets; however, we identified a unique hypoxic MSC CM-induced macrophage cluster. To determine if factors from MSC CM simulated effects of the anti-inflammatory cytokine IL-4, we integrated the data from macrophages cultured in hypoxic MSC CM with and without IL-4 addition. Integration of these data sets showed considerable overlap, demonstrating that hypoxic MSC CM simulates the effects of IL-4. Interestingly, macrophages cultured in normoxic MSC CM in the absence of IL-4 did not significantly contribute to the unique cluster within our comparison analyses and showed differential TGF-β signaling; thus, normoxic conditions did not approximate IL-4. In addition, TGF-β neutralization partially limited the effects of MSC CM. In conclusion, our study identified a unique macrophage subset induced by MSCs within hypoxic conditions and supports that MSCs alter macrophage phenotypes through TGF-β-dependent mechanisms.
Collapse
Affiliation(s)
- Jinsha Koroth
- Department of Orthopedic Surgery, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Casey Chitwood
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ramya Kumar
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Chemistry, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Wei-Han Lin
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | | | | | - Theresa M. Reineke
- Department of Chemistry, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Arin M. Ellingson
- Department of Orthopedic Surgery, Medical School, University of Minnesota, Minneapolis, MN, United States
- Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Casey P. Johnson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Laura S. Stone
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | | | | | - Brenda M. Ogle
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Elizabeth W. Bradley
- Department of Orthopedic Surgery, Medical School, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Jin L, Xiao L, Manley BJ, Oh EG, Huang W, Zhang Y, Chi J, Shi W, Kerrigan JR, Sung SSJ, Kuan CY, Li X. CCR2 monocytes as therapeutic targets for acute disc herniation and radiculopathy in mouse models. Osteoarthritis Cartilage 2024; 32:52-65. [PMID: 37802464 PMCID: PMC10873076 DOI: 10.1016/j.joca.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Back pain and radiculopathy caused by disc herniation are major health issues worldwide. While macrophages are key players in disc herniation induced inflammation, their roles and origins in disease progression remain unclear. We aim to study the roles of monocytes and derivatives in a mouse model of disc herniation. METHODS Using a CCR2-CreER; R26R-EGFP (Ai6) transgenic mouse strain, we fate-mapped C-C chemokine receptor type 2 (CCR2) expressing monocytes and derivatives at disc herniation sites, and employed a CCR2RFP/RFP mouse strain and a CCR2-specific antagonist to study the effects of CCR2+ monocytes on local inflammatory responses, pain level, and disc degeneration by immunostaining, flow cytometry, and histology. RESULTS CCR2+ monocytes (GFP+) increased at the sites of disc hernia over postoperative day 4, 6, and 9 in CCR2-CreER; Ai6 mice. F4/80+ cells increased, and meanwhile, CD11b+ cells trended downward. Co-localization analysis revealed that both GFP+CD11b+ and GFP+F4/80+ constituted the majority of CD11b+ and F4/80+ cells at disc hernia sites. Fluorescence activated cell sorter purified GFP+ cells exhibited higher cytokine expressions than GFP- cells. Inhibition of CCR2 signaling reduced infiltration of monocytes and macrophages, alleviated pain, maintained disc height, and reduced osteoclast activity in adjacent cortical bone for up to 1 month. CONCLUSION Our findings suggest that circulating CCR2+ monocytes play important roles in initiating and promoting the local inflammatory responses, pain sensitization, and degenerative changes after disc herniation, and thus may serve as therapeutic targets for disc herniation induced back and leg pain.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Brock J Manley
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Eunha G Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Wendy Huang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Yi Zhang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Jialun Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Weibin Shi
- Department of Radiology and Medical Imaging, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, Charlottesville, VA 22908, USA
| | - Jason R Kerrigan
- Department of Mechanical and Aerospace Engineering, Center of Applied Biomechanics, University of Virginia, Charlottesville, VA 22904, USA
| | - Sun-Sang J Sung
- Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
7
|
