1
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy FMA, Alsaadi SB, Abosaoda MK. Role of homeobox genes in cancer: immune system interactions, long non-coding RNAs, and tumor progression. Mol Biol Rep 2024; 51:964. [PMID: 39240390 DOI: 10.1007/s11033-024-09857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.
Collapse
Affiliation(s)
| | - Shireen Hamid Farhan
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Kaur C, Thakur A, Liou KC, Rao NV, Nepali K. Spleen tyrosine kinase (SYK): an emerging target for the assemblage of small molecule antitumor agents. Expert Opin Investig Drugs 2024; 33:897-914. [PMID: 39096234 DOI: 10.1080/13543784.2024.2388559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, has emerged as a vital component in the complex symphony of cancer cell survival and division. SYK activation (constitutive) is documented in various B-cell malignancies, and its inhibition induces programmed cell death. In some instances, it also acts as a tumor suppressor. AREAS COVERED Involvement of the SYK in the cancer growth, specifically in the progression of chronic lymphocytic leukemia (CLL), diffuse large B cell lymphomas (DLBCLs), acute myeloid leukemia (AML), and multiple myeloma (MM) is discussed. Therapeutic strategies to target SYK in cancer, including investigational SYK inhibitors, combinations of SYK inhibitors with other drugs targeting therapeutically relevant targets, and recent advancements in constructing new structural assemblages as SYK inhibitors, are also covered. EXPERT OPINION The SYK inhibitor field is currently marred by the poor translation rate of SYK inhibitors from preclinical to clinical studies. Also, dose-limited toxicities associated with the applications of SYK inhibitors have been evidenced. Thus, the development of new SYK inhibitory structural templates is in the need of the hour. To accomplish the aforementioned, interdisciplinary teams should incessantly invest efforts to expand the size of the armory of SYK inhibitors.
Collapse
Affiliation(s)
- Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Neralla Vijayakameswara Rao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
4
|
Barbosa K, Deshpande AJ. Therapeutic targeting of leukemia stem cells in acute myeloid leukemia. Front Oncol 2023; 13:1204895. [PMID: 37601659 PMCID: PMC10437214 DOI: 10.3389/fonc.2023.1204895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
One of the distinguishing properties of hematopoietic stem cells is their ability to self-renew. Since self-renewal is important for the continuous replenishment of the hematopoietic stem cell pool, this property is often hijacked in blood cancers. Acute myeloid leukemia (AML) is believed to be arranged in a hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk tumor. Some of the earliest characterizations of LSCs were made in seminal studies that assessed the ability of prospectively isolated candidate AML stem cells to repopulate the entire heterogeneity of the tumor in mice. Further studies indicated that LSCs may be responsible for chemotherapy resistance and therefore act as a reservoir for secondary disease and leukemia relapse. In recent years, a number of studies have helped illuminate the complexity of clonality in bone marrow pathologies, including leukemias. Many features distinguishing LSCs from normal hematopoietic stem cells have been identified, and these studies have opened up diverse avenues for targeting LSCs, with an impact on the clinical management of AML patients. This review will discuss the role of self-renewal in AML and its implications, distinguishing characteristics between normal and leukemia stem cells, and opportunities for therapeutic targeting of AML LSCs.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
5
|
Lieske A, Agyeman-Duah E, Selich A, Dörpmund N, Talbot SR, Schambach A, Maetzig T. A pro B cell population forms the apex of the leukemic hierarchy in Hoxa9/Meis1-dependent AML. Leukemia 2023; 37:79-90. [PMID: 36517672 PMCID: PMC9883166 DOI: 10.1038/s41375-022-01775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
Relapse is a major challenge to therapeutic success in acute myeloid leukemia (AML) and can be partly associated with heterogeneous leukemic stem cell (LSC) properties. In the murine Hoxa9/Meis1-dependent (H9M) AML model, LSC potential lies in three defined immunophenotypes, including Lin-cKit+ progenitor cells (Lin-), Gr1+CD11b+cKit+ myeloid cells, and lymphoid cells (Lym+). Previous reports demonstrated their interconversion and distinct drug sensitivities. In contrast, we here show that H9M AML is hierarchically organized. We, therefore, tracked the developmental potential of LSC phenotypes. This unexpectedly revealed a substantial fraction of Lin- LSCs that failed to regenerate Lym+ LSCs, and that harbored reduced leukemogenic potential. However, Lin- LSCs capable of producing Lym+ LSCs as well as Lym+ LSCs triggered rapid disease development suggestive of their high relapse-driving potential. Transcriptional analyses revealed that B lymphoid master regulators, including Sox4 and Bach2, correlated with Lym+ LSC development and presumably aggressive disease. Lentiviral overexpression of Sox4 and Bach2 induced dedifferentiation of H9M cells towards a lineage-negative state in vitro as the first step of lineage conversion. This work suggests that the potency to initiate a partial B lymphoid primed transcriptional program as present in infant AML correlates with aggressive disease and governs the H9M LSC hierarchy.
