1
|
Ahmed SM, Ragunathan P, Shin J, Peter S, Kleissle S, Neuenschwander M, Schäfer R, Kries JPV, Grüber G, Dröge P. The FGFR inhibitor PD173074 binds to the C-terminus of oncofetal HMGA2 and modulates its DNA-binding and transcriptional activation functions. FEBS Lett 2023; 597:1977-1988. [PMID: 37259564 DOI: 10.1002/1873-3468.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The architectural chromatin factor high-mobility group AT-hook 2 (HMGA2) is causally involved in several human malignancies and pathologies. HMGA2 is not expressed in most normal adult somatic cells, which renders the protein an attractive drug target. An established cell-based compound library screen identified the fibroblast growth factor receptor (FGFR) inhibitor PD173074 as an antagonist of HMGA2-mediated transcriptional reporter gene activation. We determined that PD173074 binds the C-terminus of HMGA2 and interferes with functional coordination of the three AT-hook DNA-binding domains mediated by the C-terminus. The HMGA2-antagonistic effect of PD173074 on transcriptional activation may therefore result from an induced altered DNA-binding mode of HMGA2. PD173074 as a novel HMGA2-specific antagonist could trigger the development of derivates with enhanced attributes and clinical potential.
Collapse
Affiliation(s)
- Syed Moiz Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Sabrina Kleissle
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Berlin, Germany
| | | | - Reinhold Schäfer
- Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Jens Peter V Kries
- Leibniz-Forschungsinstitut fűr Molekulare Pharmakologie, Berlin, Germany
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- LambdaGen Pte Ltd, Singapore City, Singapore
| |
Collapse
|
2
|
Gaudreau-Lapierre A, Klonisch T, Nicolas H, Thanasupawat T, Trinkle-Mulcahy L, Hombach-Klonisch S. Nuclear High Mobility Group A2 (HMGA2) Interactome Revealed by Biotin Proximity Labeling. Int J Mol Sci 2023; 24:ijms24044246. [PMID: 36835656 PMCID: PMC9966875 DOI: 10.3390/ijms24044246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) has important functions in chromatin remodeling, and genome maintenance and protection. Expression of HMGA2 is highest in embryonic stem cells, declines during cell differentiation and cell aging, but it is re-expressed in some cancers, where high HMGA2 expression frequently coincides with a poor prognosis. The nuclear functions of HMGA2 cannot be explained by binding to chromatin alone but involve complex interactions with other proteins that are incompletely understood. The present study used biotin proximity labeling, followed by proteomic analysis, to identify the nuclear interaction partners of HMGA2. We tested two different biotin ligase HMGA2 constructs (BioID2 and miniTurbo) with similar results, and identified known and new HMGA2 interaction partners, with functionalities mainly in chromatin biology. These HMGA2 biotin ligase fusion constructs offer exciting new possibilities for interactome discovery research, enabling the monitoring of nuclear HMGA2 interactomes during drug treatments.
Collapse
Affiliation(s)
- Antoine Gaudreau-Lapierre
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hannah Nicolas
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: ; Tel.: +1-204-789-3982; Fax: +1-204-789-3920
| |
Collapse
|
3
|
Spectrum of microRNAs and their target genes in cancer: intervention in diagnosis and therapy. Mol Biol Rep 2022; 49:6827-6846. [PMID: 35031927 DOI: 10.1007/s11033-021-07040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Till date, several groups have studied the mechanism of microRNA (miRNA) biogenesis, processing, stability, silencing, and their dysregulation in cancer. The miRNA coding genes recurrently go through abnormal amplification, deletion, transcription, and epigenetic regulation in cancer. Some miRNAs function as tumor promoters while few others are tumor suppressors based on the transcriptional regulation of target genes. A review of miRNAs and their target genes in a wide range of cancers is attempted in this article, which may help in the development of new diagnostic tools and intervention therapies. The contribution of miRNAs for drug sensitivity or resistance in cancer therapy and opportunities of miRNAs in cancer prognosis or diagnosis and therapy is also presented in detail.
Collapse
|
4
|
Chromatin Architectural Factors as Safeguards against Excessive Supercoiling during DNA Replication. Int J Mol Sci 2020; 21:ijms21124504. [PMID: 32599919 PMCID: PMC7349988 DOI: 10.3390/ijms21124504] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Key DNA transactions, such as genome replication and transcription, rely on the speedy translocation of specialized protein complexes along a double-stranded, right-handed helical template. Physical tethering of these molecular machines during translocation, in conjunction with their internal architectural features, generates DNA topological strain in the form of template supercoiling. It is known that the build-up of transient excessive supercoiling poses severe threats to genome function and stability and that highly specialized enzymes—the topoisomerases (TOP)—have evolved to mitigate these threats. Furthermore, due to their intracellular abundance and fast supercoil relaxation rates, it is generally assumed that these enzymes are sufficient in coping with genome-wide bursts of excessive supercoiling. However, the recent discoveries of chromatin architectural factors that play important accessory functions have cast reasonable doubts on this concept. Here, we reviewed the background of these new findings and described emerging models of how these accessory factors contribute to supercoil homeostasis. We focused on DNA replication and the generation of positive (+) supercoiling in front of replisomes, where two accessory factors—GapR and HMGA2—from pro- and eukaryotic cells, respectively, appear to play important roles as sinks for excessive (+) supercoiling by employing a combination of supercoil constrainment and activation of topoisomerases. Looking forward, we expect that additional factors will be identified in the future as part of an expanding cellular repertoire to cope with bursts of topological strain. Furthermore, identifying antagonists that target these accessory factors and work synergistically with clinically relevant topoisomerase inhibitors could become an interesting novel strategy, leading to improved treatment outcomes.