Li XC, Wang W, Jiang C, Chen YL, Chen JH, Zhang ZW, Luo SJ, Chen RC, Mo PF, Zhong ML, Shi JY, Huang CM, Chen Q, Wu YH. CD206 + M2-like macrophages protect against intervertebral disc degeneration partially by targeting R-spondin-2. Osteoarthritis Cartilage 2024; 32:66-81. [PMID: 37802465 DOI: 10.1016/j.joca.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study aimed to explore the specific function of M2 macrophages in intervertebral disc degeneration (IDD). METHODS Intervertebral disc (IVD) samples from normal (n = 4) and IDD (n = 6) patients were collected, and the expression of M2-polarized macrophage marker, CD206, was investigated using immunohistochemical staining. Nucleus pulposus cells (NPCs) in a TNF-α environment were obtained, and a mouse caudal IVD puncture model was established. Mice with Rheb deletions, specifically in the myeloid lineage, were generated and subjected to surgery-induced IDD. IDD-induced damage and cell apoptosis were measured using histological scoring, X-ray imaging, immunohistochemical staining, and TdT-mediated dUTP nick end labeling (TUNEL) assay. Finally, mice and NPCs were treated with R-spondin-2 (Rspo2) or anti-Rspo2 to investigate the role of Rspo2 in IDD. RESULTS Accumulation of CD206 in human and mouse IDD tissues was detected. Rheb deletion in the myeloid lineage (RheBcKO) increased the number of CD206+ M2-like macrophages (mean difference 18.6% [15.7-21.6%], P < 0.001), decreased cell apoptosis (mean difference -15.6% [-8.9 to 22.2%], P = 0.001) and attenuated the IDD process in the mouse IDD model. NPCs treated with Rspo2 displayed increased extracellular matrix catabolism and apoptosis; co-culture with a conditioned medium derived from RheBcKO mice inhibited these changes. Anti-Rspo2 treatment in the mouse caudal IVD puncture model exerted protective effects against IDD. CONCLUSIONS Promoting CD206+ M2-like macrophages could reduce Rspo2 secretion, thereby alleviating experimental IDD. Rheb deletion may help M2-polarized macrophages accumulate and attenuate experimental IDD partially by inhibiting Rspo2 production. Hence, M2-polarized macrophages and Rspo2 may serve as therapeutic targets for IDD.
Collapse
Affiliation(s)
- Xiao-Chuan Li
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou 525200, Guangdong, China; Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Postdoctoral Innovation Practice Base of Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China
| | - Wei Wang
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Cheng Jiang
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Yong-Long Chen
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Jiong-Hui Chen
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Zhen-Wu Zhang
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China; Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang 524023, Guangdong, China
| | - Shao-Jian Luo
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou 525200, Guangdong, China
| | - Rong-Chun Chen
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China
| | - Ping-Fan Mo
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China
| | - Ming-Liang Zhong
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China
| | - Jiang-You Shi
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China
| | - Chun-Ming Huang
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou 525200, Guangdong, China; Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou 525200, China.
| | - Qin Chen
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China.
| | - Yao-Hong Wu
- Department of Spinal Surgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
8
|
Li P, Yu Q, Nie H, Yin C, Liu B. IL-33/ST2 signaling in pain and itch: Cellular and molecular mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115143. [PMID: 37450998 DOI: 10.1016/j.biopha.2023.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Pain is a cardinal feature of many diseases. Chronic pain poses heavy burdens to the suffering patients, both physically and mentally. However, current mainstream medications for chronic pain, including opioids, antidepressants and non-steroid anti-inflammatory drugs are sometimes inefficient for chronic pain management and may cause side effects that limit long term usage. IL-33 belongs to IL-1 cytokine family and it exerts biological activities through binding to its specific receptor ST2. IL-33/ST2 signaling is very important in both innate and adaptive immunity. Emerging evidence indicates IL-33/ST2 signaling regulates pain in both immune and somatosensory systems through promoting neuro-immune or neuron-glia crosstalk, neuroinflammation and neuronal hyperexcitability. Some very latest studies indicate a vital part of IL-33/ST2 in mediating chronic itch. This work aims to overview the existing knowledge regarding the mechanisms of IL-33/ST2 involvement in pain and itch conditions, considering their potential similarities. We also summarized some key findings obtained from clinical studies. The targeting of IL-33/ST2 signaling holds promise for the development of novel therapeutic modalities in the management of pain and itch.