Collapse
Affiliation(s)
- Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Eric Agyeman-Duah
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nicole Dörpmund
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Gibbs KD. From pipettes to policy: Reflections on a decade working to expand opportunity and equity in science. FASEB Bioadv 2022; 4:217-224. [PMID: 35415458 PMCID: PMC8984077 DOI: 10.1096/fba.2022-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022] Open
Abstract
Science policy focuses on the allocation of resources within the scientific enterprise and the downstream impacts of these investments. Here, I describe my journey from being a curious kid, to becoming a signaling biologist, to my current role as a science policy professional focusing on the areas of biomedical research training, workforce diversity, and promoting basic research. I provide insights on skills important in this career track-collaboration, diplomacy, adaptability, and resilience. Finally, I share the vision that animates my work-"science by all, science for all"-and encourage you with the career advice my mother gave: "never self-eliminate."
Collapse
Affiliation(s)
- Kenneth D. Gibbs
- Division of Training, Workforce Development, and DiversityNational Institute of General Medical SciencesBethesdaMarylandUSA
| |
Collapse
|
7
|
Williams MS, Basma NJ, Amaral FMR, Wiseman DH, Somervaille TCP. Blast cells surviving acute myeloid leukemia induction therapy are in cycle with a signature of FOXM1 activity. BMC Cancer 2021; 21:1153. [PMID: 34711181 PMCID: PMC8554867 DOI: 10.1186/s12885-021-08839-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Disease relapse remains common following treatment of acute myeloid leukemia (AML) and is due to chemoresistance of leukemia cells with disease repopulating potential. To date, attempts to define the characteristics of in vivo resistant blasts have focused on comparisons between leukemic cells at presentation and relapse. However, further treatment responses are often seen following relapse, suggesting that most blasts remain chemosensitive. We sought to characterise in vivo chemoresistant blasts by studying the transcriptional and genetic features of blasts from before and shortly after induction chemotherapy using paired samples from six patients with primary refractory AML. METHODS Leukemic blasts were isolated by fluorescence-activated cell sorting. Fluorescence in situ hybridization (FISH), targeted genetic sequencing and detailed immunophenotypic analysis were used to confirm that sorted cells were leukemic. Sorted blasts were subjected to RNA sequencing. Lentiviral vectors expressing short hairpin RNAs were used to assess the effect of FOXM1 knockdown on colony forming capacity, proliferative capacity and apoptosis in cell lines, primary AML cells and CD34+ cells from healthy donors. RESULTS Molecular genetic analysis revealed early clonal selection occurring after induction chemotherapy. Immunophenotypic characterisation found leukemia-associated immunophenotypes in all cases that persisted following treatment. Despite the genetic heterogeneity of the leukemias studied, transcriptional analysis found concerted changes in gene expression in resistant blasts. Remarkably, the gene expression signature suggested that post-chemotherapy blasts were more proliferative than those at presentation. Resistant blasts also appeared less differentiated and expressed leukemia stem cell (LSC) maintenance genes. However, the proportion of immunophenotypically defined LSCs appeared to decrease following treatment, with implications for the targeting of these cells on the basis of cell surface antigen expression. The refractory gene signature was highly enriched with targets of the transcription factor FOXM1. shRNA knockdown experiments demonstrated that the viability of primary AML cells, but not normal CD34+ cells, depended on FOXM1 expression. CONCLUSIONS We found that chemorefractory blasts from leukemias with varied genetic backgrounds expressed a common transcriptional program. In contrast to the notion that LSC quiescence confers resistance to chemotherapy we find that refractory blasts are both actively proliferating and enriched with LSC maintenance genes. Using primary patient material from a relevant clinical context we also provide further support for the role of FOXM1 in chemotherapy resistance, proliferation and stem cell function in AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Apoptosis/genetics
- Blast Crisis/drug therapy
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Cell Differentiation
- Cell Proliferation/genetics
- Cell Survival
- Drug Resistance, Neoplasm/genetics
- Female
- Flow Cytometry
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/metabolism
- Gene Silencing
- Humans
- Immunophenotyping
- In Situ Hybridization, Fluorescence
- Induction Chemotherapy
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Neoplastic Stem Cells/pathology
- RNA, Small Interfering/metabolism
- Recurrence
- Tumor Stem Cell Assay
- Young Adult
Collapse
Affiliation(s)
- Mark S Williams
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| | - Naseer J Basma
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
8
|
Hassan JJ, Lieske A, Dörpmund N, Klatt D, Hoffmann D, Kleppa MJ, Kustikova OS, Stahlhut M, Schwarzer A, Schambach A, Maetzig T. A Multiplex CRISPR-Screen Identifies PLA2G4A as Prognostic Marker and Druggable Target for HOXA9 and MEIS1 Dependent AML. Int J Mol Sci 2021; 22:ijms22179411. [PMID: 34502319 PMCID: PMC8431012 DOI: 10.3390/ijms22179411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
HOXA9 and MEIS1 are frequently upregulated in acute myeloid leukemia (AML), including those with MLL-rearrangement. Because of their pivotal role in hemostasis, HOXA9 and MEIS1 appear non-druggable. We, thus, interrogated gene expression data of pre-leukemic (overexpressing Hoxa9) and leukemogenic (overexpressing Hoxa9 and Meis1; H9M) murine cell lines to identify cancer vulnerabilities. Through gene expression analysis and gene set enrichment analyses, we compiled a list of 15 candidates for functional validation. Using a novel lentiviral multiplexing approach, we selected and tested highly active sgRNAs to knockout candidate genes by CRISPR/Cas9, and subsequently identified a H9M cell growth dependency on the cytosolic phospholipase A2 (PLA2G4A). Similar results were obtained by shRNA-mediated suppression of Pla2g4a. Remarkably, pharmacologic inhibition of PLA2G4A with arachidonyl trifluoromethyl ketone (AACOCF3) accelerated the loss of H9M cells in bulk cultures. Additionally, AACOCF3 treatment of H9M cells reduced colony numbers and colony sizes in methylcellulose. Moreover, AACOCF3 was highly active in human AML with MLL rearrangement, in which PLA2G4A was significantly higher expressed than in AML patients without MLL rearrangement, and is sufficient as an independent prognostic marker. Our work, thus, identifies PLA2G4A as a prognostic marker and potential therapeutic target for H9M-dependent AML with MLL-rearrangement.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CRISPR-Cas Systems