Collapse
|
5
|
The Mammalian High Mobility Group Protein AT-Hook 2 (HMGA2): Biochemical and Biophysical Properties, and Its Association with Adipogenesis. Int J Mol Sci 2020; 21:ijms21103710. [PMID: 32466162 PMCID: PMC7279267 DOI: 10.3390/ijms21103710] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian high-mobility-group protein AT-hook 2 (HMGA2) is a small DNA-binding protein and consists of three “AT-hook” DNA-binding motifs and a negatively charged C-terminal motif. It is a multifunctional nuclear protein directly linked to obesity, human height, stem cell youth, human intelligence, and tumorigenesis. Biochemical and biophysical studies showed that HMGA2 is an intrinsically disordered protein (IDP) and could form homodimers in aqueous buffer solution. The “AT-hook” DNA-binding motifs specifically bind to the minor groove of AT-rich DNA sequences and induce DNA-bending. HMGA2 plays an important role in adipogenesis most likely through stimulating the proliferative expansion of preadipocytes and also through regulating the expression of transcriptional factor Peroxisome proliferator-activated receptor γ (PPARγ) at the clonal expansion step from preadipocytes to adipocytes. Current evidence suggests that a main function of HMGA2 is to maintain stemness and renewal capacity of stem cells by which HMGA2 binds to chromosome and lock chromosome into a specific state, to allow the human embryonic stem cells to maintain their stem cell potency. Due to the importance of HMGA2 in adipogenesis and tumorigenesis, HMGA2 is considered a potential therapeutic target for anticancer and anti-obesity drugs. Efforts are taken to identify inhibitors targeting HMGA2.
Collapse
|
6
|
Ahmed SM, Dröge P. Oncofetal HMGA2 attenuates genotoxic damage induced by topoisomerase II target compounds through the regulation of local DNA topology. Mol Oncol 2019; 13:2062-2078. [PMID: 31271486 PMCID: PMC6763970 DOI: 10.1002/1878-0261.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/26/2022] Open
Abstract
Rapidly dividing cells maintain chromatin supercoiling homeostasis via two specialized classes of enzymes, DNA topoisomerase type 1 and 2 (TOP1/2). Several important anticancer drugs perturb this homeostasis by targeting TOP1/2, thereby generating genotoxic DNA damage. Our recent studies indicated that the oncofetal chromatin structuring high‐mobility group AT‐hook 2 (HMGA2) protein plays an important role as a DNA replication fork chaperone in coping with DNA topological ramifications that occur during replication stress, both genomewide and at fragile sites such as subtelomeres. Intriguingly, a recent large‐scale clinical study identified HMGA2 expression as a sole predicting marker for relapse and poor clinical outcomes in 350 acute myeloid leukemia (AML) patients receiving combinatorial treatments that targeted TOP2 and replicative DNA synthesis. Here, we demonstrate that HMGA2 significantly enhanced the DNA supercoil relaxation activity of the drug target TOP2A and that this activator function is mechanistically linked to HMGA2's known ability to constrain DNA supercoils within highly compacted ternary complexes. Furthermore, we show that HMGA2 significantly reduced genotoxic DNA damage in each tested cancer cell model during treatment with the TOP2A poison etoposide or the catalytic TOP2A inhibitor merbarone. Taken together with the recent clinical data obtained with AML patients targeted with TOP2 poisons, our study suggests a novel mechanism of cancer chemoresistance toward combination therapies administering TOP2 poisons or inhibitors. We therefore strongly argue for the future implementation of trials of HMGA2 expression profiling to stratify patients before finalizing clinical treatment regimes.
Collapse
Affiliation(s)
- Syed Moiz Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review). Int J Oncol 2019; 55:775-788. [PMID: 31432151 DOI: 10.3892/ijo.2019.4856] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 11/06/2022] Open
Abstract
The high mobility group A2 (HMGA2) protein is a non‑histone architectural transcription factor that modulates the transcription of several genes by binding to AT‑rich sequences in the minor groove of B‑form DNA and alters the chromatin structure. As a result, HMGA2 influences a variety of biological processes, including the cell cycle process, DNA damage repair process, apoptosis, senescence, epithelial‑mesenchymal transition and telomere restoration. In addition, the overexpression of HMGA2 is a feature of malignancy, and its elevated expression in human cancer predicts the efficacy of certain chemotherapeutic agents. Accumulating evidence has suggested that the detection of HMGA2 can be used as a routine procedure in clinical tumour analysis.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuping Mo
- Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
8
|
Ahmed SM, Ramani PD, Wong SQR, Zhao X, Ivanyi-Nagy R, Leong TC, Chua C, Li Z, Hentze H, Tan IB, Yan J, DasGupta R, Dröge P. The chromatin structuring protein HMGA2 influences human subtelomere stability and cancer chemosensitivity. PLoS One 2019; 14:e0215696. [PMID: 31067275 PMCID: PMC6505889 DOI: 10.1371/journal.pone.0215696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
The transient build-up of DNA supercoiling during the translocation of replication forks threatens genome stability and is controlled by DNA topoisomerases (TOPs). This crucial process has been exploited with TOP poisons for cancer chemotherapy. However, pinpointing cellular determinants of the best clinical response to TOP poisons still remains enigmatic. Here, we present an integrated approach and demonstrate that endogenous and exogenous expression of the oncofetal high-mobility group AT-hook 2 (HMGA2) protein exhibited broad protection against the formation of hydroxyurea-induced DNA breaks in various cancer cells, thus corroborating our previously proposed model in which HMGA2 functions as a replication fork chaperone that forms a protective DNA scaffold at or close to stalled replication forks. We now further demonstrate that high levels of HMGA2 also protected cancer cells against DNA breaks triggered by the clinically important TOP1 poison irinotecan. This protection is most likely due to the recently identified DNA supercoil constraining function of HMGA2 in combination with exclusion of TOP1 from binding to supercoiled substrate DNA. In contrast, low to moderate HMGA2 protein levels surprisingly potentiated the formation of irinotecan-induced genotoxic covalent TOP1-DNA cleavage complexes. Our data from cell-based and several in vitro assays indicate that, mechanistically, this potentiating role involves enhanced drug-target interactions mediated by HMGA2 in ternary complexes with supercoiled DNA. Subtelomeric regions were found to be extraordinarily vulnerable to these genotoxic challenges induced by TOP1 poisoning, pointing at strong DNA topological barriers located at human telomeres. These findings were corroborated by an increased irinotecan sensitivity of patient-derived xenografts of colorectal cancers exhibiting low to moderate HMGA2 levels. Collectively, we uncovered a therapeutically important control mechanism of transient changes in chromosomal DNA topology that ultimately leads to enhanced human subtelomere stability.