Collapse
Affiliation(s)
- Peiyi Li
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qing Yu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Huimin Nie
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Xiao L, Matharoo J, Chi J, Ma J, Chen M, Manley B, Xu P, Shi W, Felder RA, Sung SSJ, Jin L, Li X. Transient depletion of macrophages alters local inflammatory response at the site of disc herniation in a transgenic mouse model. Osteoarthritis Cartilage 2023; 31:894-907. [PMID: 36754251 PMCID: PMC10272080 DOI: 10.1016/j.joca.2023.01.574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVE Macrophages are abundantly detected at sites of disc herniation, however, their function in the disease progression is unclear. We aim to investigate the functions of macrophages in acute disc herniation using a macrophage Fas-induced apoptosis (MaFIA) transgenic mouse strain. METHOD To transiently deplete macrophages, a dimerizer, AP20187, or vehicle solution was administered via intraperitoneal injection to MaFIA mice immediately, day 1 and 2 after annular puncture induced disc herniation. Local infiltrated tissues at disc hernia and DRGs at corresponding levels were harvested to analyze immune cells and neuroinflammation on postoperative day (POD) 6 by flow cytometry and/or immunostaining. Mouse spines were harvested to analyze structures of degenerated discs and adjacent vertebrae and to assess osteoclast activity by histology and tartrate-resistant acid phosphatase (TRAP) staining on POD 6, 13, and 20, respectively. RESULTS On POD 6, abundant macrophages were confirmed at disc hernia sites. Compared to vehicle control, AP20187 significantly reduced GFP+ cells in blood, spleen, and local inflammatory tissue. At disc hernia sites, AP20187 markedly reduced macrophages (CD11b+, F4/80+, GFP+CD11b+, CD11b+F4/80+) while increasing neutrophils and B cells. Transient macrophage depletion decreased ectopic bone formation and osteoclast activity in herniated discs and adjacent cortical bones for up to 20 days post herniation. Disc herniation elevated expressions of TNF-α, IL-6, substance P, calcitonin gene-related peptide, accompanied by increasing GFP+, CD11b+ and F4/80+ macrophages. Macrophage depletion did not attenuate these markers of neuroinflammation. CONCLUSIONS Transient depletion of macrophages altered local inflammatory response at the site of disc herniation.
Collapse
Affiliation(s)
- L Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Matharoo
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - J Ma
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - M Chen
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - B Manley
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - P Xu
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - W Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - R A Felder
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - S-S J Sung
- Department of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - L Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - X Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
10
|
Torres-Castro K, Jarmoshti J, Xiao L, Rane A, Salahi A, Jin L, Li X, Caselli F, Honrado C, Swami NS. Multichannel impedance cytometry downstream of cell separation by deterministic lateral displacement to quantify macrophage enrichment in heterogeneous samples. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201463. [PMID: 37706194 PMCID: PMC10497222 DOI: 10.1002/admt.202201463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 09/15/2023]
Abstract
The integration of on-chip biophysical cytometry downstream of microfluidic enrichment for inline monitoring of phenotypic and separation metrics at single-cell sensitivity can allow for active control of separation and its application to versatile sample sets. We present integration of impedance cytometry downstream of cell separation by deterministic lateral displacement (DLD) for enrichment of activated macrophages from a heterogeneous sample, without the problems of biased sample loss and sample dilution caused by off-chip analysis. This required designs to match cell/particle flow rates from DLD separation into the confined single-cell impedance cytometry stage, the balancing of flow resistances across the separation array width to maintain unidirectionality, and the utilization of co-flowing beads as calibrated internal standards for inline assessment of DLD separation and for impedance data normalization. Using a heterogeneous sample with un-activated and activated macrophages, wherein macrophage polarization during activation causes cell size enlargement, on-chip impedance cytometry is used to validate DLD enrichment of the activated subpopulation at the displaced outlet, based on the multiparametric characteristics of cell size distribution and impedance phase metrics. This hybrid platform can monitor separation of specific subpopulations from cellular samples with wide size distributions, for active operational control and enhanced sample versatility.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Javad Jarmoshti
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Li Xiao
- Orthopedics, School of Medicine, University of Virginia, Virginia-22904, USA
| | - Aditya Rane
- Chemistry, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Armita Salahi
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Li Jin
- Orthopedics, School of Medicine, University of Virginia, Virginia-22904, USA
| | - Xudong Li
- Orthopedics, School of Medicine, University of Virginia, Virginia-22904, USA
| | | | - Carlos Honrado
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
