1
|
Li-Harms X, Lu J, Fukuda Y, Lynch J, Sheth A, Pareek G, Kaminski MM, Ross HS, Wright CW, Smith AL, Wu H, Wang YD, Valentine M, Neale G, Vogel P, Pounds S, Schuetz JD, Ni M, Kundu M. Somatic mtDNA mutation burden shapes metabolic plasticity in leukemogenesis. SCIENCE ADVANCES 2025; 11:eads8489. [PMID: 39742470 DOI: 10.1126/sciadv.ads8489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
The role of somatic mitochondrial DNA (mtDNA) mutations in leukemogenesis remains poorly characterized. To determine the impact of somatic mtDNA mutations on this process, we assessed the leukemogenic potential of hematopoietic progenitor cells (HPCs) from mtDNA mutator mice (Polg D257A) with or without NMyc overexpression. We observed a higher incidence of spontaneous leukemogenesis in recipients transplanted with heterozygous Polg HPCs and a lower incidence of NMyc-driven leukemia in those with homozygous Polg HPCs compared to controls. Although mtDNA mutations in heterozygous and homozygous HPCs caused similar baseline impairments in mitochondrial function, only heterozygous HPCs responded to and supported altered metabolic demands associated with NMyc overexpression. Homozygous HPCs showed altered glucose utilization with pyruvate dehydrogenase inhibition due to increased phosphorylation, exacerbated by NMyc overexpression. The impaired growth of NMyc-expressing homozygous HPCs was partially rescued by inhibiting pyruvate dehydrogenase kinase, highlighting a relationship between mtDNA mutation burden and metabolic plasticity in leukemogenesis.
Collapse
Affiliation(s)
- Xiujie Li-Harms
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjun Lu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Fukuda
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Lynch
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aditya Sheth
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gautam Pareek
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marcin M Kaminski
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hailey S Ross
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher W Wright
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amber L Smith
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marc Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John D Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Min Ni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
2
|
Capelletti MM, Montini O, Ruini E, Tettamanti S, Savino AM, Sarno J. Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions. Int J Mol Sci 2024; 26:45. [PMID: 39795903 PMCID: PMC11719665 DOI: 10.3390/ijms26010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation. Understanding the metabolic diversities among cancer cells and their surrounding environments is therefore essential in unravelling the complexities of leukaemia and improving therapeutic strategies. Here, we describe the currently available methodologies and approaches to addressing the dynamic heterogeneity of leukaemia progression. In the second section, we focus on metabolic leukaemic vulnerabilities in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL). Lastly, we provide a comprehensive overview of the most interesting clinical trials designed to target these metabolic dependencies, highlighting their potential to advance therapeutic strategies in leukaemia treatment. The integration of multi-omics data for cancer identification with the metabolic states of tumour cells will enable a comprehensive "micro-to-macro" approach for the refinement of clinical practices and delivery of personalised therapies.
Collapse
Affiliation(s)
- Martina Maria Capelletti
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Orsola Montini
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Emilio Ruini
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
| | - Sarah Tettamanti
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Angela Maria Savino
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Jolanda Sarno
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
3
|
McGraw KL, Larson DR. Implications for metabolic disturbances in myelodysplastic syndromes. Semin Hematol 2024; 61:470-478. [PMID: 39603905 PMCID: PMC11646176 DOI: 10.1053/j.seminhematol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The Myelodysplastic Syndromes (MDS) are heterogeneous stem cell malignancies clinically characterized by bone marrow dysplasia, peripheral blood cytopenias, and a high risk for transformation to acute myeloid leukemia. In early stages of disease, differentiation defects and maturation blocks result in deficient hematopoiesis. In higher risk disease, unrestricted proliferation of immature blast cells leads to leukemogenesis. Disease pathogenesis can be attributed to many factors including chronic inflammation that is driven in part by commonly found somatic gene mutations (SGM) fostering expansion of malignant clones while suppressing normal hematopoiesis. Cellular metabolism that both directly and indirectly regulates hematopoietic stem cell (HSC) fate, is intimately connected to the immune system, is altered by MDS somatic gene mutations and is likely is a major contributor to disease pathophysiology. Despite this likely role in pathobiology, there is an underwhelming depth of literature on the subject and the precise metabolic dysregulations in these myeloid malignancies have yet to be fully delineated. In this review, we will provide a general overview of several major metabolic processes and how each directs HSC fate, provide a summary of metabolic studies in MDS, discuss how common SGM and inflammation influence metabolic pathways to drive bone marrow failure, and end with a discussion of standards of care and how these should be carefully considered in the context of metabolic dysregulation.
Collapse
Affiliation(s)
- Kathy L McGraw
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872.
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872
| |
Collapse
|
4
|
Bystrykh LV. Why an integrated view of gene expression studies on hematopoiesis in mouse aging is better than the sum of their parts. FEBS Lett 2024; 598:2765-2773. [PMID: 38627103 PMCID: PMC11586588 DOI: 10.1002/1873-3468.14869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 11/26/2024]
Abstract
Globally, the human population is aging, with an increased proportion of people in "old age" (over 60 years). This trend leads to a growing demand in aging research, stimulating studies in animal models such as mice, fish, and invertebrates. Recently, we published a research summary on the aging of hematopoietic stem cells (HSCs) in C57BL/6 mice based on 12 gene expression datasets. Here, I discuss in greater detail the added value of taking an integrated view, rather than considering each publication separately, to determine genes involved in aging. Considerable variation exists between lists of differentially expressed (DE) genes in HSCs, comparing young and old mice. This variation can result from factors such as inconsistent definitions of "young" and "old", technical variations and variations between laboratory mouse strains. We previously demonstrated that the variation between gene lists could be circumvented by forming a unified list of DE genes-the "aging list"-with citation indexes attached. The most frequently detected DE genes [approximately 200 most cited, which we named the "aging signature" (AS)] were highly consistent across publications. Gene Ontology classification of the AS list identified additional sources of variation between studies: one comes from the specifics of how the data are collected and analyzed; another comes from inconsistencies between how we define the gene categories. As discussed, overcoming these variations is the next challenge toward an integral approach to our systematic knowledge of the aging process.
Collapse
Affiliation(s)
- Leonid V. Bystrykh
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center of Groningen (UMCG)University of GroningenThe Netherlands
| |
Collapse
|
5
|
Gorelov R, Hochedlinger K. A cellular identity crisis? Plasticity changes during aging and rejuvenation. Genes Dev 2024; 38:823-842. [PMID: 39293862 PMCID: PMC11535162 DOI: 10.1101/gad.351728.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cellular plasticity in adult multicellular organisms is a protective mechanism that allows certain tissues to regenerate in response to injury. Considering that aging involves exposure to repeated injuries over a lifetime, it is conceivable that cell identity itself is more malleable-and potentially erroneous-with age. In this review, we summarize and critically discuss the available evidence that cells undergo age-related shifts in identity, with an emphasis on those that contribute to age-associated pathologies, including neurodegeneration and cancer. Specifically, we focus on reported instances of programs associated with dedifferentiation, biased differentiation, acquisition of features from alternative lineages, and entry into a preneoplastic state. As some of the most promising approaches to rejuvenate cells reportedly also elicit transient changes to cell identity, we further discuss whether cell state change and rejuvenation can be uncoupled to yield more tractable therapeutic strategies.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA;
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Ross JB, Myers LM, Noh JJ, Collins MM, Carmody AB, Messer RJ, Dhuey E, Hasenkrug KJ, Weissman IL. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 2024; 628:162-170. [PMID: 38538791 DOI: 10.1038/s41586-024-07238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.