Collapse
Affiliation(s)
- Syed Moiz Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Stephen Qi Rong Wong
- Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xiaodan Zhao
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Roland Ivanyi-Nagy
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Tang Choong Leong
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Clarinda Chua
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, Singapore
| | - Zhizhong Li
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Hannes Hentze
- Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Iain BeeHuat Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- National Cancer Centre Singapore, Cancer Therapeutics Research Laboratory, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore
- Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
9
|
Hombach-Klonisch S, Kalantari F, Medapati MR, Natarajan S, Krishnan SN, Kumar-Kanojia A, Thanasupawat T, Begum F, Xu FY, Hatch GM, Los M, Klonisch T. HMGA2 as a functional antagonist of PARP1 inhibitors in tumor cells. Mol Oncol 2018; 13:153-170. [PMID: 30289618 PMCID: PMC6360374 DOI: 10.1002/1878-0261.12390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023] Open
Abstract
Poly(ADP‐ribose) polymerase 1 inhibitors alone or in combination with DNA damaging agents are promising clinical drugs in the treatment of cancer. However, there is a need to understand the molecular mechanisms of resistance to PARP1 inhibitors. Expression of HMGA2 in cancer is associated with poor prognosis for patients. Here, we investigated the novel relationship between HMGA2 and PARP1 in DNA damage‐induced PARP1 activity. We used human triple‐negative breast cancer and fibrosarcoma cell lines to demonstrate that HMGA2 colocalizes and interacts with PARP1. High cellular HMGA2 levels correlated with increased DNA damage‐induced PARP1 activity, which was dependent on functional DNA‐binding AT‐hook domains of HMGA2. HMGA2 inhibited PARP1 trapping to DNA and counteracted the cytotoxic effect of PARP inhibitors. Consequently, HMGA2 decreased caspase 3/7 induction and increased cell survival upon treatment with the alkylating methyl methanesulfonate alone or in combination with the PARP inhibitor AZD2281 (olaparib). HMGA2 increased mitochondrial oxygen consumption rate and spare respiratory capacity and increased NAMPT levels, suggesting metabolic support for enhanced PARP1 activity upon DNA damage. Our data showed that expression of HMGA2 in cancer cells reduces sensitivity to PARP inhibitors and suggests that targeting HMGA2 in combination with PARP inhibition may be a promising new therapeutic approach.
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Forouh Kalantari
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Manoj Reddy Medapati
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sai Nivedita Krishnan
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Aditya Kumar-Kanojia
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhana Begum
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Fred Y Xu
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, DREAM, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Marek Los
- Department of Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
miRNAs regulate acute transcriptional changes in broiler embryos in response to modification of incubation temperature. Sci Rep 2018; 8:11371. [PMID: 30054505 PMCID: PMC6063901 DOI: 10.1038/s41598-018-29316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/04/2018] [Indexed: 01/29/2023] Open
Abstract
MicroRNAs are post-transcriptional regulators that play critical roles in diverse biological processes. We hypothesize that miRNAs may be involved in regulating transcriptome responses to changes in embryonic incubation temperature in chickens affecting differentiation and proliferation processes during tissue development. Therefore, we conducted comparative transcriptome profiling of miRNAs to examine altered expression in breast and hind muscle of embryos and day 35 chickens experiencing high (38.8 °C), control (37.8 °C), or low (36.8 °C) embryonic incubation temperature during embryonic day (ED) 7–10 or ED10–13. The results revealed differential expression of miRNAs due to modification of embryonic incubation temperature in a muscle type-specific and a developmental stage-specific manner. The immediate effects of thermal change observed in embryos were substantial compared to the subtle long-term effects in chickens at day 35 post-hatch. Upregulation of miR-133 in breast muscle and downregulation of miR-199a-5p, miR-1915, and miR-638 in hind muscle post ED7–10 high-temperature treatment are functionally associated with myogenesis and body size. ED10–13 low-temperature treatment led to downregulation of let-7, miR-93, and miR-130c that are related to proliferation and differentiation. The results provide insight into the dynamics of miRNA expression at variable embryonic incubation temperatures during developmental processes and indicate a major regulatory role of miRNAs in acute responses to modified environmental conditions that affect remodelling of cells and tissues.