| | - Nathan S. Swami
- Electrical Engineering, University of Virginia, Charlottesville, Virginia-22904, USA
- Chemistry, University of Virginia, Charlottesville, Virginia-22904, USA
| |
Collapse
|
11
|
Tang SN, Bonilla AF, Chahine NO, Colbath AC, Easley JT, Grad S, Haglund L, Le Maitre CL, Leung V, McCoy AM, Purmessur D, Tang SY, Zeiter S, Smith LJ. Controversies in spine research: Organ culture versus in vivo models for studies of the intervertebral disc. JOR Spine 2022; 5:e1235. [PMID: 36601369 PMCID: PMC9799089 DOI: 10.1002/jsp2.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Intervertebral disc degeneration is a common cause of low back pain, the leading cause of disability worldwide. Appropriate preclinical models for intervertebral disc research are essential to achieving a better understanding of underlying pathophysiology and for the development, evaluation, and translation of more effective treatments. To this end, in vivo animal and ex vivo organ culture models are both widely used by spine researchers; however, the relative strengths and weaknesses of these two approaches are a source of ongoing controversy. In this article, members from the Spine and Preclinical Models Sections of the Orthopedic Research Society, including experts in both basic and translational spine research, present contrasting arguments in support of in vivo animal models versus ex vivo organ culture models for studies of the disc, supported by a comprehensive review of the relevant literature. The objective is to provide a deeper understanding of the respective advantages and limitations of these approaches, and advance the field toward a consensus with respect to appropriate model selection and implementation. We conclude that complementary use of several model types and leveraging the unique advantages of each is likely to result in the highest impact research in most instances.
Collapse
Affiliation(s)
- Shirley N. Tang
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Andres F. Bonilla
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nadeen O. Chahine
- Departments of Orthopedic Surgery and Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Aimee C. Colbath
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Jeremiah T. Easley
- Preclinical Surgical Research Laboratory, Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | | | | | | | - Victor Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongHong KongSARChina
| | - Annette M. McCoy
- Department of Veterinary Clinical MedicineUniversity of IllinoisUrbanaIllinoisUSA
| | - Devina Purmessur
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Simon Y. Tang
- Department of Orthopaedic SurgeryWashington University in St LouisSt LouisMissouriUSA
| | | | - Lachlan J. Smith
- Departments of Orthopaedic Surgery and NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
12
|
Tang SN, Walter BA, Heimann MK, Gantt CC, Khan SN, Kokiko-Cochran ON, Askwith CC, Purmessur D. In vivo Mouse Intervertebral Disc Degeneration Models and Their Utility as Translational Models of Clinical Discogenic Back Pain: A Comparative Review. FRONTIERS IN PAIN RESEARCH 2022; 3:894651. [PMID: 35812017 PMCID: PMC9261914 DOI: 10.3389/fpain.2022.894651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Low back pain is a leading cause of disability worldwide and studies have demonstrated intervertebral disc (IVD) degeneration as a major risk factor. While many in vitro models have been developed and used to study IVD pathophysiology and therapeutic strategies, the etiology of IVD degeneration is a complex multifactorial process involving crosstalk of nearby tissues and systemic effects. Thus, the use of appropriate in vivo models is necessary to fully understand the associated molecular, structural, and functional changes and how they relate to pain. Mouse models have been widely adopted due to accessibility and ease of genetic manipulation compared to other animal models. Despite their small size, mice lumbar discs demonstrate significant similarities to the human IVD in terms of geometry, structure, and mechanical properties. While several different mouse models of IVD degeneration exist, greater standardization of the methods for inducing degeneration and the development of a consistent set of output measurements could allow mouse models to become a stronger tool for clinical translation. This article reviews current mouse models of IVD degeneration in the context of clinical translation and highlights a critical set of output measurements for studying disease pathology or screening regenerative therapies with an emphasis on pain phenotyping. First, we summarized and categorized these models into genetic, age-related, and mechanically induced. Then, the outcome parameters assessed in these models are compared including, molecular, cellular, functional/structural, and pain assessments for both evoked and spontaneous pain. These comparisons highlight a set of potential key parameters that can be used to validate the model and inform its utility to screen potential therapies for IVD degeneration and their translation to the human condition. As treatment of symptomatic pain is important, this review provides an emphasis on critical pain-like behavior assessments in mice and explores current behavioral assessments relevant to discogenic back pain. Overall, the specific research question was determined to be essential to identify the relevant model with histological staining, imaging, extracellular matrix composition, mechanics, and pain as critical parameters for assessing degeneration and regenerative strategies.