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Group IV Phospholipases A2/antagonists & inhibitors
- Group IV Phospholipases A2/genetics
- High-Throughput Screening Assays
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Myeloid Ecotropic Viral Integration Site 1 Protein/genetics
- Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jacob Jalil Hassan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Dörpmund
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Olga S. Kustikova
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
9
|
Tang Q, Yin D, Wang Y, Du W, Qin Y, Ding A, Li H. Cancer Stem Cells and Combination Therapies to Eradicate Them. Curr Pharm Des 2020; 26:1994-2008. [PMID: 32250222 DOI: 10.2174/1381612826666200406083756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) show self-renewal ability and multipotential differentiation, like normal stem or progenitor cells, and which proliferate uncontrollably and can escape the effects of drugs and phagocytosis by immune cells. Traditional monotherapies, such as surgical resection, radiotherapy and chemotherapy, cannot eradicate CSCs, however, combination therapy may be more effective at eliminating CSCs. The present review summarizes the characteristics of CSCs and several promising combination therapies to eradicate them.
Collapse
Affiliation(s)
- Qi Tang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yao Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenxuan Du
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuhan Qin
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Anni Ding
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanmei Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
10
|
Hartmann FJ, Simonds EF, Vivanco N, Bruce T, Borges L, Nolan GP, Spitzer MH, Bendall SC. Scalable Conjugation and Characterization of Immunoglobulins with Stable Mass Isotope Reporters for Single-Cell Mass Cytometry Analysis. Methods Mol Biol 2019; 1989:55-81. [PMID: 31077099 PMCID: PMC6687300 DOI: 10.1007/978-1-4939-9454-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The advent of mass cytometry (CyTOF®) has permitted simultaneous detection of more than 40 antibody parameters at the single-cell level, although a limited number of metal-labeled antibodies are commercially available. Here we present optimized and scalable protocols for conjugation of lanthanide as well as bismuth ions to immunoglobulin (Ig) using a maleimide-functionalized chelating polymer and for characterization of the conjugate. The maleimide functional group is reactive with cysteine sulfhydryl groups generated through partial reduction of the Ig Fc region. Incubation of Ig with polymer pre-loaded with lanthanide ions produces metal-labeled Ig without disrupting antigen specificity. Antibody recovery rates can be determined by UV spectrophotometry and frequently exceeds 60%. Each custom-conjugated antibody is validated using positive and negative cellular control populations and is titrated for optimal staining at concentrations ranging from 0.1 to 10 μg/mL. The preparation of metal-labeled antibodies can be completed in 4.5 h, and titration requires an additional 3-5 h.
Collapse
Affiliation(s)
| | - Erin F Simonds
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nora Vivanco
- Immunology Program, Stanford University, Stanford, CA, USA
| | - Trevor Bruce
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Luciene Borges
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Immunology Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Fluorescent genetic barcoding for cellular multiplex analyses. Exp Hematol 2018; 67:10-17. [DOI: 10.1016/j.exphem.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
|
12
|
Bartaula-Brevik S, Lindstad Brattås MK, Tvedt THA, Reikvam H, Bruserud Ø. Splenic tyrosine kinase (SYK) inhibitors and their possible use in acute myeloid leukemia. Expert Opin Investig Drugs 2018; 27:377-387. [DOI: 10.1080/13543784.2018.1459562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sushma Bartaula-Brevik
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Tor Henrik Anderson Tvedt
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med 2018; 24:474-483. [PMID: 29505032 DOI: 10.1038/nm.4505] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Insight into the cancer cell populations that are responsible for relapsed disease is needed to improve outcomes. Here we report a single-cell-based study of B cell precursor acute lymphoblastic leukemia at diagnosis that reveals hidden developmentally dependent cell signaling states that are uniquely associated with relapse. By using mass cytometry we simultaneously quantified 35 proteins involved in B cell development in 60 primary diagnostic samples. Each leukemia cell was then matched to its nearest healthy B cell population by a developmental classifier that operated at the single-cell level. Machine learning identified six features of expanded leukemic populations that were sufficient to predict patient relapse at diagnosis. These features implicated the pro-BII subpopulation of B cells with activated mTOR signaling, and the pre-BI subpopulation of B cells with activated and unresponsive pre-B cell receptor signaling, to be associated with relapse. This model, termed 'developmentally dependent predictor of relapse' (DDPR), significantly improves currently established risk stratification methods. DDPR features exist at diagnosis and persist at relapse. By leveraging a data-driven approach, we demonstrate the predictive value of single-cell 'omics' for patient stratification in a translational setting and provide a framework for its application to human cancer.
