1
|
Wang Z, Cao Y, Li W, Liu R, Wu L, Zhao Q, Liu Y, Tang K, Jiang Y, Chen Z, Li X, Zhu L, Duan T. Natural Products of Licorice for Uranium Decorporation with Low Toxicity and High Efficiency. Inorg Chem 2024; 63:13653-13663. [PMID: 38967129 DOI: 10.1021/acs.inorgchem.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The development and exploration of uranium decorporation agents with straightforward synthesis, high removal ability, and low toxicity are crucial guarantees for the safety of workers in the nuclear industry and the public. Herein, we report the use of traditional Chinese medicine licorice for uranium decorporation. Licorice has good adsorption performance and excellent selectivity for uranium in the simulated human environment. Glycyrrhizic acid (GL) has a high affinity for uranium (p(UO2) = 13.67) and will complex with uranium at the carbonyl site. Both licorice and GL exhibit lower cytotoxicity compared to the commercial clinical decorporation agent diethylenetriamine pentaacetate sodium salts (CaNa3-DTPA). Notably, at the cellular level, the uranium removal efficiency of GL is eight times higher than that of CaNa3-DTPA. Administration of GL by prophylactic intraperitoneal injection demonstrates that its uranium removal efficiency from kidneys and bones is 55.2 and 23.9%, while CaNa3-DTPA shows an insignificant effect. The density functional theory calculation of the bonding energy between GL and uranium demonstrates that GL exhibits a higher binding affinity (-2.01 vs -1.15 eV) to uranium compared to DTPA. These findings support the potential of licorice and its active ingredient, GL, as promising candidates for uranium decorporation agents.
Collapse
Affiliation(s)
- Zeru Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yalan Cao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Wenhao Li
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruixi Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Linzhen Wu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qian Zhao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yawen Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Kui Tang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yao Jiang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengguo Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| |
Collapse
|
2
|
Szczygiel M, Derewenda U, Scheiner S, Minor W, Derewenda ZS. A structural role for tryptophan in proteins, and the ubiquitous Trp C δ1-H...O=C (backbone) hydrogen bond. Acta Crystallogr D Struct Biol 2024; 80:551-562. [PMID: 38941144 PMCID: PMC11220837 DOI: 10.1107/s2059798324005515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
Tryptophan is the most prominent amino acid found in proteins, with multiple functional roles. Its side chain is made up of the hydrophobic indole moiety, with two groups that act as donors in hydrogen bonds: the Nϵ-H group, which is a potent donor in canonical hydrogen bonds, and a polarized Cδ1-H group, which is capable of forming weaker, noncanonical hydrogen bonds. Due to adjacent electron-withdrawing moieties, C-H...O hydrogen bonds are ubiquitous in macromolecules, albeit contingent on the polarization of the donor C-H group. Consequently, Cα-H groups (adjacent to the carbonyl and amino groups of flanking peptide bonds), as well as the Cϵ1-H and Cδ2-H groups of histidines (adjacent to imidazole N atoms), are known to serve as donors in hydrogen bonds, for example stabilizing parallel and antiparallel β-sheets. However, the nature and the functional role of interactions involving the Cδ1-H group of the indole ring of tryptophan are not well characterized. Here, data mining of high-resolution (r ≤ 1.5 Å) crystal structures from the Protein Data Bank was performed and ubiquitous close contacts between the Cδ1-H groups of tryptophan and a range of electronegative acceptors were identified, specifically main-chain carbonyl O atoms immediately upstream and downstream in the polypeptide chain. The stereochemical analysis shows that most of the interactions bear all of the hallmarks of proper hydrogen bonds. At the same time, their cohesive nature is confirmed by quantum-chemical calculations, which reveal interaction energies of 1.5-3.0 kcal mol-1, depending on the specific stereochemistry.