Collapse
Affiliation(s)
- Jason B Ross
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lara M Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Joseph J Noh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Madison M Collins
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Erica Dhuey
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Zhang Q, Olofzon R, Konturek-Ciesla A, Yuan O, Bryder D. Ex vivo expansion potential of murine hematopoietic stem cells is a rare property only partially predicted by phenotype. eLife 2024; 12:RP91826. [PMID: 38446538 PMCID: PMC10942641 DOI: 10.7554/elife.91826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
The scarcity of hematopoietic stem cells (HSCs) restricts their use in both clinical settings and experimental research. Here, we examined a recently developed method for expanding rigorously purified murine HSCs ex vivo. After 3 weeks of culture, only 0.1% of cells exhibited the input HSC phenotype, but these accounted for almost all functional long-term HSC activity. Input HSCs displayed varying potential for ex vivo self-renewal, with alternative outcomes revealed by single-cell multimodal RNA and ATAC sequencing profiling. While most HSC progeny offered only transient in vivo reconstitution, these cells efficiently rescued mice from lethal myeloablation. The amplification of functional HSC activity allowed for long-term multilineage engraftment in unconditioned hosts that associated with a return of HSCs to quiescence. Thereby, our findings identify several key considerations for ex vivo HSC expansion, with major implications also for assessment of normal HSC activity.
Collapse
Affiliation(s)
- Qinyu Zhang
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund UniversityLundSweden
| | - Rasmus Olofzon
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund UniversityLundSweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund UniversityLundSweden
| | - Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund UniversityLundSweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund UniversityLundSweden
| |
Collapse
|
8
|
Konturek-Ciesla A, Olofzon R, Kharazi S, Bryder D. Implications of stress-induced gene expression for hematopoietic stem cell aging studies. NATURE AGING 2024; 4:177-184. [PMID: 38228925 PMCID: PMC10878961 DOI: 10.1038/s43587-023-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
A decline in hematopoietic stem cell (HSC) function is believed to underlie hematological shortcomings with age; however, a comprehensive molecular understanding of these changes is currently lacking. Here we provide evidence that a transcriptional signature reported in several previous studies on HSC aging is linked to stress-induced changes in gene expression rather than aging. Our findings have strong implications for the design and interpretation of HSC aging studies.
Collapse
Affiliation(s)
- Anna Konturek-Ciesla
- Division of Molecular Hematology, Lund Stem Cell Center, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - Rasmus Olofzon
- Division of Molecular Hematology, Lund Stem Cell Center, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - Shabnam Kharazi
- Division of Molecular Hematology, Lund Stem Cell Center, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Lund Stem Cell Center, Institution for Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
Yang L, Ruan Z, Lin X, Wang H, Xin Y, Tang H, Hu Z, Zhou Y, Wu Y, Wang J, Qin D, Lu G, Loomes KM, Chan WY, Liu X. NAD + dependent UPR mt activation underlies intestinal aging caused by mitochondrial DNA mutations. Nat Commun 2024; 15:546. [PMID: 38228611 PMCID: PMC10791663 DOI: 10.1038/s41467-024-44808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Aging in mammals is accompanied by an imbalance of intestinal homeostasis and accumulation of mitochondrial DNA (mtDNA) mutations. However, little is known about how accumulated mtDNA mutations modulate intestinal homeostasis. We observe the accumulation of mtDNA mutations in the small intestine of aged male mice, suggesting an association with physiological intestinal aging. Using polymerase gamma (POLG) mutator mice and wild-type mice, we generate male mice with progressive mtDNA mutation burdens. Investigation utilizing organoid technology and in vivo intestinal stem cell labeling reveals decreased colony formation efficiency of intestinal crypts and LGR5-expressing intestinal stem cells in response to a threshold mtDNA mutation burden. Mechanistically, increased mtDNA mutation burden exacerbates the aging phenotype of the small intestine through ATF5 dependent mitochondrial unfolded protein response (UPRmt) activation. This aging phenotype is reversed by supplementation with the NAD+ precursor, NMN. Thus, we uncover a NAD+ dependent UPRmt triggered by mtDNA mutations that regulates the intestinal aging.
Collapse
Affiliation(s)
- Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zifeng Ruan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Lin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanmin Xin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haite Tang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhijuan Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunhao Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gang Lu
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kerry M Loomes
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, Auckland, 1010, New Zealand
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
10
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Mas-Bargues C. Mitochondria pleiotropism in stem cell senescence: Mechanisms and therapeutic approaches. Free Radic Biol Med 2023; 208:657-671. [PMID: 37739140 DOI: 10.1016/j.freeradbiomed.2023.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Aging is a complex biological process characterized by a progressive decline in cellular and tissue function, ultimately leading to organismal aging. Stem cells, with their regenerative potential, play a crucial role in maintaining tissue homeostasis and repair throughout an organism's lifespan. Mitochondria, the powerhouses of the cell, have emerged as key players in the aging process, impacting stem cell function and contributing to age-related tissue dysfunction. Here are discuss the mechanisms through which mitochondria influence stem cell fate decisions, including energy production, metabolic regulation, ROS signalling, and epigenetic modifications. Therefore, this review highlights the role of mitochondria in driving stem cell senescence and the subsequent impact on tissue function, leading to overall organismal aging and age-related diseases. Finally, we explore potential anti-aging therapies targeting mitochondrial health and discuss their implications for promoting healthy aging. This comprehensive review sheds light on the critical interplay between mitochondrial function, stem cell senescence, and organismal aging, offering insights into potential strategies for attenuating age-related decline and promoting healthy longevity.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
12
|
Wang Y, Zhang Z, He H, Song J, Cui Y, Chen Y, Zhuang Y, Zhang X, Li M, Zhang X, Zhang MQ, Shi M, Yi C, Wang J. Aging-induced pseudouridine synthase 10 impairs hematopoietic stem cells. Haematologica 2023; 108:2677-2689. [PMID: 37165848 PMCID: PMC10542847 DOI: 10.3324/haematol.2022.282211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Aged hematopoietic stem cells (HSC) exhibit compromised reconstitution capacity and differentiation-bias towards myeloid lineage, however, the molecular mechanism behind it remains not fully understood. In this study, we observed that the expression of pseudouridine (Ψ) synthase 10 is increased in aged hematopoietic stem and progenitor cells (HSPC) and enforced protein of Ψ synthase 10 (PUS10) recapitulates the phenotype of aged HSC, which is not achieved by its Ψ synthase activity. Consistently, we observed no difference of transcribed RNA pseudouridylation profile between young and aged HSPC. No significant alteration of hematopoietic homeostasis and HSC function is observed in young Pus10-/- mice, while aged Pus10-/- mice exhibit mild alteration of hematopoietic homeostasis and HSC function. Moreover, we observed that PUS10 is ubiquitinated by E3 ubiquitin ligase CRL4DCAF1 complex and the increase of PUS10 in aged HSPC is due to aging-declined CRL4DCAF1- mediated ubiquitination degradation signaling. Taken together, this study for the first time evaluated the role of PUS10 in HSC aging and function, and provided a novel insight into HSC rejuvenation and its clinical application.