Collapse
|
14
|
Somerville TDD, Simeoni F, Chadwick JA, Williams EL, Spencer GJ, Boros K, Wirth C, Tholouli E, Byers RJ, Somervaille TCP. Derepression of the Iroquois Homeodomain Transcription Factor Gene IRX3 Confers Differentiation Block in Acute Leukemia. Cell Rep 2018; 22:638-652. [PMID: 29346763 PMCID: PMC5792454 DOI: 10.1016/j.celrep.2017.12.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/22/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
The Iroquois homeodomain transcription factor gene IRX3 is expressed in the developing nervous system, limb buds, and heart, and transcript levels specify obesity risk in humans. We now report a functional role for IRX3 in human acute leukemia. Although transcript levels are very low in normal human bone marrow cells, high IRX3 expression is found in ∼30% of patients with acute myeloid leukemia (AML), ∼50% with T-acute lymphoblastic leukemia, and ∼20% with B-acute lymphoblastic leukemia, frequently in association with high-level HOXA gene expression. Expression of IRX3 alone was sufficient to immortalize hematopoietic stem and progenitor cells (HSPCs) in myeloid culture and induce lymphoid leukemias in vivo. IRX3 knockdown induced terminal differentiation of AML cells. Combined IRX3 and Hoxa9 expression in murine HSPCs impeded normal T-progenitor differentiation in lymphoid culture and substantially enhanced the morphologic and phenotypic differentiation block of AML in myeloid leukemia transplantation experiments through suppression of a terminal myelomonocytic program. Likewise, in cases of primary human AML, high IRX3 expression is strongly associated with reduced myelomonocytic differentiation. Thus, tissue-inappropriate derepression of IRX3 contributes significantly to the block in differentiation, which is the pathognomonic feature of human acute leukemias.
Collapse
Affiliation(s)
- Tim D D Somerville
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - John A Chadwick
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Emma L Williams
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Katalin Boros
- Department of Histopathology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Christopher Wirth
- Applied Computational Biology and Bioinformatics Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Eleni Tholouli
- Department of Haematology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Richard J Byers
- Department of Histopathology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK.
| |
Collapse
|
15
|
Guarnerio J, Mendez LM, Asada N, Menon AV, Fung J, Berry K, Frenette PS, Ito K, Pandolfi PP. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun 2018; 9:66. [PMID: 29302031 PMCID: PMC5754357 DOI: 10.1038/s41467-017-02427-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/29/2017] [Indexed: 01/09/2023] Open
Abstract
Disease recurrence after therapy, due to the persistence of resistant leukemic cells, represents a fundamental problem in the treatment of leukemia. Elucidating the mechanisms responsible for the maintenance of leukemic cells, before and after treatment, is therefore critical to identify curative modalities. It has become increasingly clear that cell-autonomous mechanisms are not solely responsible for leukemia maintenance. Here, we report a role for Pml in mesenchymal stem cells (MSCs) in supporting leukemic cells of both CML and AML. Mechanistically, we show that Pml regulates pro-inflammatory cytokines within MSCs, and that this function is critical in sustaining CML-KLS and AML ckit+ leukemic cells non-cell autonomously.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Proliferation/genetics
- Cells, Cultured
- Cytokines/metabolism
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplastic Stem Cells/metabolism
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Stem Cell Niche
Collapse
Affiliation(s)
- Jlenia Guarnerio
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lourdes Maria Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Noboru Asada
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Medicine and Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jacqueline Fung
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kelsey Berry
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Medicine and Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Medicine and Cell Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
16
|
Schneider E, Staffas A, Röhner L, Malmberg ED, Ashouri A, Krowiorz K, Pochert N, Miller C, Wei SY, Arabanian L, Buske C, Döhner H, Bullinger L, Fogelstrand L, Heuser M, Döhner K, Xiang P, Ruschmann J, Petriv OI, Heravi-Moussavi A, Hansen CL, Hirst M, Humphries RK, Rouhi A, Palmqvist L, Kuchenbauer F. Micro-ribonucleic acid-155 is a direct target of Meis1, but not a driver in acute myeloid leukemia. Haematologica 2017; 103:246-255. [PMID: 29217774 PMCID: PMC5792269 DOI: 10.3324/haematol.2017.177485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Micro-ribonucleic acid-155 (miR-155) is one of the first described oncogenic miRNAs. Although multiple direct targets of miR-155 have been identified, it is not clear how it contributes to the pathogenesis of acute myeloid leukemia. We found miR-155 to be a direct target of Meis1 in murine Hoxa9/Meis1 induced acute myeloid leukemia. The additional overexpression of miR-155 accelerated the formation of acute myeloid leukemia in Hoxa9 as well as in Hoxa9/Meis1 cells in vivo. However, in the absence or following the removal of miR-155, leukemia onset and progression were unaffected. Although miR-155 accelerated growth and homing in addition to impairing differentiation, our data underscore the pathophysiological relevance of miR-155 as an accelerator rather than a driver of leukemogenesis. This further highlights the complexity of the oncogenic program of Meis1 to compensate for the loss of a potent oncogene such as miR-155. These findings are highly relevant to current and developing approaches for targeting miR-155 in acute myeloid leukemia.