Collapse
|
11
|
Natarajan S, Begum F, Gim J, Wark L, Henderson D, Davie JR, Hombach-Klonisch S, Klonisch T. High Mobility Group A2 protects cancer cells against telomere dysfunction. Oncotarget 2017; 7:12761-82. [PMID: 26799419 PMCID: PMC4914320 DOI: 10.18632/oncotarget.6938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 11/25/2022] Open
Abstract
The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) plays important roles in the repair and protection of genomic DNA in embryonic stem cells and cancer cells. Here we show that HMGA2 localizes to mammalian telomeres and enhances telomere stability in cancer cells. We present a novel interaction of HMGA2 with the key shelterin protein TRF2. We found that the linker (L1) region of HMGA2 contributes to this interaction but the ATI-L1-ATII molecular region of HMGA2 is required for strong interaction with TRF2. This interaction was independent of HMGA2 DNA-binding and did not require the TRF2 interacting partner RAP1 but involved the homodimerization and hinge regions of TRF2. HMGA2 retained TRF2 at telomeres and reduced telomere-dysfunction despite induced telomere stress. Silencing of HMGA2 resulted in (i) reduced binding of TRF2 to telomere DNA as observed by ChIP, (ii) increased telomere instability and (iii) the formation of telomere dysfunction-induced foci (TIF). This resulted in increased telomere aggregation, anaphase bridges and micronuclei. HMGA2 prevented ATM-dependent pTRF2T188 phosphorylation and attenuated signaling via the telomere specific ATM-CHK2-CDC25C DNA damage signaling axis. In summary, our data demonstrate a unique and novel role of HMGA2 in telomere protection and promoting telomere stability in cancer cells. This identifies HMGA2 as a new therapeutic target for the destabilization of telomeres in HMGA2+ cancer cells.
Collapse
Affiliation(s)
- Suchitra Natarajan
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhana Begum
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jeonga Gim
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Landon Wark
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Dana Henderson
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - James R Davie
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.,Department of Biochemistry and Medical Genetics, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Obstetrics, Gynecology and Reproductive Medicine, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Surgery, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology and Infectious Diseases, College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
12
|
Thanasupawat T, Natarajan S, Rommel A, Glogowska A, Bergen H, Krcek J, Pitz M, Beiko J, Krawitz S, Verma IM, Ghavami S, Klonisch T, Hombach-Klonisch S. Dovitinib enhances temozolomide efficacy in glioblastoma cells. Mol Oncol 2017; 11:1078-1098. [PMID: 28500786 PMCID: PMC5537714 DOI: 10.1002/1878-0261.12076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022] Open
Abstract
The multikinase inhibitor and FDA‐approved drug dovitinib (Dov) crosses the blood–brain barrier and was recently used as single drug application in clinical trials for GB patients with recurrent disease. The Dov‐mediated molecular mechanisms in GB cells are unknown. We used GB patient cells and cell lines to show that Dov downregulated the stem cell protein Lin28 and its target high‐mobility group protein A2 (HMGA2). The Dov‐induced reduction in pSTAT3Tyr705 phosphorylation demonstrated that Dov negatively affects the STAT3/LIN28/Let‐7/HMGA2 regulatory axis in GB cells. Consistent with the known function of LIN28 and HMGA2 in GB self‐renewal, Dov reduced GB tumor sphere formation. Dov treatment also caused the downregulation of key base excision repair factors and O6‐methylguanine‐DNA‐methyltransferase (MGMT), which are known to have important roles in the repair of temozolomide (TMZ)‐induced alkylating DNA damage. Combined Dov/TMZ treatment enhanced TMZ‐induced DNA damage as quantified by nuclear γH2AX foci and comet assays, and increased GB cell apoptosis. Pretreatment of GB cells with Dov (‘Dov priming’) prior to TMZ treatment reduced GB cell viability independent of p53 status. Sequential treatment involving ‘Dov priming’ and alternating treatment cycles with TMZ and Dov substantially reduced long‐term GB cell survival in MGMT+ patient GB cells. Our results may have immediate clinical implications to improve TMZ response in patients with LIN28+/HMGA2+GB, independent of their MGMT methylation status.
Collapse
Affiliation(s)
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Amy Rommel
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aleksandra Glogowska
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Jerry Krcek
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.,Department of Surgery, University of Manitoba, Winnipeg, Canada
| | - Marshall Pitz
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Beiko
- Department of Surgery, University of Manitoba, Winnipeg, Canada
| | - Sherry Krawitz
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | - Inder M Verma
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.,Department of Surgery, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.,Obstetrics, Gynecology and Reproductive Medicine, College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
13
|
Peter S, Yu H, Ivanyi-Nagy R, Dröge P. Cell-based high-throughput compound screening reveals functional interaction between oncofetal HMGA2 and topoisomerase I. Nucleic Acids Res 2016; 44:e162. [PMID: 27587582 PMCID: PMC5159536 DOI: 10.1093/nar/gkw759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
HMGA2 is an important chromatin factor that interacts with DNA via three AT-hook domains, thereby regulating chromatin architecture and transcription during embryonic and fetal development. The protein is absent from differentiated somatic cells, but aberrantly re-expressed in most aggressive human neoplasias where it is causally linked to cell transformation and metastasis. DNA-binding also enables HMGA2 to protect cancer cells from DNA-damaging agents. HMGA2 therefore is considered to be a prime drug target for many aggressive malignancies. Here, we have developed a broadly applicable cell-based reporter system which can identify HMGA2 antagonists targeting functionally important protein domains, as validated with the known AT-hook competitor netropsin. In addition, high-throughput screening can uncover functional links between HMGA2 and cellular factors important for cell transformation. This is demonstrated with the discovery that HMGA2 potentiates the clinically important topoisomerase I inhibitor irinotecan/SN-38 in trapping the enzyme in covalent DNA-complexes, thereby attenuating transcription.