Collapse
Affiliation(s)
- Yuqian Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084
| | | | - Hanqing He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084
| | - Jinghui Song
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Yang Cui
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084
| | - Yunan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing
| | - Yuan Zhuang
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing
| | - Xiaoting Zhang
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191
| | - Xinxiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing
| | - Michael Q Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, the University of Texas, Richardson, TX 75080-3021.
| | - Minglei Shi
- School of Medicine, Tsinghua University, Beijing 100084.
| | - Chengqi Yi
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084.
| |
Collapse
|
13
|
Pizzato HA, Wang Y, Wolfgang MJ, Finck BN, Patti GJ, Bhattacharya D. Mitochondrial pyruvate metabolism and glutaminolysis toggle steady-state and emergency myelopoiesis. J Exp Med 2023; 220:e20221373. [PMID: 37249600 PMCID: PMC10227646 DOI: 10.1084/jem.20221373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
To define the metabolic requirements of hematopoiesis, we examined blood lineages in mice conditionally deficient in genes required for long-chain fatty acid oxidation (Cpt2), glutaminolysis (Gls), or mitochondrial pyruvate import (Mpc2). Genetic ablation of Cpt2 or Gls minimally impacted most blood lineages. In contrast, deletion of Mpc2 led to a sharp decline in mature myeloid cells and a slower reduction in T cells, whereas other hematopoietic lineages were unaffected. Yet MPC2-deficient monocytes and neutrophils rapidly recovered due to a transient and specific increase in myeloid progenitor proliferation. Competitive bone marrow chimera and stable isotope tracing experiments demonstrated that this proliferative burst was progenitor intrinsic and accompanied by a metabolic switch to glutaminolysis. Myeloid recovery after loss of MPC2 or cyclophosphamide treatment was delayed in the absence of GLS. Reciprocally, MPC2 was not required for myeloid recovery after cyclophosphamide treatment. Thus, mitochondrial pyruvate metabolism maintains myelopoiesis under steady-state conditions, while glutaminolysis in progenitors promotes emergency myelopoiesis.
Collapse
Affiliation(s)
- Hannah A. Pizzato
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Yahui Wang
- Department of Chemistry, Washington University, Saint Louis, MO, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian N. Finck
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Washington University, Saint Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University, Saint Louis, MO, USA
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
Du Y, Gupta P, Qin S, Sieber M. The role of metabolism in cellular quiescence. J Cell Sci 2023; 136:jcs260787. [PMID: 37589342 PMCID: PMC10445740 DOI: 10.1242/jcs.260787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Cellular quiescence is a dormant, non-dividing cell state characterized by significant shifts in physiology and metabolism. Quiescence plays essential roles in a wide variety of biological processes, ranging from microbial sporulation to human reproduction and wound repair. Moreover, when the regulation of quiescence is disrupted, it can drive cancer growth and compromise tissue regeneration after injury. In this Review, we examine the dynamic changes in metabolism that drive and support dormant and transiently quiescent cells, including spores, oocytes and adult stem cells. We begin by defining quiescent cells and discussing their roles in key biological processes. We then examine metabolic factors that influence cellular quiescence in both healthy and disease contexts, and how these could be leveraged in the treatment of cancer.
Collapse
Affiliation(s)
- Yipeng Du
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, MC9040 ND13.214, Dallas, TX 75390, USA
| | - Parul Gupta
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, MC9040 ND13.214, Dallas, TX 75390, USA
| | - Shenlu Qin
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, MC9040 ND13.214, Dallas, TX 75390, USA
| | - Matthew Sieber
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, MC9040 ND13.214, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Colom Díaz PA, Mistry JJ, Trowbridge JJ. Hematopoietic stem cell aging and leukemia transformation. Blood 2023; 142:533-542. [PMID: 36800569 PMCID: PMC10447482 DOI: 10.1182/blood.2022017933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
With aging, hematopoietic stem cells (HSCs) have an impaired ability to regenerate, differentiate, and produce an entire repertoire of mature blood and immune cells. Owing to dysfunctional hematopoiesis, the incidence of hematologic malignancies increases among elderly individuals. Here, we provide an update on HSC-intrinsic and -extrinsic factors and processes that were recently discovered to contribute to the functional decline of HSCs during aging. In addition, we discuss the targets and timing of intervention approaches to maintain HSC function during aging and the extent to which these same targets may prevent or delay transformation to hematologic malignancies.
Collapse
|
16
|
Kumar S, Vassallo JD, Nattamai KJ, Hassan A, Karns R, Vollmer A, Soller K, Sakk V, Sacma M, Nemkov T, D'Alessandro A, Geiger H. pH regulates hematopoietic stem cell potential via polyamines. EMBO Rep 2023; 24:e55373. [PMID: 36943011 PMCID: PMC10157373 DOI: 10.15252/embr.202255373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Upon ex vivo culture, hematopoietic stem cells (HSCs) quickly lose potential and differentiate into progenitors. The identification of culture conditions that maintain the potential of HSCs ex vivo is therefore of high clinical interest. Here, we demonstrate that the potential of murine and human HSCs is maintained when cultivated for 2 days ex vivo at a pH of 6.9, in contrast to cultivation at the commonly used pH of 7.4. When cultivated at a pH of 6.9, HSCs remain smaller, less metabolically active, less proliferative and show enhanced reconstitution ability upon transplantation compared to HSC cultivated at pH 7.4. HSCs kept at pH 6.9 show an attenuated polyamine pathway. Pharmacological inhibition of the polyamine pathway in HSCs cultivated at pH 7.4 with DFMO mimics phenotypes and potential of HSCs cultivated at pH 6.9. Ex vivo exposure to a pH of 6.9 is therefore a positive regulator of HSC function by reducing polyamines. These findings might improve HSC short-term cultivation protocols for transplantation and gene therapy interventions.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jeffrey D Vassallo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | | | - Karin Soller
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Mehmet Sacma
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Travis Nemkov
- University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
- Aging Research Center, Ulm University, Ulm, Germany
| |
Collapse
|
17
|
Eldeeb M, Yuan O, Guzzi N, Thi Ngoc PC, Konturek-Ciesla A, Kristiansen TA, Muthukumar S, Magee J, Bellodi C, Yuan J, Bryder D. A fetal tumor suppressor axis abrogates MLL-fusion-driven acute myeloid leukemia. Cell Rep 2023; 42:112099. [PMID: 36763502 DOI: 10.1016/j.celrep.2023.112099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
MLL-rearrangements (MLL-r) are recurrent genetic events in acute myeloid leukemia (AML) and frequently associate with poor prognosis. In infants, MLL-r can be sufficient to drive transformation. However, despite the prenatal origin of MLL-r in these patients, congenital leukemia is very rare with transformation usually occurring postnatally. The influence of prenatal signals on leukemogenesis, such as those mediated by the fetal-specific protein LIN28B, remains controversial. Here, using a dual-transgenic mouse model that co-expresses MLL-ENL and LIN28B, we investigate the impact of LIN28B on AML. LIN28B impedes the progression of MLL-r AML through compromised leukemia-initiating cell activity and suppression of MYB signaling. Mechanistically, LIN28B directly binds to MYBBP1A mRNA, resulting in elevated protein levels of this MYB co-repressor. Functionally, overexpression of MYBBP1A phenocopies the tumor-suppressor effects of LIN28B, while its perturbation omits it. Thereby, we propose that developmentally restricted expression of LIN28B provides a layer of protection against MYB-dependent AML.