Collapse
Affiliation(s)
- Edith Schneider
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Anna Staffas
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Linda Röhner
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Erik D Malmberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | | | - Kathrin Krowiorz
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Nicole Pochert
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Christina Miller
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Stella Yuan Wei
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden.,Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Laleh Arabanian
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Linda Fogelstrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Heuser
- Department of Hematology, Homeostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Ping Xiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jens Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Oleh I Petriv
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Alireza Heravi-Moussavi
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Carl L Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada.,Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Arefeh Rouhi
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Germany .,Institute of Experimental Cancer Research, Comprehensive Cancer Centre Ulm, Germany
| |
Collapse
|
17
|
|
18
|
Gupta SD, Sachs Z. Novel single-cell technologies in acute myeloid leukemia research. Transl Res 2017; 189:123-135. [PMID: 28802867 PMCID: PMC6584944 DOI: 10.1016/j.trsl.2017.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022]
Abstract
Acute myeloid leukemia (AML) is a lethal malignancy because patients who initially respond to chemotherapy eventually relapse with treatment refractory disease. Relapse is caused by leukemia stem cells (LSCs) that reestablish the disease through self-renewal. Self-renewal is the ability of a stem cell to produce copies of itself and give rise to progeny cells. Therefore, therapeutic strategies eradicating LSCs are essential to prevent relapse and achieve long-term remission in AML. AML is a heterogeneous disease both at phenotypic and genotypic levels, and this heterogeneity extends to LSCs. Classical studies in AML have aimed at characterization of the bulk tumor population, thereby masking cellular heterogeneity. Single-cell approaches provide a novel opportunity to elucidate molecular mechanisms in heterogeneous diseases such as AML. In recent years, major advancements in single-cell measurement systems have revolutionized our understanding of the pathophysiology of AML and enabled the characterization of LSCs. Identifying the molecular mechanisms critical to AML LSCs will aid in the development of targeted therapeutic strategies to combat this deadly disease.
Collapse
Affiliation(s)
- Soumyasri Das Gupta
- Division of Hematology, Oncology, and Transplantation, Department Medicine, University of Minnesota, Minneapolis, Minn
| | - Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department Medicine, University of Minnesota, Minneapolis, Minn; Masonic Cancer Center, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
19
|
Maetzig T, Ruschmann J, Sanchez Milde L, Lai CK, von Krosigk N, Humphries RK. Lentiviral Fluorescent Genetic Barcoding for Multiplex Fate Tracking of Leukemic Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:54-65. [PMID: 28664166 PMCID: PMC5480982 DOI: 10.1016/j.omtm.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/28/2017] [Indexed: 02/06/2023]
Abstract
Tracking the behavior of leukemic samples both in vitro and in vivo plays an increasingly large role in efforts to better understand the leukemogenic processes and the effects of potential new therapies. Such work can be accelerated and made more efficient by methodologies enabling the characterization of leukemia samples in multiplex assays. We recently developed three sets of lentiviral fluorescent genetic barcoding (FGB) vectors that create 26, 14, and 6 unique immunophenotyping-compatible color codes from GFP-, yellow fluorescent protein (YFP)-, and monomeric kusabira orange 2 (mKO2)-derived fluorescent proteins. These vectors allow for labeling and tracking of individual color-coded cell populations in mixed samples by real-time flow cytometry. Using the prototypical Hoxa9/Meis1 murine model of acute myeloid leukemia, we describe the application of the 6xFGB vector system for assessing leukemic cell characteristics in multiplex assays. By transplanting color-coded cell mixes, we investigated the competitive growth behavior of individual color-coded populations, determined leukemia-initiating cell frequencies, and assessed the dose-dependent potential of cells exposed to the histone deacetylase inhibitor Entinostat for bone marrow homing. Thus, FGB provides a useful tool for the multiplex characterization of leukemia samples in a wide variety of applications with a concomitant reduction in workload, processing times, and mouse utilization.
Collapse
Affiliation(s)
- Tobias Maetzig
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jens Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lea Sanchez Milde
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Courteney K Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Niklas von Krosigk
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
20
|
Mohr S, Doebele C, Comoglio F, Berg T, Beck J, Bohnenberger H, Alexe G, Corso J, Ströbel P, Wachter A, Beissbarth T, Schnütgen F, Cremer A, Haetscher N, Göllner S, Rouhi A, Palmqvist L, Rieger MA, Schroeder T, Bönig H, Müller-Tidow C, Kuchenbauer F, Schütz E, Green AR, Urlaub H, Stegmaier K, Humphries RK, Serve H, Oellerich T. Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia. Cancer Cell 2017; 31:549-562.e11. [PMID: 28399410 PMCID: PMC5389883 DOI: 10.1016/j.ccell.2017.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.