Collapse
Affiliation(s)
- Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Haojie Yu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Roland Ivanyi-Nagy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
14
|
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression. Amplification and overexpression of individual 'oncomiRs' or genetic loss of tumour suppressor miRNAs are associated with human cancer and are sufficient to drive tumorigenesis in mouse models. Furthermore, global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic. This, together with the recent identification of novel miRNA regulatory factors and pathways, highlights the importance of miRNA dysregulation in cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- 1] Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard I Gregory
- 1] Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA. [4] Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Probing into the biological processes influenced by ESC factor and oncoprotein HMGA2 using iPSCs. Stem Cell Rev Rep 2014; 9:514-22. [PMID: 22547345 DOI: 10.1007/s12015-012-9373-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are rapidly evolving into an important research tool due to their close resemblance with pluripotent embryonic stem cells (ESCs). Of particular interest at this point are iPSC applications in disease modeling and drug discovery/testing. The high mobility group AT-hook 2 (HMGA2) protein is a nonhistone chromatin factor normally expressed in ESCs and during early developmental stages. Aberrant HMGA2 expression is associated, for example, with abnormal body stature, diabetes mellitus, heart development and uterine leiomyomas. Furthermore, the protein is re-expressed in many primary tumor cells and plays an important role in metastasis. Here we used iPSC formation in conjunction with exogenous human HMGA2 expression to gain insight into biological functions of HMGA2. Gene expression profiling and gene ontology analyses showed that anatomical development and cell adhesion/differentiation processes are strongly affected by HMGA2. This could help to uncover, at the molecular level, some of the known phenotypic consequences of aberrant HMGA2 expression. Furthermore, our data showed that expression of key diabetes susceptibility genes is influenced by HMGA2, which revealed an interesting link to the recently indentified Lin28/let-7 pathway regulating mammalian glucose metabolism. Contrary to a previous report, our results indicate that HMGA2 is not involved in the regulation of telomerase gene expression. Finally, our data support a model in which tight regulation of intracellular HMGA2 levels is important both to maintain a pluripotent ESC state and to induce differentiation into certain cell lineages during later developmental stages.
Collapse
|
16
|
Yu H, Lim HH, Tjokro NO, Sathiyanathan P, Natarajan S, Chew TW, Klonisch T, Goodman SD, Surana U, Dröge P. Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells. Cell Rep 2014; 6:684-97. [PMID: 24508460 DOI: 10.1016/j.celrep.2014.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/26/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022] Open
Abstract
Maintaining genome integrity requires the accurate and complete replication of chromosomal DNA. This is of the utmost importance for embryonic stem cells (ESCs), which differentiate into cells of all lineages, including germ cells. However, endogenous and exogenous factors frequently induce stalling of replication forks in every cell cycle, which can trigger mutations and chromosomal instabilities. We show here that the oncofetal, nonhistone chromatin factor HMGA2 equips cells with a highly effective first-line defense mechanism against endonucleolytic collapse of stalled forks. This fork-stabilizing function most likely employs scaffold formation at branched DNA via multiple DNA-binding domains. Moreover, HMGA2 works independently of other human factors in two heterologous cell systems to prevent DNA strand breaks. This fork chaperone function seemingly evolved to preserve ESC genome integrity. It is hijacked by tumor (stem) cells to also guard their genomes against DNA-damaging agents widely used to treat cancer patients.
Collapse
Affiliation(s)
- Haojie Yu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Bioprocessing Technology Institute, 20 Biopolis Way, 6-01 Centros, Singapore 138668, Singapore
| | - Natalia O Tjokro
- Division of Biomedical Sciences, The Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90089, USA
| | - Padmapriya Sathiyanathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tian Wei Chew
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Steven D Goodman
- Division of Biomedical Sciences, The Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90089, USA
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
17
|
Abstract
microRNAs are small non-coding RNAs that in the last decade have emerged as overarching regulators of gene expression. Their abundance, ability to repress a large number of target genes and overlapping target specificity indicate a complex network of interactions that is still being defined. A number of studies focused on the role of microRNAs in cartilage have identified a small number, including miR-140 and -675 as playing important roles in regulation of cartilage homeostasis and together with the broader description of the activity of microRNAs in other tissues are beginning to define the function of microRNAs in cartilage development and homeostasis.
Collapse
Affiliation(s)
- Gary Gibson
- Bone and Joint Center, Henry Ford Hospital, Detroit, Michigan, USA
| | | |
Collapse
|
18
|
HMGA2 inhibits apoptosis through interaction with ATR-CHK1 signaling complex in human cancer cells. Neoplasia 2013; 15:263-80. [PMID: 23479505 DOI: 10.1593/neo.121988] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 02/08/2023] Open
Abstract
The non-histone chromatin binding protein high mobility group AT-hook 2 (HMGA2) is expressed in stem cells and many cancer cells, including tumor initiating cells, but not translated in normal human somatic cells. The presence of HMGA2 is correlated with advanced neoplastic disease and poor prognosis for patients. We had previously demonstrated a role of HMGA2 in DNA repair pathways. In the present study, we employed different human tumor cell models with endogenous and exogenous expression of HMGA2 and show that upon DNA damage, the presence of HMGA2 caused an increased and sustained phosphorylation of the ataxia telangiectasia and Rad3-related kinase (ATR) and its downstream target checkpoint kinase 1 (CHK1). The presence of activated pCHK1(Ser296) coincided with prolonged G2/M block and increased tumor cell survival, which was enhanced further in the presence of HMGA2. Our study, thus, identifies a novel relationship between the ATR-CHK1 DNA damage response pathway and HMGA2, which may support the DNA repair function of HMGA2 in cancer cells. Furthermore, our data provide a rationale for the use of inhibitors to ATR or CHK1 and HMGA2 in the treatment of HMGA2-positive human cancer cells.