Collapse
Affiliation(s)
- Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Nicola Guzzi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Trine A Kristiansen
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Jeffrey Magee
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Joan Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
18
|
Harada K, Yahata T, Onizuka M, Ishii T, Aziz Ibrahim A, Kikkawa E, Gondo Y, Ando K. Mitochondrial Electron Transport Chain Complex II Dysfunction Causes Premature Aging of Hematopoietic Stem Cells. Stem Cells 2023; 41:39-49. [PMID: 36219686 DOI: 10.1093/stmcls/sxac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
Mitochondria are indispensable in maintaining hematopoietic stem cells (HSCs), and mitochondrial complex II (MCII) has been recognized as a key component of HSCs. However, the physiological role of MCII on long-term hematopoiesis and hematopoietic reconstitution capacity remains unknown. Hence, this study evaluated the impact of MCII dysfunctions on long-term HSC maintenance and hematopoietic homeostasis among conditional transgenic mice with a missense mutation in the succinate dehydrogenase complex subunit C gene (SdhcV69E). HSCs collected from SdhcV69E mice had a higher reactive oxygen species (ROS) accumulation and DNA damage in response to mitochondrial activation. Via the aging stress response, MCII dysfunctions caused decreased white blood cell count with myeloid-skewing property, macrocytic anemia, and thrombocytosis. Moreover, the HSCs of aged SdhcV69E mice exhibited greater ROS accumulation and lower membrane potential. Transplantation-induced replicative stress also caused premature senescent hematopoiesis. Furthermore, accelerated ROS accumulation and profound DNA damage in HSCs were observed in the SdhcV69E-derived cell recipients. The long-term hematopoietic reconstitution capacity was remarkably impaired in HSCs from the SdhcV69E-derived cell recipients. Taken together, MCII plays an essential role in long-term hematopoiesis, and MCII dysfunctions with aging or replicative stresses caused excessive ROS accumulation and DNA damage in HSCs, leading to premature senescence.
Collapse
Affiliation(s)
- Kaito Harada
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Yahata
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan.,Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Takamasa Ishii
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Japan
| | - Abd Aziz Ibrahim
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan.,Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Eri Kikkawa
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Yoichi Gondo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
19
|
Mistry JJ, Bowles K, Rushworth SA. HSC-derived fatty acid oxidation in steady-state and stressed hematopoiesis. Exp Hematol 2023; 117:1-8. [PMID: 36223830 DOI: 10.1016/j.exphem.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 01/10/2023]
Abstract
Metabolism impacts all cellular functions and plays a fundamental role in physiology. Metabolic regulation of hematopoiesis is dynamically regulated under steady-state and stress conditions. It is clear that hematopoietic stem cells (HSCs) impose different energy demands and flexibility during maintenance compared with stressed conditions. However, the cellular and molecular mechanisms underlying metabolic regulation in HSCs remain poorly understood. In this review, we focus on defining the role of fatty acid oxidation (FAO) in HSCs. We first review the existing literature describing FAO in HSCs under steady-state hematopoiesis. Next, we describe the models used to examine HSCs under stress conditions, and, finally, we describe how infection causes a shift toward FAO in HSCs and the impact of using this pathway on emergency hematopoiesis.
Collapse
Affiliation(s)
| | - Kristian Bowles
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom; Department of Haematology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
20
|
Whitehall JC, Smith ALM, Greaves LC. Mitochondrial DNA Mutations and Ageing. Subcell Biochem 2023; 102:77-98. [PMID: 36600130 DOI: 10.1007/978-3-031-21410-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria are subcellular organelles present in most eukaryotic cells which play a significant role in numerous aspects of cell biology. These include carbohydrate and fatty acid metabolism to generate cellular energy through oxidative phosphorylation, apoptosis, cell signalling, haem biosynthesis and reactive oxygen species production. Mitochondrial dysfunction is a feature of many human ageing tissues, and since the discovery that mitochondrial DNA mutations were a major underlying cause of changes in oxidative phosphorylation capacity, it has been proposed that they have a role in human ageing. However, there is still much debate on whether mitochondrial DNA mutations play a causal role in ageing or are simply a consequence of the ageing process. This chapter describes the structure of mammalian mitochondria, and the unique features of mitochondrial genetics, and reviews the current evidence surrounding the role of mitochondrial DNA mutations in the ageing process. It then focusses on more recent discoveries regarding the role of mitochondrial dysfunction in stem cell ageing and age-related inflammation.
Collapse
Affiliation(s)
- Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anna L M Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
21
|
Ishikawa K, Honma Y, Yoshimi A, Katada S, Ishihara T, Ishihara N, Nakada K. Pearson syndrome-like anemia induced by accumulation of mutant mtDNA and anemia with imbalanced white blood cell lineages induced by Drp1 deletion in a murine model. Pharmacol Res 2022; 185:106467. [PMID: 36179953 DOI: 10.1016/j.phrs.2022.106467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
Regulation of mitochondrial respiration and morphology is important for maintaining steady-state hematopoiesis, yet few studies have comparatively evaluated the effects of abnormal mitochondrial respiration and dynamics on blood-cell differentiation in isolation or combination. This study sought to explore these effects in mouse models with one or both of the following deficits: a large-scale deletion of mitochondrial DNA (ΔmtDNA), accumulated to varying extents, or knockout of the mitochondrial fission factor Drp1. Each deficit was found to independently provoke anemia but with clearly different manifestations. The former showed signs of aberrant respiration, analogous to Pearson syndrome, while the latter showed signs of abnormal mitochondrial dynamics and was associated with changes in the relative proportions of leukocyte lineages. Combining these deficits acted to amplify abnormal iron metabolism in erythropoiesis, exacerbating anemia in an additive manner. Our results indicate that mitochondrial respiration and dynamics play distinct roles in different sets of processes and cell lineages in hematopoietic differentiation.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba; Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yo Honma
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Ayami Yoshimi
- Department of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shun Katada
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Takaya Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University; Institute of Life Science, Kurume University
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University; Institute of Life Science, Kurume University
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba; Graduate School of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
22
|
Arif T. Lysosomes and Their Role in Regulating the Metabolism of Hematopoietic Stem Cells. BIOLOGY 2022; 11:1410. [PMID: 36290314 PMCID: PMC9598322 DOI: 10.3390/biology11101410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs) have the capacity to renew blood cells at all stages of life and are largely quiescent at a steady state. It is essential to understand the processes that govern quiescence in HSCs to enhance bone marrow transplantation. It is hypothesized that in their quiescent state, HSCs primarily use glycolysis for energy production rather than mitochondrial oxidative phosphorylation (OXPHOS). In addition, the HSC switch from quiescence to activation occurs along a continuous developmental path that is driven by metabolism. Specifying the metabolic regulation pathway of HSC quiescence will provide insights into HSC homeostasis for therapeutic application. Therefore, understanding the metabolic demands of HSCs at a steady state is key to developing innovative hematological therapeutics. Lysosomes are the major degradative organelle in eukaryotic cells. Catabolic, anabolic, and lysosomal function abnormalities are connected to an expanding list of diseases. In recent years, lysosomes have emerged as control centers of cellular metabolism, particularly in HSC quiescence, and essential regulators of cell signaling have been found on the lysosomal membrane. In addition to autophagic processes, lysosomal activities have been shown to be crucial in sustaining quiescence by restricting HSCs access to a nutritional reserve essential for their activation into the cell cycle. Lysosomal activity may preserve HSC quiescence by altering glycolysis-mitochondrial biogenesis. The understanding of HSC metabolism has significantly expanded over the decade, revealing previously unknown requirements of HSCs in both their dividing (active) and quiescent states. Therefore, understanding the role of lysosomes in HSCs will allow for the development of innovative treatment methods based on HSCs to fight clonal hematopoiesis and HSC aging.