Collapse
Affiliation(s)
- Sebastian Mohr
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Carmen Doebele
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Federico Comoglio
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Tobias Berg
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Julia Beck
- Chronix Biomedical, Goetheallee 8, 37073 Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Astrid Wachter
- Institute of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
| | - Tim Beissbarth
- Institute of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
| | - Frank Schnütgen
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Anjali Cremer
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Nadine Haetscher
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Stefanie Göllner
- Department of Hematology and Oncology, University of Halle, Ernst-Grube-Street 40, 06120 Halle, Germany
| | - Arefeh Rouhi
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Su sahlgrenska, 41345 Gothenburg, Sweden
| | - Michael A Rieger
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Sandhofstraße 1, 60590 Frankfurt, Germany
| | - Carsten Müller-Tidow
- Department of Hematology and Oncology, University of Halle, Ernst-Grube-Street 40, 06120 Halle, Germany
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Anthony R Green
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Georg August University, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Abstract
STUDY DESIGN The expression of HOXB13 and HOXA9 proteins was detected. OBJECTIVE The purpose of this study was to investigate the molecular signature of spinal ependymoma (EPN) and astrocytoma, 2 most common types of intramedullary spinal tumor. SUMMARY OF BACKGROUND DATA Intramedullary spinal tumor is unusual. It leads to high neurological morbidity and mortality without treatment. Till now, its molecular feature has been elucidated up to a little extent. METHODS A total of 37 cases of spinal EPN, including 12 myxopapillary EPNs (MEPNs), 18 classic EPNs, and 7 anaplastic EPNs, and another 12 cases of astrocytoma were selected for this study. Immunohistochemical analysis of a large cohort of patients providing clinical tumor samples was performed to compare the expression of HOXB13 and HOXA9 not only between spinal EPN and astrocytoma but also among all 3 World Health Organization grades of spinal EPN. RESULTS The results showed that HOXB13 and HOXA9 were selectively expressed in spinal EPN instead of astrocytoma. Furthermore, we found the strongest positive response of HOXB13 in MEPN whereas that of HOXA9 was ubiquitously detected in all subgroups of EPN. CONCLUSION Both specificity and sensitivity of HOXB13 in MEPN indicated that HOXB13 might be a diagnostic marker to distinguish MEPN from other 2 types of EPN and a promising therapeutic target for MEPN. The strong immunoreactivity of HOXA9 in spinal EPN suggested an indispensable role in the progression of spinal EPN, and further research on its molecular function will provide new clues for the development of treatment options. LEVEL OF EVIDENCE N /A.
Collapse
|
22
|
Tsuruta-Kishino T, Koya J, Kataoka K, Narukawa K, Sumitomo Y, Kobayashi H, Sato T, Kurokawa M. Loss of p53 induces leukemic transformation in a murine model of Jak2 V617F-driven polycythemia vera. Oncogene 2017; 36:3300-3311. [PMID: 28068330 DOI: 10.1038/onc.2016.478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023]
Abstract
As leukemic transformation of myeloproliferative neoplasms (MPNs) worsens the clinical outcome, reducing the inherent risk of the critical event in MPN cases could be beneficial. Among genetic alterations concerning the transformation, the frequent one is TP53 mutation. Here we show that retroviral overexpression of Jak2 V617F mutant into wild-type p53 murine bone marrow cells induced polycythemia vera (PV) in the recipient mice, whereas Jak2 V617F-transduced p53-null mice developed lethal leukemia after the preceding PV phase. The leukemic mice had severe anemia, hepatosplenomegaly, pulmonary hemorrhage and expansion of dysplastic erythroid progenitors. Primitive leukemia cells (c-kit+Sca1+Lin- (KSL) and CD34-CD16/32-c-kit+Sca1-Lin- (megakaryocyte-erythroid progenitor; MEP)) and erythroid progenitors (CD71+) from Jak2 V617F-transduced p53-null leukemic mice had leukemia-initiating capacity, however, myeloid differentiated populations (Mac-1+) could not recapitulate the disease. Interestingly, recipients transplanted with CD71+ cells rapidly developed erythroid leukemia, which was in sharp contrast to leukemic KSL cells to cause lethal leukemia after the polycythemic state. The leukemic CD71+ cells were more sensitive to INCB18424, a potent JAK inhibitor, than KSL cells. p53 restoration could ameliorate Jak2 V617F-transduced p53-null erythroleukemia. Taken together, our results show that p53 loss is sufficient for inducing leukemic transformation in Jak2 V617F-positive MPN.