Collapse
|
19
|
Rb protein is essential to the senescence-associated heterochromatic foci formation induced by HMGA2 in primary WI38 cells. J Genet Genomics 2013; 40:391-8. [PMID: 23969248 DOI: 10.1016/j.jgg.2013.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 01/22/2023]
Abstract
Cellular senescence is an irreversible form of cell cycle arrest that provides a barrier to neoplastic transformation. The integrity of the Rb (Retinoblastoma) pathway is necessary for the formation of the senescence-associated heterochromatin foci (SAHF) that offers a molecular basis for the stability of the senescent state. Surprisingly, although high mobility group A2 protein (HMGA2) can promote tumorigenesis and inhibit Rb function in tumor cells, high-level expression of HMGA2 is sufficient to induce SAHF formation in primary cells. It therefore becomes significant to determine whether Rb protein is necessary in HMGA2-induced SAHF formation. In this study, we established the cellular senescence and SAHF assembly WI38 cell model by ectopic expression of HMGA2, in which typical senescent markers were seen, including notable upregulation of p53, p21 and p16, and elevated SA-β-galactosidase staining together with downregulation of E2F target genes. We then showed that the Rb pathway inhibitor E7 protein was able to partly abolish the ability of SAHF formation after HMGA2 expression in WI38 cells, indicating that Rb is a crucial factor for HMGA2-induced SAHF formation. However, Rb depletion did not completely rescue the cell growth arrest induced by HMGA2, suggesting that Rb is not an exclusive pathway for HMGA2-induced senescence in WI38 cells.
Collapse
|
20
|
De Vito C, Riggi N, Suvà ML, Janiszewska M, Horlbeck J, Baumer K, Provero P, Stamenkovic I. Let-7a is a direct EWS-FLI-1 target implicated in Ewing's sarcoma development. PLoS One 2011; 6:e23592. [PMID: 21853155 PMCID: PMC3154507 DOI: 10.1371/journal.pone.0023592] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/20/2011] [Indexed: 12/21/2022] Open
Abstract
Ewing's sarcoma family tumors (ESFT) are the second most common bone malignancy in children and young adults, characterized by unique chromosomal translocations that in 85% of cases lead to expression of the EWS-FLI-1 fusion protein. EWS-FLI-1 functions as an aberrant transcription factor that can both induce and suppress members of its target gene repertoire. We have recently demonstrated that EWS-FLI-1 can alter microRNA (miRNA) expression and that miRNA145 is a direct EWS-FLI-1 target whose suppression is implicated in ESFT development. Here, we use miRNA arrays to compare the global miRNA expression profile of human mesenchymal stem cells (MSC) and ESFT cell lines, and show that ESFT display a distinct miRNA signature that includes induction of the oncogenic miRNA 17–92 cluster and repression of the tumor suppressor let-7 family. We demonstrate that direct repression of let-7a by EWS-FLI-1 participates in the tumorigenic potential of ESFT cells in vivo. The mechanism whereby let-7a expression regulates ESFT growth is shown to be mediated by its target gene HMGA2, as let-7a overexpression and HMGA2 repression both block ESFT cell tumorigenicity. Consistent with these observations, systemic delivery of synthetic let-7a into ESFT-bearing mice restored its expression in tumor cells, decreased HMGA2 expression levels and resulted in ESFT growth inhibition in vivo. Our observations provide evidence that deregulation of let-7a target gene expression participates in ESFT development and identify let-7a as promising new therapeutic target for one of the most aggressive pediatric malignancies.
Collapse
Affiliation(s)
- Claudio De Vito
- Faculty of Biology and Medicine, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nicolo Riggi
- Faculty of Biology and Medicine, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mario-Luca Suvà
- Faculty of Biology and Medicine, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Michalina Janiszewska
- Faculty of Biology and Medicine, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Janine Horlbeck
- Faculty of Biology and Medicine, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Karine Baumer
- Faculty of Biology and Medicine, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Paolo Provero
- Department of Biochemistry, Molecular Biology and Biotechnology, University of Torino, Torino, Italy
| | - Ivan Stamenkovic
- Faculty of Biology and Medicine, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Barh D, Malhotra R, Ravi B, Sindhurani P. MicroRNA let-7: an emerging next-generation cancer therapeutic. ACTA ACUST UNITED AC 2011; 17:70-80. [PMID: 20179807 PMCID: PMC2826782 DOI: 10.3747/co.v17i1.356] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, various RNA-based technologies have been under evaluation as potential next-generation cancer therapeutics. Micrornas (miRNAS), known to regulate the cell cycle and development, are deregulated in various cancers. Thus, they might serve as good targets or candidates in an exploration of anticancer therapeutics. One attractive candidate for this purpose is let-7 ("lethal-7"). Let-7 is underexpressed in various cancers, and restoration of its normal expression is found to inhibit cancer growth by targeting various oncogenes and inhibiting key regulators of several mitogenic pathways. In vivo, let-7 administration was found effective against mouse-model lung and breast cancers, and our computational prediction supports the possible effectiveness of let-7 in estrogen receptor (ER)-positive metastatic breast cancer. Data also suggest that let-7 regulates apoptosis and cancer stem cell (CSC) differentiation and can therefore be tested as a potential therapeutic in cancer treatment. However, the exact role of let-7 in cancer is not yet fully understood. There is a need to understand the causative molecular basis of let-7 alterations in cancer and to develop proper delivery systems before proceeding to therapeutic applications. This article attempts to highlight certain critical aspects of let-7's therapeutic potential in cancer.
Collapse
Affiliation(s)
- D Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, India.