Collapse
Affiliation(s)
- Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci 2022; 79:473. [PMID: 35941268 PMCID: PMC11072869 DOI: 10.1007/s00018-022-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 1628666, Japan
| | - Susumu Goyama
- Division of Molecular Oncology Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
24
|
Dogan SA, Giacchin G, Zito E, Viscomi C. Redox Signaling and Stress in Inherited Myopathies. Antioxid Redox Signal 2022; 37:301-323. [PMID: 35081731 DOI: 10.1089/ars.2021.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are highly reactive compounds that behave like a double-edged sword; they damage cellular structures and act as second messengers in signal transduction. Mitochondria and endoplasmic reticulum (ER) are interconnected organelles with a central role in ROS production, detoxification, and oxidative stress response. Skeletal muscle is the most abundant tissue in mammals and one of the most metabolically active ones and thus relies mainly on oxidative phosphorylation (OxPhos) to synthesize adenosine triphosphate. The impairment of OxPhos leads to myopathy and increased ROS production, thus affecting both redox poise and signaling. In addition, ROS enter the ER and trigger ER stress and its maladaptive response, which also lead to a myopathic phenotype with mitochondrial involvement. Here, we review the role of ROS signaling in myopathies due to either mitochondrial or ER dysfunction. Recent Advances: Relevant advances have been evolving over the last 10 years on the intricate ROS-dependent pathways that act as modifiers of the disease course in several myopathies. To this end, pathways related to mitochondrial biogenesis, satellite cell differentiation, and ER stress have been studied extensively in myopathies. Critical Issues: The analysis of the chemistry and the exact quantitation, as well as the localization of ROS, are still challenging due to the intrinsic labile nature of ROS and the technical limitations of their sensors. Future Directions: The mechanistic studies of the pathogenesis of mitochondrial and ER-related myopathies offer a unique possibility to discover novel ROS-dependent pathways. Antioxid. Redox Signal. 37, 301-323.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Giacomo Giacchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.,Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
25
|
Lyu Y, Ge Y. Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. Front Cell Dev Biol 2022; 10:903904. [PMID: 35663405 PMCID: PMC9160930 DOI: 10.3389/fcell.2022.903904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is the largest organ in human body, harboring a plethora of cell types and serving as the organismal barrier. Skin aging such as wrinkling and hair graying is graphically pronounced, and the molecular mechanisms behind these phenotypic manifestations are beginning to unfold. As in many other organs and tissues, epigenetic and metabolic deregulations have emerged as key aging drivers. Particularly in the context of the skin epithelium, the epigenome and metabolome coordinately shape lineage plasticity and orchestrate stem cell function during aging. Our review discusses recent studies that proposed molecular mechanisms that drive the degeneration of hair follicles, a major appendage of the skin. By focusing on skin while comparing it to model organisms and adult stem cells of other tissues, we summarize literature on genotoxic stress, nutritional sensing, metabolic rewiring, mitochondrial activity, and epigenetic regulations of stem cell plasticity. Finally, we speculate about the rejuvenation potential of rate-limiting upstream signals during aging and the dominant role of the tissue microenvironment in dictating aged epithelial stem cell function.
Collapse
Affiliation(s)
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
26
|
Manini A, Abati E, Comi GP, Corti S, Ronchi D. Mitochondrial DNA homeostasis impairment and dopaminergic dysfunction: A trembling balance. Ageing Res Rev 2022; 76:101578. [PMID: 35114397 DOI: 10.1016/j.arr.2022.101578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/26/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of mitochondrial DNA (mtDNA) homeostasis includes a variety of processes, such as mtDNA replication, repair, and nucleotides synthesis, aimed at preserving the structural and functional integrity of mtDNA molecules. Mutations in several nuclear genes (i.e., POLG, POLG2, TWNK, OPA1, DGUOK, MPV17, TYMP) impair mtDNA maintenance, leading to clinical syndromes characterized by mtDNA depletion and/or deletions in affected tissues. In the past decades, studies have demonstrated a progressive accumulation of multiple mtDNA deletions in dopaminergic neurons of the substantia nigra in elderly population and, to a greater extent, in Parkinson's disease patients. Moreover, parkinsonism has been frequently described as a prominent clinical feature in mtDNA instability syndromes. Among Parkinson's disease-related genes with a significant role in mitochondrial biology, PARK2 and LRRK2 specifically take part in mtDNA maintenance. Moreover, a variety of murine models (i.e., "Mutator", "MitoPark", "PD-mitoPstI", "Deletor", "Twinkle-dup" and "TwinkPark") provided in vivo evidence that mtDNA stability is required to preserve nigrostriatal integrity. Here, we review and discuss the clinical, genetic, and pathological background underlining the link between impaired mtDNA homeostasis and dopaminergic degeneration.
Collapse
|
27
|
Abstract
Metabolism has been studied mainly in cultured cells or at the level of whole tissues or whole organisms in vivo. Consequently, our understanding of metabolic heterogeneity among cells within tissues is limited, particularly when it comes to rare cells with biologically distinct properties, such as stem cells. Stem cell function, tissue regeneration and cancer suppression are all metabolically regulated, although it is not yet clear whether there are metabolic mechanisms unique to stem cells that regulate their activity and function. Recent work has, however, provided evidence that stem cells do have a metabolic signature that is distinct from that of restricted progenitors and that metabolic changes influence tissue homeostasis and regeneration. Stem cell maintenance throughout life in many tissues depends upon minimizing anabolic pathway activation and cell division. Consequently, stem cell activation by tissue injury is associated with changes in mitochondrial function, lysosome activity and lipid metabolism, potentially at the cost of eroding self-renewal potential. Stem cell metabolism is also regulated by the environment: stem cells metabolically interact with other cells in their niches and are able to sense and adapt to dietary changes. The accelerating understanding of stem cell metabolism is revealing new aspects of tissue homeostasis with the potential to promote tissue regeneration and cancer suppression.
Collapse
|
28
|
Liang H, Dong S, Fu W, Zhang S, Yu W, Dong F, He B, Wang J, Gao Y, Zhou Y, Ru Y. Deciphering the Heterogeneity of Mitochondrial Functions During Hematopoietic Lineage Differentiation. Stem Cell Rev Rep 2022; 18:2179-2194. [DOI: 10.1007/s12015-022-10354-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/23/2022]
|
29
|
H6PD overexpression promotes ex vivo expansion of human cord blood hematopoietic stem cells. Stem Cell Rev Rep 2022; 18:1878-1880. [PMID: 35122629 PMCID: PMC9209374 DOI: 10.1007/s12015-022-10352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
|
30
|
Li X, Wang X, Zhang C, Wang J, Wang S, Hu L. Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice. Cell Prolif 2022; 55:e13191. [PMID: 35088483 PMCID: PMC8891618 DOI: 10.1111/cpr.13191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Evidences have suggested that the metabolic function is the key regulator to the fate of MSCs, but its function in senescence of MSC and the underlying mechanism is unclear. Therefore, the purpose of this study was to investigate the metabolic activity of MSCs and its possible mechanism during aging. Materials and Methods We used the Seahorse XF24 Analyzer to understand OCR and ECAR in BMSCs and used RT‐PCR to analyze the gene expression of mitochondrial biogenesis and key enzymes in glycolysis. We analyzed BMSC mitochondrial activity by MitoTracker Deep Red and JC‐1 staining, and detected NAD+/NADH ratio and ATP levels in BMSCs. Microarray and proteomic analyses were performed to detect differentially expressed genes and proteins in BMSCs. The impact of aging on BMSCs through mitochondrial electron transport chain (ETC) was evaluated by Rotenone and Coenzyme Q10. Results Our results demonstrated that the oxidative phosphorylation and glycolytic activity of BMSCs in aged mice were significantly decreased when compared with young mice. BMSCs in aged mice had lower mitochondrial membrane potential, NAD+/NADH ratio, and ATP production than young mice. FABP4 may play a key role in BMSC senescence caused by fatty acid metabolism disorders. Conclusions Taken together, our results indicated the dysfunction of the metabolic activity of BMSCs in aged mice, which would play the important role in the impaired biological properties. Therefore, the regulation of metabolic activity may be a potential therapeutic target for enhancing the regenerative functions of BMSCs.