Collapse
Affiliation(s)
- T Tsuruta-Kishino
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - J Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K Narukawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Y Sumitomo
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Oncology Research Laboratories, Kyowa Hakko Kirin Co., Machida, Tokyo, Japan
| | - H Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - T Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - M Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Cell Therapy and Transplantation, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
23
|
|
24
|
Krowiorz K, Ruschmann J, Lai C, Ngom M, Maetzig T, Martins V, Scheffold A, Schneider E, Pochert N, Miller C, Palmqvist L, Staffas A, Mulaw M, Bohl SR, Buske C, Heuser M, Kraus J, O'Neill K, Hansen CL, Petriv OI, Kestler H, Döhner H, Bullinger L, Döhner K, Humphries RK, Rouhi A, Kuchenbauer F. MiR-139-5p is a potent tumor suppressor in adult acute myeloid leukemia. Blood Cancer J 2016; 6:e508. [PMID: 27935579 PMCID: PMC5223146 DOI: 10.1038/bcj.2016.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- K Krowiorz
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - J Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - C Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - M Ngom
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - T Maetzig
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - V Martins
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - A Scheffold
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - E Schneider
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - N Pochert
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - C Miller
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - L Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - A Staffas
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M Mulaw
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre Ulm, Ulm, Germany
| | - S R Bohl
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - C Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre Ulm, Ulm, Germany
| | - M Heuser
- Department of Hematology, Homeostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - J Kraus
- Medical Systems Biology, Ulm University, Ulm, Germany
| | - K O'Neill
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - C L Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - O I Petriv
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Kestler
- Medical Systems Biology, Ulm University, Ulm, Germany
| | - H Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - L Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - K Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - R K Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - A Rouhi
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - F Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
25
|
Gao J, Li W, Guo Y, Feng SS. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells. Nanomedicine (Lond) 2016; 11:3261-3282. [PMID: 27854161 DOI: 10.2217/nnm-2016-0261] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are original cancer cells that are of characteristics associated with normal stem cells. CSCs are toughest against various treatments and thus responsible for cancer metastasis and recurrence. Therefore, development of specific and effective treatment of CSCs plays a key role in improving survival and life quality of cancer patients, especially those in the metastatic stage. Nanomedicine strategies, which include prodrugs, micelles, liposomes and nanoparticles of biodegradable polymers, could substantially improve the therapeutic index of conventional therapeutics due to its manner of sustained, controlled and targeted delivery of high transportation efficiency across the cell membrane and low elimination by intracellular autophagy, and thus provide a practical solution to solve the problem encountered in CSCs treatment. This review gives briefly the latest information to summarize the concept, strategies, mechanisms and current status as well as future promises of nanomedicine strategies for treatment of CSCs.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical Sciences, School of Pharmacy, the Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Si-Shen Feng
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China.,Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02-11, 4 Engineering Drive 4, Singapore 117576, Singapore.,Suzhou NanoStar Biopharm Inc. Ltd, BioBay, Bld B2, Unit 604, 218 Xing-Hu Street, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
26
|
Greenplate AR, Johnson DB, Ferrell PB, Irish JM. Systems immune monitoring in cancer therapy. Eur J Cancer 2016; 61:77-84. [PMID: 27155446 PMCID: PMC4885747 DOI: 10.1016/j.ejca.2016.03.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
Abstract
Treatments that successfully modulate anti-cancer immunity have significantly improved outcomes for advanced stage malignancies and sparked intense study of the cellular mechanisms governing therapy response and resistance. These responses are governed by an evolving milieu of cancer and immune cell subpopulations that can be a rich source of biomarkers and biological insight, but it is only recently that research tools have developed to comprehensively characterize this level of cellular complexity. Mass cytometry is particularly well suited to tracking cells in complex tissues because >35 measurements can be made on each of hundreds of thousands of cells per sample, allowing all cells detected in a sample to be characterized for cell type, signalling activity, and functional outcome. This review focuses on mass cytometry as an example of systems level characterization of cancer and immune cells in human tissues, including blood, bone marrow, lymph nodes, and primary tumours. This review also discusses the state of the art in single cell tumour immunology, including tissue collection, technical and biological quality controls, computational analysis, and integration of different experimental and clinical data types. Ex vivo analysis of human tumour cells complements both in vivo monitoring, which generally measures far fewer features or lacks single cell resolution, and laboratory models, which incur cell type losses, signalling alterations, and genomic changes during establishment. Mass cytometry is on the leading edge of a new generation of cytomic tools that work with small tissue samples, such as a fine needle aspirates or blood draws, to monitor changes in rare or unexpected cell subsets during cancer therapy. This approach holds great promise for dissecting cellular microenvironments, monitoring how treatments affect tissues, revealing cellular biomarkers and effector mechanisms, and creating new treatments that productively engage the immune system to fight cancer and other diseases.