| | | | | | | |
Collapse
|
22
|
Xi S, Yang M, Tao Y, Xu H, Shan J, Inchauste S, Zhang M, Mercedes L, Hong JA, Rao M, Schrump DS. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS One 2010; 5:e13764. [PMID: 21048943 PMCID: PMC2966442 DOI: 10.1371/journal.pone.0013764] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/04/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Limited information is available regarding mechanisms by which miRNAs contribute to pulmonary carcinogenesis. The present study was undertaken to examine expression and function of miRNAs induced by cigarette smoke condensate (CSC) in normal human respiratory epithelia and lung cancer cells. METHODOLOGY Micro-array and quantitative RT-PCR (qRT-PCR) techniques were used to assess miRNA and host gene expression in cultured cells, and surgical specimens. Software-guided analysis, RNA cross-link immunoprecipitation (CLIP), 3' UTR luciferase reporter assays, qRT-PCR, focused super-arrays and western blot techniques were used to identify and confirm targets of miR-31. Chromatin immunoprecipitation (ChIP) techniques were used to evaluate histone marks and transcription factors within the LOC554202 promoter. Cell count and xenograft experiments were used to assess effects of miR-31 on proliferation and tumorigenicity of lung cancer cells. RESULTS CSC significantly increased miR-31 expression and activated LOC554202 in normal respiratory epithelia and lung cancer cells; miR-31 and LOC554202 expression persisted following discontinuation of CSC exposure. miR-31 and LOC554202 expression levels were significantly elevated in lung cancer specimens relative to adjacent normal lung tissues. CLIP and reporter assays demonstrated direct interaction of miR-31 with Dickkopf-1 (Dkk-1) and DACT-3. Over-expression of miR-31 markedly diminished Dkk-1 and DACT3 expression levels in normal respiratory epithelia and lung cancer cells. Knock-down of miR-31 increased Dkk-1 and DACT3 levels, and abrogated CSC-mediated decreases in Dkk-1 and DACT-3 expression. Furthermore, over-expression of miR-31 diminished SFRP1, SFRP4, and WIF-1, and increased Wnt-5a expression. CSC increased H3K4Me3, H3K9/14Ac and C/EBP-β levels within the LOC554202 promoter. Knock-down of C/EBP-β abrogated CSC-mediated activation of LOC554202. Over-expression of miR-31 significantly enhanced proliferation and tumorigenicity of lung cancer cells; knock-down of miR-31 inhibited growth of these cells. CONCLUSIONS Cigarette smoke induces expression of miR-31 targeting several antagonists of cancer stem cell signaling in normal respiratory epithelia and lung cancer cells. miR-31 functions as an oncomir during human pulmonary carcinogenesis.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maocheng Yang
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yongguang Tao
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, United States of America
| | - Hong Xu
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, United States of America
| | - Jigui Shan
- Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Suzanne Inchauste
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mary Zhang
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Leandro Mercedes
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Julie A. Hong
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mahadev Rao
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David S. Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
23
|
Koturbash I, Zemp FJ, Pogribny I, Kovalchuk O. Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis. Mutat Res 2010; 722:94-105. [PMID: 20472093 DOI: 10.1016/j.mrgentox.2010.05.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/08/2010] [Indexed: 12/17/2022]
Abstract
Small non-coding RNAs-microRNAs, are potent negative regulators of gene expression. MicroRNAs are involved in multiple biological processes, metabolic regulation, including cell proliferation, differentiation, and programmed cell death. Since the dysregulation of these processes is a hallmark of cancer, microRNAs can be viewed as major contributors to the pathogenesis of cancer, including initiation and progression of cancer. This review focuses on microRNA biogenesis and function, and their role in cancer, metastasis, drug resistance, and tumorigenesis.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Biological Sciences, University of Lethbridge, AB, Canada
| | | | | | | |
Collapse
|
24
|
Tay Y, Peter S, Rigoutsos I, Barahona P, Ahmed S, Dröge P. Insights into the regulation of a common variant of HMGA2 associated with human height during embryonic development. Stem Cell Rev Rep 2010; 5:328-33. [PMID: 20058197 DOI: 10.1007/s12015-009-9095-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Early genetic studies in the mouse and chicken identified the HMGA oncogene as a candidate that regulates body height. Subsequent genome-wide SNP studies revealed a significant association of rs1042725 genotypes CT and CC in the 3' UTR of HMGA2 with human height. Together, these studies indicated that HMGA2 expression levels during prenatal development might be a critical factor that contributes to the height phenotype. In the present study, we sought to gain insight into the regulation of HMGA2 during human embryonic development and provide evidence that the rs1042725 genotype is unlikely to affect HMGA2 levels in pluripotent human embryonic stem cells (hESCs). This implies that hESCs in the inner cell mass of blastocysts are most likely not involved in determining the human height phenotype associated with this SNP. By applying a computational approach and cell-based reporter assays, we then identified miR-196b as a candidate microRNA that could contribute to SNP-specific expression of HMGA2 during human prenatal development. We briefly discuss this result in the context of other known functions for miR-196b during vertebrate development.