Collapse
Affiliation(s)
- Xiaoyu Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Xue Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
31
|
de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2022; 36:1-12. [PMID: 34561557 PMCID: PMC8727299 DOI: 10.1038/s41375-021-01416-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
While the understanding of the genomic aberrations that underpin chronic and acute myeloid leukaemia (CML and AML) has allowed the development of therapies for these diseases, limitations remain. These become apparent when looking at the frequency of treatment resistance leading to disease relapse in leukaemia patients. Key questions regarding the fundamental biology of the leukaemic cells, such as their metabolic dependencies, are still unresolved. Even though a majority of leukaemic cells are killed during initial treatment, persistent leukaemic stem cells (LSCs) and therapy-resistant cells are still not eradicated with current treatments, due to various mechanisms that may contribute to therapy resistance, including cellular metabolic adaptations. In fact, recent studies have shown that LSCs and treatment-resistant cells are dependent on mitochondrial metabolism, hence rendering them sensitive to inhibition of mitochondrial oxidative phosphorylation (OXPHOS). As a result, rewired energy metabolism in leukaemic cells is now considered an attractive therapeutic target and the significance of this process is increasingly being recognised in various haematological malignancies. Therefore, identifying and targeting aberrant metabolism in drug-resistant leukaemic cells is an imperative and a relevant strategy for the development of new therapeutic options in leukaemia. In this review, we present a detailed overview of the most recent studies that present experimental evidence on how leukaemic cells can metabolically rewire, more specifically the importance of OXPHOS in LSCs and treatment-resistant cells, and the current drugs available to target this process. We highlight that uncovering specific energy metabolism dependencies will guide the identification of new and more targeted therapeutic strategies for myeloid leukaemia.
Collapse
Affiliation(s)
- Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
32
|
Karabulutoglu M, Finnon R, Cruz-Garcia L, Hill MA, Badie C. Oxidative Stress and X-ray Exposure Levels-Dependent Survival and Metabolic Changes in Murine HSPCs. Antioxidants (Basel) 2021; 11:11. [PMID: 35052515 PMCID: PMC8772903 DOI: 10.3390/antiox11010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Haematopoietic bone marrow cells are amongst the most sensitive to ionizing radiation (IR), initially resulting in cell death or genotoxicity that may later lead to leukaemia development, most frequently Acute Myeloid Leukaemia (AML). The target cells for radiation-induced Acute Myeloid Leukaemia (rAML) are believed to lie in the haematopoietic stem and progenitor cell (HSPC) compartment. Using the inbred strain CBA/Ca as a murine model of rAML, progress has been made in understanding the underlying mechanisms, characterisation of target cell population and responses to IR. Complex regulatory systems maintain haematopoietic homeostasis which may act to modulate the risk of rAML. However, little is currently known about the role of metabolic factors and diet in these regulatory systems and modification of the risk of AML development. This study characterises cellular proliferative and clonogenic potential as well as metabolic changes within murine HSPCs under oxidative stress and X-ray exposure. Ambient oxygen (normoxia; 20.8% O2) levels were found to increase irradiated HSPC-stress, stimulating proliferative activity compared to low oxygen (3% O2) levels. IR exposure has a negative influence on the proliferative capability of HSPCs in a dose-dependent manner (0-2 Gy) and this is more pronounced under a normoxic state. One Gy x-irradiated HSPCs cultured under normoxic conditions displayed a significant increase in oxygen consumption compared to those cultured under low O2 conditions and to unirradiated HSPCs. Furthermore, mitochondrial analyses revealed a significant increase in mitochondrial DNA (mtDNA) content, mitochondrial mass and membrane potential in a dose-dependent manner under normoxic conditions. Our results demonstrate that both IR and normoxia act as stressors for HSPCs, leading to significant metabolic deregulation and mitochondrial dysfunctionality which may affect long term risks such as leukaemia.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
| | - Lourdes Cruz-Garcia
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
| | - Mark A. Hill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards Directorate (RCE, Formally CRCE), UK Health Security Agency (Formerly Public Health England), Chilton, Didcot, Oxon OX11 0RQ, UK; (R.F.); (L.C.-G.)
| |
Collapse
|
33
|
Mitochondria and the Tumour Microenvironment in Blood Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:181-203. [PMID: 34664240 DOI: 10.1007/978-3-030-73119-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The bone marrow (BM) is a complex organ located within the cavities of bones. The main function of the BM is to produce all the blood cells required for a normal healthy blood system. As with any major organ, many diseases can arise from errors in bone marrow function, including non-malignant disorders such as anaemia and malignant disorders such as leukaemias. This article will explore the role of the bone marrow, in normal and diseased haematopoiesis, with an emphasis on the requirement for intercellular mitochondrial transfer in leukaemia.
Collapse
|
34
|
Morganti C, Ito K. Mitochondrial Contributions to Hematopoietic Stem Cell Aging. Int J Mol Sci 2021; 22:11117. [PMID: 34681777 PMCID: PMC8537916 DOI: 10.3390/ijms222011117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets for preventing, delaying, or even reversing aspects of this process.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
35
|
Alonso M, Zabala C, Mansilla S, De Brun L, Martínez J, Garau M, Rivas G, Acosta C, Lens D, Cerisola A, Graña M, Naya H, Puentes R, Spangenberg L, Raggio V, Lemes A, Castro L, Quijano C. Blood cell respiration rates and mtDNA copy number: A promising tool for the diagnosis of mitochondrial disease. Mitochondrion 2021; 61:31-43. [PMID: 34536563 DOI: 10.1016/j.mito.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Human mitochondrial diseases are a group of heterogeneous diseases caused by defects in oxidative phosphorylation, due to mutations in mitochondrial (mtDNA) or nuclear DNA. The diagnosis of mitochondrial disease is challenging since mutations in multiple genes can affect mitochondrial function, there is considerable clinical variability and a poor correlation between genotype and phenotype. Herein we assessed mitochondrial function in peripheral blood mononuclear cells (PBMCs) and platelets from volunteers without known metabolic pathology and patients with mitochondrial disease. Oxygen consumption rates were evaluated and respiratory parameters indicative of mitochondrial function were obtained. A negative correlation between age and respiratory parameters of PBMCs from control individuals was observed. Surprisingly, respiratory parameters of PBMCs normalized by cell number were similar in patients and young controls. Considering possible compensatory mechanisms, mtDNA copy number in PBMCs was quantified and an increase was found in patients with respect to controls. Hence, respiratory parameters normalized by mtDNA copy number were determined, and in these conditions a decrease in maximum respiration rate and spare respiratory capacity was observed in patients relative to control individuals. In platelets no decay was seen in mitochondrial function with age, while a reduction in basal, ATP-independent and ATP-dependent respiration normalized by cell number was detected in patients compared to control subjects. In summary, our results offer promising perspectives regarding the assessment of mitochondrial function in blood cells for the diagnosis of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsies, and for following disease progression and response to treatments.