Collapse
Affiliation(s)
- Shirley N. Tang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Benjamin A. Walter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Mary K. Heimann
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Connor C. Gantt
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Safdar N. Khan
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Candice C. Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- *Correspondence: Devina Purmessur ;
| |
Collapse
|
13
|
Xiao L, Huang R, Sulimai N, Yao R, Manley B, Xu P, Felder R, Jin L, Dorn HC, Li X. Amine Functionalized Trimetallic Nitride Endohedral Fullerenes: A Class of Nanoparticle to Tackle Low Back/Leg Pain. ACS APPLIED BIO MATERIALS 2022; 5:2943-2955. [PMID: 35575694 PMCID: PMC9719410 DOI: 10.1021/acsabm.2c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low back pain is the most common health problem with a prevalence of over 80% worldwide and an estimated annual cost of $100 billion in the United States. Intervertebral disc degeneration accounts for a major cause of low back pain. However, there is still a lack of safe and effective treatment to tackle this devastating condition. In this study, we synthesized four functionalized trimetallic nitride endohedral metallofullerenes (carboxyl-f-Sc3N@C80, carboxyl-f-Gd3N@C80, amino-f-Sc3N@C80, and amino-f-Gd3N@C80) and characterized them with X-ray photoelectron spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and UV-vis. Via electron paramagnetic resonance, all four metallofullerene derivatives possessed dose-dependent radical scavenging capabilities (hydroxyl radicals and superoxide anions), with the most promising radical scavenging properties shown in the amine functionalized C80 metallofullerenes. Both amino-f-Sc3N@C80 and amino-f-Gd3N@C80 at 1 μM significantly reduced lipopolysaccharide induced reactive oxygen species production and mRNA expressions of pro-inflammatory mediators (inos, tnf-α, il-1, and cox-2) in macrophages without apparent cytotoxicity through regulating activity of p38 MAPK, p65, and nuclear translocation of NF-κB. Furthermore, in an established mouse model of lumbar radiculopathy, amino-f-Sc3N@C80 and amino-f-Gd3N@C80 effectively alleviated ipsilateral mechanical hyperalgesia for up to 2 weeks. In dorsal root ganglia explant culture, we also showed that amino-f-Sc3N@C80 and amino-f-Gd3N@C80 ameliorated TNF-α elicited neuroinflammation. In summary, we presented results for a potent radical scavenging, anti-inflammatory and analgesic nanoparticle, amino-functionalized eighty-carbon metallofullerenes in vitro and in vivo. Our study provides important assets for developing pleiotropic treatment strategies to tackle the inflammation, a significant pathological hallmark in the intervertebral disc degeneration and associated pain.
Collapse
Affiliation(s)
- Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Rong Huang
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Nurul Sulimai
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ricky Yao
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Brock Manley
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Peng Xu
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Robin Felder
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Harry C Dorn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Fralin Biomedical Research Institute, Roanoke, Virginia 24016, United States
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|