Collapse
Affiliation(s)
- Yvonne Tay
- Neural Stem Cells, Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | | | | | | | | | | |
Collapse
|
25
|
Gieni RS, Hendzel MJ. Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 2010; 87:711-46. [PMID: 19898523 DOI: 10.1139/o09-057] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic programming is an important facet of biology, controlling gene expression patterns and the choice between developmental pathways. The Polycomb group proteins (PcGs) silence gene expression, allowing cells to both acquire and maintain identity. PcG silencing is important for stemness, X chromosome inactivation (XCI), genomic imprinting, and the abnormally silenced genes in cancers. Stem and cancer cells commonly share gene expression patterns, regulatory mechanisms, and signalling pathways. Many microRNA species have oncogenic or tumor suppressor activity, and disruptions in these networks are common in cancer; however, long non-coding (nc)RNA species are also important. Many of these directly guide PcG deposition and gene silencing at the HOX locus, during XCI, and in examples of genomic imprinting. Since inappropriate HOX expression and loss of genomic imprinting are hallmarks of cancer, disruption of long ncRNA-mediated PcG silencing likely has a role in oncogenesis. Aberrant silencing of coding and non-coding loci is critical for both the genesis and progression of cancers. In addition, PcGs are commonly abnormally overexpressed years prior to cancer pathology, making early PcG targeted therapy an option to reverse tumor formation, someday replacing the blunt instrument of eradication in the cancer therapy arsenal.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G1Z2, Canada
| | | |
Collapse
|
26
|
Ahmed KM, Tsai CY, Lee WH. Derepression of HMGA2 via removal of ZBRK1/BRCA1/CtIP complex enhances mammary tumorigenesis. J Biol Chem 2009; 285:4464-71. [PMID: 20007691 DOI: 10.1074/jbc.m109.062265] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The high mobility group AT-hook 2 (HMGA2), a DNA architectural protein, is highly regulated during development and plays an important role in tumorigenesis. Indeed, HMGA2 was overexpressed in many different kinds of tumors. However, the mechanisms regulating HMGA2 expression remain elusive. Using microarray analysis, we found that HMGA2, along with a dozen of other genes, was co-repressed by ZBRK1, BRCA1, and CtIP. BRCA1 exerts its transcriptional repression activity through interaction with the transcriptional repressor ZBRK1 in the central domain, and with CtIP in the C-terminal BRCT domain. Here, we show that ZBRK1, BRCA1, and CtIP form a repression complex that coordinately regulates HMGA2 expression via a ZBRK1 recognition site in the HMGA2 promoter. Depletion of any of the proteins in this complex via adenoviral RNA interference in MCF10A mammary epithelial cells activates HMGA2 expression, resulting in increased colony formation in soft agar. Similarly, depletion of ZBRK1, or ectopic overexpression of HMGA2, in MCF10A cells induces abnormal acinar size with increased cell number and inhibits normal acinar formation. Consistently, many BRCA1-deficient mouse breast tumors express higher levels of HMGA2 than BRCA1-proficient tumors. These results suggest that activation of HMGA2 gene expression through derepression of the ZBRK1/BRCA1/CtIP complex is a significant step in accelerating breast tumorigenesis.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
27
|
Pfannkuche K, Summer H, Li O, Hescheler J, Dröge P. The high mobility group protein HMGA2: a co-regulator of chromatin structure and pluripotency in stem cells? Stem Cell Rev Rep 2009; 5:224-30. [PMID: 19551524 DOI: 10.1007/s12015-009-9078-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/01/2009] [Indexed: 11/25/2022]
Abstract
The small, chromatin-associated HMGA proteins contain three separate DNA binding domains, so-called AT hooks, which bind preferentially to short AT-rich sequences. These proteins are abundant in pluripotent embryonic stem (ES) cells and most malignant human tumors, but are not detectable in normal somatic cells. They act both as activator and repressor of gene expression, and most likely facilitate DNA architectural changes during formation of specialized nucleoprotein structures at selected promoter regions. For example, HMGA2 is involved in transcriptional activation of certain cell proliferation genes, which likely contributes to its well-established oncogenic potential during tumor formation. However, surprisingly little is known about how HMGA proteins bind DNA packaged in chromatin and how this affects the chromatin structure at a larger scale. Experimental evidence suggests that HMGA2 competes with binding of histone H1 in the chromatin fiber. This could substantially alter chromatin domain structures in ES cells and contribute to the activation of certain transcription networks. HMGA2 also seems capable of recruiting enzymes directly involved in histone modifications to trigger gene expression. Furthermore, it was shown that multiple HMGA2 molecules bind stably to a single nucleosome core particle whose structure is known. How these features of HMGA2 impinge on chromatin organization inside a living cell is unknown. In this commentary, we propose that HMGA2, through the action of three independent DNA binding domains, substantially contributes to the plasticity of ES cell chromatin and is involved in the maintenance of a un-differentiated cell state.
Collapse
Affiliation(s)
- Kurt Pfannkuche
- Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany.
| | | | | | | | | |
Collapse
|
28
|
Summer H, Li O, Bao Q, Zhan L, Peter S, Sathiyanathan P, Henderson D, Klonisch T, Goodman SD, Dröge P. HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy. Nucleic Acids Res 2009; 37:4371-84. [PMID: 19465398 PMCID: PMC2715238 DOI: 10.1093/nar/gkp375] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
HMGA proteins are not translated in normal human somatic cells, but are present in high copy numbers in pluripotent embryonic stem cells and most neoplasias. Correlations between the degree of malignancy, patient prognostic index and HMGA levels have been firmly established. Intriguingly, HMGA2 is also found in rare tumor-inducing cells which are resistant to chemotherapy. Here, we demonstrate that HMGA1a/b and HMGA2 possess intrinsic dRP and AP site cleavage activities, and that lysines and arginines in the AT-hook DNA-binding domains function as nucleophiles. We also show that HMGA2 can be covalently trapped at genomic abasic sites in cancer cells. By employing a variety of cell-based assays, we provide evidence that the associated lyase activities promote cellular resistance against DNA damage that is targeted by base excision repair (BER) pathways, and that this protection directly correlates with the level of HMGA2 expression. In addition, we demonstrate an interaction between human AP endonuclease 1 and HMGA2 in cancer cells, which supports our conclusion that HMGA2 can be incorporated into the cellular BER machinery. Our study thus identifies an unexpected role for HMGA2 in DNA repair in cancer cells which has important clinical implications for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Heike Summer
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 2009; 8:843-52. [PMID: 19221491 DOI: 10.4161/cc.8.6.7907] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Micro (mi)RNAs are emerging as important regulators of cellular differentiation, their importance underscored by the fact that they are often dysregulated during carcinogenesis. Two evolutionary conserved families, let-7 and miR-200, regulate key differentiation processes during development. Loss of let-7 in cancer results in reverse embryogenesis and dedifferentiation, and miR-200 has been identified as a powerful regulator of epithelial-to-mesenchymal transition (EMT). Recent findings have connected let-7 with stem cell maintenance and point at a connection between EMT and stem cell formation. A part of tumor progression can be viewed as a continuum of progressive dedifferentiation (EMT) with a cell at the endpoint that has stem cell-like properties. I propose that steps of this process are driven by specific changes in the expression of let-7 and miR-200 family members.
Collapse
Affiliation(s)
- Marcus E Peter
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|