Collapse
Affiliation(s)
- Martina Alonso
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Cristina Zabala
- Clínica Pediátrica A, Centro Hospitalario Pereira Rossell, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Referencia Nacional en Defectos Congénitos y Enfermedades Raras (CRENADECER) del Banco de Previsión Social (BPS), Uruguay
| | - Santiago Mansilla
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay; Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Uruguay
| | - Laureana De Brun
- Departamento de Patobiología, Unidad de Microbiología, Facultad de Veterinaria, Universidad de la República, Uruguay
| | - Jennyfer Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Mariela Garau
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Uruguay
| | - Gabriela Rivas
- Cátedra y Departamento de Hemoterapia y Medicina Transfusional, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay
| | - Cecilia Acosta
- Cátedra y Departamento de Hemoterapia y Medicina Transfusional, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay
| | - Daniela Lens
- Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay
| | - Alfredo Cerisola
- Centro de Referencia Nacional en Defectos Congénitos y Enfermedades Raras (CRENADECER) del Banco de Previsión Social (BPS), Uruguay; Cátedra de Neuropediatría, Facultad de Medicina, Universidad de la República, Uruguay
| | - Martín Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Uruguay; Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Uruguay
| | - Rodrigo Puentes
- Departamento de Patobiología, Unidad de Microbiología, Facultad de Veterinaria, Universidad de la República, Uruguay
| | | | - Víctor Raggio
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Uruguay
| | - Aída Lemes
- Centro de Referencia Nacional en Defectos Congénitos y Enfermedades Raras (CRENADECER) del Banco de Previsión Social (BPS), Uruguay
| | - Laura Castro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay.
| | - Celia Quijano
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay.
| |
Collapse
|
36
|
Extracellular vesicles tell all: How vesicle-mediated cellular communication shapes hematopoietic stem cell biology with increasing age. Exp Hematol 2021; 101-102:7-15. [PMID: 34407444 DOI: 10.1016/j.exphem.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer particles containing biologically important cargo and impart regulatory changes in target cells. Despite the importance of EVs in cellular communication, there remains a gap in our understanding of how EVs influence HSC fate and, in turn, how aging and longevity are affected. This review summarizes the current literature dealing with how age-altered intercellular communication mediated by EVs influences HSC biology.
Collapse
|
37
|
Marrow failure and aging: The role of "Inflammaging". Best Pract Res Clin Haematol 2021; 34:101283. [PMID: 34404535 DOI: 10.1016/j.beha.2021.101283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Despite aging and the enormous cellular output required of the marrow every day of the lifespan, most aged patients do not suffer significant marrow failure or cytopenias, an attestation to the proliferative capacity of this system. However, as marrow and its hematopoietic stem cells age, a reduction in ability to maintain homeostasis after stress or with exposure to prolonged chronic inflammation, so-called "inflammaging," may contribute to cytopenias, inadequate immune responses, and dysplasia/leukemia. In some instances, these changes may be intrinsic to the stem cell but in others, there may be extrinsic environmental influences. In this review, the role of aging as it relates to stem cell changes, immune function, and anemia are reviewed.
Collapse
|
38
|
Schroth J, Weber V, Jones TF, Del Arroyo AG, Henson SM, Ackland GL. Preoperative lymphopaenia, mortality, and morbidity after elective surgery: systematic review and meta-analysis. Br J Anaesth 2021; 127:32-40. [PMID: 33795133 PMCID: PMC8258977 DOI: 10.1016/j.bja.2021.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In the general adult population, lymphopaenia is associated with an increased risk for hospitalisation with infection and infection-related death. The quality of evidence and strength of association between perioperative lymphopaenia across different surgical procedures and mortality/morbidity has not been examined by systematic review or meta-analysis. METHODS We searched MEDLINE, Embase, Web of Science, Google Scholar, and Cochrane databases from their inception to June 29, 2020 for observational studies reporting lymphocyte count and in-hospital mortality rate in adults. We defined preoperative lymphopaenia as a lymphocyte count 1.0-1.5×109 L-1. Meta-analysis was performed using either fixed or random effects models. Quality was assessed using the Newcastle-Ottawa Scale. The I2 index was used to quantify heterogeneity. The primary outcome was in-hospital mortality rate and mortality rate at 30 days. RESULTS Eight studies met the inclusion criteria for meta-analysis, comprising 4811 patients (age range, 46-91 yr; female, 20-79%). These studies examined preoperative lymphocyte count exclusively. Studies were of moderate to high quality overall, ranking >7 using the Newcastle-Ottawa Scale. Preoperative lymphopaenia was associated with a threefold increase in mortality rate (risk ratio [RR]=3.22; 95% confidence interval [CI], 2.19-4.72; P<0.01, I2=0%) and more frequent major postoperative complications (RR=1.33; 95% CI, 1.21-1.45; P<0.01, I2=6%), including cardiovascular morbidity (RR=1.77; 95% CI, 1.45-2.15; P<0.01, I2=0%), infections (RR=1.45; 95% CI, 1.19-1.76; P<0.01, I2=0%), and acute renal dysfunction (RR=2.66; 95% CI, 1.49-4.77; P<0.01, I2=1%). CONCLUSION Preoperative lymphopaenia is associated with death and complications more frequently, independent of the type of surgery. PROSPERO REGISTRY NUMBER CRD42020190702.
Collapse
Affiliation(s)
- Johannes Schroth
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Valentin Weber
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Timothy F Jones
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ana Gutierrez Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sian M Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
39
|
Keller A, Temple T, Sayanjali B, Mihaylova MM. Metabolic Regulation of Stem Cells in Aging. CURRENT STEM CELL REPORTS 2021; 7:72-84. [PMID: 35251892 PMCID: PMC8893351 DOI: 10.1007/s40778-021-00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Tyus Temple
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Behnam Sayanjali
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
40
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
41
|
Using mitochondrial activity to select for potent human hematopoietic stem cells. Blood Adv 2021; 5:1605-1616. [PMID: 33710339 DOI: 10.1182/bloodadvances.2020003658] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic cell transplantation is a critical curative approach for many blood disorders. However, obtaining grafts with sufficient numbers of hematopoietic stem cells (HSCs) that maintain long-term engraftment remains challenging; this is due partly to metabolic modulations that restrict the potency of HSCs outside of their native environment. To address this, we focused on mitochondria. We found that human HSCs are heterogeneous in their mitochondrial activity as measured by mitochondrial membrane potential (MMP) even within the highly purified CD34+CD38-CD45RA-CD90+CD49f+ HSC population. We further found that the most potent HSCs exhibit the lowest mitochondrial activity in the population. We showed that the frequency of long-term culture initiating cells in MMP-low is significantly greater than in MMP-high CD34+CD38-CD45RA-CD90+ (CD90+) HSCs. Notably, these 2 populations were distinct in their long-term repopulating capacity when transplanted into immunodeficient mice. The level of chimerism 7 months posttransplantation was >50-fold higher in the blood of MMP-low relative to MMP-high CD90+ HSC recipients. Although more than 90% of both HSC subsets were in G0, MMP-low CD90+ HSCs exhibited delayed cell-cycle priming profile relative to MMP-high HSCs. These functional differences were associated with distinct mitochondrial morphology; MMP-low in contrast to MMP-high HSCs contained fragmented mitochondria. Our findings suggest that the lowest MMP level selects for the most potent, likely dormant, stem cells within the highly purified HSC population. These results identify a new approach for isolating highly potent human HSCs for further clinical applications. They also implicate mitochondria in the intrinsic regulation of human HSC quiescence and potency.