Collapse
Affiliation(s)
- Michal Szczygiel
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia1340 Jefferson Park AvenueCharlottesvilleVA22908-0736USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia1340 Jefferson Park AvenueCharlottesvilleVA22908-0736USA
| | - Steve Scheiner
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Wladek Minor
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia1340 Jefferson Park AvenueCharlottesvilleVA22908-0736USA
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological PhysicsUniversity of Virginia1340 Jefferson Park AvenueCharlottesvilleVA22908-0736USA
| |
Collapse
|
3
|
Majhi D, Stevensson B, Nguyen TM, Edén M. 1H and 13C chemical shift-structure effects in anhydrous β-caffeine and four caffeine-diacid cocrystals probed by solid-state NMR experiments and DFT calculations. Phys Chem Chem Phys 2024; 26:14345-14363. [PMID: 38700003 DOI: 10.1039/d3cp06197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
By using density functional theory (DFT) calculations, we refined the H atom positions in the structures of β-caffeine (C), α-oxalic acid (OA; (COOH)2), α-(COOH)2·2H2O, β-malonic acid (MA), β-glutaric acid (GA), and I-maleic acid (ME), along with their corresponding cocrystals of 2 : 1 (2C-OA, 2C-MA) or 1 : 1 (C-GA, C-ME) stoichiometry. The corresponding 13C/1H chemical shifts obtained by gauge including projector augmented wave (GIPAW) calculations agreed overall very well with results from magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy experiments. Chemical-shift/structure trends of the precursors and cocrystals were examined, where good linear correlations resulted for all COO1H sites against the H⋯O and/or H⋯N H-bond distance, whereas a general correlation was neither found for the aliphatic/caffeine-stemming 1H sites nor any 13C chemical shift against either the intermolecular hydrogen- or tetrel-bond distance, except for the 13COOH sites of the 2C-OA, 2C-MA, and C-GA cocrystals, which are involved in a strong COOH⋯N bond with caffeine that is responsible for the main supramolecular stabilization of the cocrystal. We provide the first complete 13C NMR spectral assignment of the structurally disordered anhydrous β-caffeine polymorph. The results are discussed in relation to previous literature on the disordered α-caffeine polymorph and the ordered hydrated counterpart, along with recommendations for NMR experimentation that will secure sufficient 13C signal-resolution for reliable resonance/site assignments.
Collapse
Affiliation(s)
- Debashis Majhi
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Baltzar Stevensson
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Tra Mi Nguyen
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Mattias Edén
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
Czernek J, Brus J, Czerneková V, Kobera L. Quantifying the Intrinsic Strength of C-H⋯O Intermolecular Interactions. Molecules 2023; 28:molecules28114478. [PMID: 37298953 DOI: 10.3390/molecules28114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
It has been recognized that the C-H⋯O structural motif can be present in destabilizing as well as highly stabilizing intermolecular environments. Thus, it should be of interest to describe the strength of the C-H⋯O hydrogen bond for constant structural factors so that this intrinsic strength can be quantified and compared to other types of interactions. This description is provided here for C2h-symmetric dimers of acrylic acid by means of the calculations that employ the coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)] together with an extrapolation to the complete basis set (CBS) limit. Dimers featuring the C-H⋯O and O-H⋯O hydrogens bonds are carefully investigated in a wide range of intermolecular separations by the CCSD(T)/CBS approach, and also by the symmetry-adapted perturbation theory (SAPT) method, which is based on the density-functional theory (DFT) treatment of monomers. While the nature of these two types of hydrogen bonding is very similar according to the SAPT-DFT/CBS calculations and on the basis of a comparison of the intermolecular potential curves, the intrinsic strength of the C-H⋯O interaction is found to be about a quarter of its O-H⋯O counterpart that is less than one might anticipate.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 00 Prague, Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 00 Prague, Czech Republic
| | - Vladimíra Czerneková
- Institute of Physics, Czech Academy of Science, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Libor Kobera
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 00 Prague, Czech Republic
| |
Collapse
|