Collapse
|
42
|
Chakrabarty RP, Chandel NS. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell 2021; 28:394-408. [PMID: 33667360 DOI: 10.1016/j.stem.2021.02.011] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Ram Prosad Chakrabarty
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
Lei Y, Guerra Martinez C, Torres-Odio S, Bell SL, Birdwell CE, Bryant JD, Tong CW, Watson RO, West LC, West AP. Elevated type I interferon responses potentiate metabolic dysfunction, inflammation, and accelerated aging in mtDNA mutator mice. SCIENCE ADVANCES 2021; 7:eabe7548. [PMID: 34039599 PMCID: PMC8153723 DOI: 10.1126/sciadv.abe7548] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/08/2021] [Indexed: 05/30/2023]
Abstract
Mitochondrial dysfunction is a key driver of inflammatory responses in human disease. However, it remains unclear whether alterations in mitochondria-innate immune cross-talk contribute to the pathobiology of mitochondrial disorders and aging. Using the polymerase gamma (POLG) mutator model of mitochondrial DNA instability, we report that aberrant activation of the type I interferon (IFN-I) innate immune axis potentiates immunometabolic dysfunction, reduces health span, and accelerates aging in mutator mice. Mechanistically, elevated IFN-I signaling suppresses activation of nuclear factor erythroid 2-related factor 2 (NRF2), which increases oxidative stress, enhances proinflammatory cytokine responses, and accelerates metabolic dysfunction. Ablation of IFN-I signaling attenuates hyperinflammatory phenotypes by restoring NRF2 activity and reducing aerobic glycolysis, which combine to lessen cardiovascular and myeloid dysfunction in aged mutator mice. These findings further advance our knowledge of how mitochondrial dysfunction shapes innate immune responses and provide a framework for understanding mitochondria-driven immunopathology in POLG-related disorders and aging.
Collapse
Affiliation(s)
- Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Christine E Birdwell
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Joshua D Bryant
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Carl W Tong
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Laura Ciaccia West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
44
|
Mochizuki-Kashio M, Shiozaki H, Suda T, Nakamura-Ishizu A. Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism. Int J Mol Sci 2021; 22:4627. [PMID: 33924874 PMCID: PMC8124492 DOI: 10.3390/ijms22094627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis.
Collapse
Affiliation(s)
- Makiko Mochizuki-Kashio
- Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Hiroko Shiozaki
- Department of Hematology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, Singapore 117599, Singapore;
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Ayako Nakamura-Ishizu
- Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| |
Collapse
|
45
|
Lin RJ, Elias HK, van den Brink MRM. Immune Reconstitution in the Aging Host: Opportunities for Mechanism-Based Therapy in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:674093. [PMID: 33953731 PMCID: PMC8089387 DOI: 10.3389/fimmu.2021.674093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Older patients with hematologic malignancies are increasingly considered for allogeneic hematopoietic cell transplantation with encouraging outcomes. While aging-related thymic dysfunction remains a major obstacle to optimal and timely immune reconstitution post- transplantation, recent accumulating evidence has suggested that various aging hallmarks such as cellular senescence, inflamm-aging, and hematopoietic stem cell exhaustion, could also impact immune reconstitution post-transplantation in both thymic-dependent and independent manner. Here we review molecular and cellular aspects of immune senescence and immune rejuvenation related to allogeneic hematopoietic cell transplantation among older patients and discuss potential strategies for mechanism-based therapeutic intervention.
Collapse
Affiliation(s)
- Richard J Lin
- Adult Bone Marrow Transplantation (BMT) Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Harold K Elias
- Adult Bone Marrow Transplantation (BMT) Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation (BMT) Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
46
|
A comprehensive transcriptome signature of murine hematopoietic stem cell aging. Blood 2021; 138:439-451. [PMID: 33876187 DOI: 10.1182/blood.2020009729] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using two independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp, the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics, and deletion of Dnmt3a/b, molecularly resembles HSC rejuvenation or aging, respectively.
Collapse
|
47
|
Abstract
Purpose of Review The well-established crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for the homeostasis and hematopoietic regeneration in response to blood formation emergencies. Past decade has witnessed that the intercellular communication mediated by the transfer of cytoplasmic material and organelles between cells can regenerate and/or repair the damaged cells. Mitochondria have recently emerged as a potential regulator of HSC fate. This review intends to discuss recent advances in the understanding of the mitochondrial dynamics, specifically focused on the role of mitochondrial transfer, in the maintenance of HSC activity with clear implications in stem cell transplantation and regenerative medicine. Recent Findings HSC are highly heterogeneous in their mitochondrial metabolism, and the quiescence and potency of HSC depend on the status of mitochondrial dynamics and the clearance of damaged mitochondria. Recent evidence has shown that in stress response, BM stromal cells transfer healthy mitochondria to HSC, facilitate HSC bioenergetics shift towards oxidative phosphorylation, and subsequently stimulate leukocyte expansion. Furthermore, metabolic rewiring following mitochondria transfer from HSPC to BM stromal cells likely to repair the damaged BM niche and accelerate limiting HSC transplantation post myeloablative conditioning.
Collapse
|
48
|
Mohrin M. Mito-managing ROS & redox to reboot the immune system: Tapping mitochondria & redox management to extend the reach of hematopoietic stem cell transplantation. Free Radic Biol Med 2021; 165:38-53. [PMID: 33486089 DOI: 10.1016/j.freeradbiomed.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) are responsible for life-long production of blood and immune cells. HSC transplantation (HSCT) is the original cell therapy which can cure hematological disorders but also has the potential to treat other diseases if technical and safety barriers are overcome. To maintain homeostatic hematopoiesis or to restore hematopoiesis during transplantation HSCs must perform both self-renewal, replication of themselves, and differentiation, generation of mature blood and immune cells. These are just two of the cell fate choices HSCs have; the transitional phases where HSCs undergo these cell fate decisions are regulated by reduction-oxidation (redox) signaling, mitochondrial activity, and cellular metabolism. Recent studies revealed that mitochondria, a key source of redox signaling components, are central to HSC cell fate decisions. Here we highlight how mitochondria serve as hubs in HSCs to manage redox signaling and metabolism and thus guide HSC fate choices. We focus on how mitochondrial activity is modulated by their clearance, biogenesis, dynamics, distribution, and quality control in HSCs. We also note how modulating mitochondria in HSCs can help overcome technical barriers limiting further use of HSCT.
Collapse
Affiliation(s)
- Mary Mohrin
- Immunology Discovery, Genentech, Inc. 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
49
|
Nakamura-Ishizu A, Ito K, Suda T. Hematopoietic Stem Cell Metabolism during Development and Aging. Dev Cell 2021; 54:239-255. [PMID: 32693057 DOI: 10.1016/j.devcel.2020.06.029] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
Cellular metabolism in hematopoietic stem cells (HSCs) is an area of intense research interest, but the metabolic requirements of HSCs and their adaptations to their niches during development have remained largely unaddressed. Distinctive from other tissue stem cells, HSCs transition through multiple hematopoietic sites during development. This transition requires drastic metabolic shifts, insinuating the capacity of HSCs to meet the physiological demand of hematopoiesis. In this review, we highlight how mitochondrial metabolism determines HSC fate, and especially focus on the links between mitochondria, endoplasmic reticulum (ER), and lysosomes in HSC metabolism.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA; Department of Medicine (Hemato-Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA; Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan.
| |
Collapse
|
50
|
Arai F, Stumpf PS, Ikushima YM, Hosokawa K, Roch A, Lutolf MP, Suda T, MacArthur BD. Machine Learning of Hematopoietic Stem Cell Divisions from Paired Daughter Cell Expression Profiles Reveals Effects of Aging on Self-Renewal. Cell Syst 2020; 11:640-652.e5. [DOI: 10.1016/j.cels.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/22/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
|