Collapse
Affiliation(s)
- Allison R Greenplate
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
27
|
Marin Zapata PA, Beese CJ, Jünger A, Dalmasso G, Brady NR, Hamacher-Brady A. Time course decomposition of cell heterogeneity in TFEB signaling states reveals homeostatic mechanisms restricting the magnitude and duration of TFEB responses to mTOR activity modulation. BMC Cancer 2016; 16:355. [PMID: 27268034 PMCID: PMC4896000 DOI: 10.1186/s12885-016-2388-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/26/2016] [Indexed: 01/09/2023] Open
Abstract
Background TFEB (transcription factor EB) regulates metabolic homeostasis through its activation of lysosomal biogenesis following its nuclear translocation. TFEB activity is inhibited by mTOR phosphorylation, which signals its cytoplasmic retention. To date, the temporal relationship between alterations to mTOR activity states and changes in TFEB subcellular localization and concentration has not been sufficiently addressed. Methods mTOR was activated by renewed addition of fully-supplemented medium, or inhibited by Torin1 or nutrient deprivation. Single-cell TFEB protein levels and subcellular localization in HeLa and MCF7 cells were measured over a time course of 15 hours by multispectral imaging cytometry. To extract single-cell level information on heterogeneous TFEB activity phenotypes, we developed a framework for identification of TFEB activity subpopulations. Through unsupervised clustering, cells were classified according to their TFEB nuclear concentration, which corresponded with downstream lysosomal responses. Results Bulk population results revealed that mTOR negatively regulates TFEB protein levels, concomitantly to the regulation of TFEB localization. Subpopulation analysis revealed maximal sensitivity of HeLa cells to mTOR activity stimulation, leading to inactivation of 100 % of the cell population within 0.5 hours, which contrasted with a lower sensitivity in MCF7 cells. Conversely, mTOR inhibition increased the fully active subpopulation only fractionally, and full activation of 100 % of the population required co-inhibition of mTOR and the proteasome. Importantly, mTOR inhibition activated TFEB for a limited duration of 1.5 hours, and thereafter the cell population was progressively re-inactivated, with distinct kinetics for Torin1 and nutrient deprivation treatments. Conclusion TFEB protein levels and subcellular localization are under control of a short-term rheostat, which is highly responsive to negative regulation by mTOR, but under conditions of mTOR inhibition, restricts TFEB activation in a manner dependent on the proteasome. We further identify a long-term, mTOR-independent homeostatic control negatively regulating TFEB upon prolonged mTOR inhibition. These findings are of relevance for developing strategies to target TFEB activity in disease treatment. Moreover, our quantitative approach to decipher phenotype heterogeneity in imaging datasets is of general interest, as shifts between subpopulations provide a quantitative description of single cell behaviour, indicating novel regulatory behaviors and revealing differences between cell types. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2388-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Andrea Marin Zapata
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Carsten Jörn Beese
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Anja Jünger
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany.,Systems Biology of Cell Death Mechanisms, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Giovanni Dalmasso
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Nathan Ryan Brady
- Systems Biology of Cell Death Mechanisms, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany. .,Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany. .,W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.
| | - Anne Hamacher-Brady
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany. .,W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.
| |
Collapse
|
28
|
Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1238-60. [DOI: 10.1016/j.bbamcr.2016.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
|
29
|
Somerville TDD, Wiseman DH, Spencer GJ, Huang X, Lynch JT, Leong HS, Williams EL, Cheesman E, Somervaille TCP. Frequent Derepression of the Mesenchymal Transcription Factor Gene FOXC1 in Acute Myeloid Leukemia. Cancer Cell 2015; 28:329-42. [PMID: 26373280 DOI: 10.1016/j.ccell.2015.07.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/01/2015] [Accepted: 07/30/2015] [Indexed: 01/18/2023]
Abstract
Through in silico and other analyses, we identified FOXC1 as expressed in at least 20% of human AML cases, but not in normal hematopoietic populations. FOXC1 expression in AML was almost exclusively associated with expression of the HOXA/B locus. Functional experiments demonstrated that FOXC1 contributes to a block in monocyte/macrophage differentiation and enhances clonogenic potential. In in vivo analyses, FOXC1 collaborates with HOXA9 to accelerate significantly the onset of symptomatic leukemia. A FOXC1-repressed gene set identified in murine leukemia exhibited quantitative repression in human AML in accordance with FOXC1 expression, and FOXC1(high) human AML cases exhibited reduced morphologic monocytic differentiation and inferior survival. Thus, FOXC1 is frequently derepressed to functional effect in human AML.
Collapse
Affiliation(s)
- Tim D D Somerville
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Daniel H Wiseman
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Xu Huang
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - James T Lynch
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Hui Sun Leong
- Computational Biology Support Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Emma L Williams
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Edmund Cheesman
- Department of Diagnostic Paediatric Pathology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK.
| |
Collapse
|
30
|
Pojo M, Gonçalves CS, Xavier-Magalhães A, Oliveira AI, Gonçalves T, Correia S, Rodrigues AJ, Costa S, Pinto L, Pinto AA, Lopes JM, Reis RM, Rocha M, Sousa N, Costa BM. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget 2015; 6:7657-74. [PMID: 25762636 PMCID: PMC4480707 DOI: 10.18632/oncotarget.3150] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/16/2015] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma is the most malignant brain tumor, exhibiting remarkable resistance to treatment. Here we investigated the oncogenic potential of HOXA9 in gliomagenesis, the molecular and cellular mechanisms by which HOXA9 renders glioblastoma more aggressive, and how HOXA9 affects response to chemotherapy and survival. The prognostic value of HOXA9 in glioblastoma patients was validated in two large datasets from TCGA and Rembrandt, where high HOXA9 levels were associated with shorter survival. Transcriptomic analyses identified novel HOXA9-target genes with key roles in cancer-related processes, including cell proliferation, DNA repair, and stem cell maintenance. Functional studies with HOXA9-overexpressing and HOXA9-silenced glioblastoma cell models revealed that HOXA9 promotes cell viability, stemness and invasion, and inhibits apoptosis. Additionally, HOXA9 promoted the malignant transformation of human immortalized astrocytes in an orthotopic in vivo model, and caused tumor-associated death. HOXA9 also mediated resistance to temozolomide treatment in vitro and in vivo via upregulation of BCL2. Importantly, the pharmacological inhibition of BCL2 with the BH3 mimetic ABT-737 reverted temozolomide resistance in HOXA9-positive cells. These data establish HOXA9 as a driver of glioma initiation, aggressiveness and resistance to therapy. In the future, the combination of BH3 mimetics with temozolomide should be further explored as an alternative treatment for glioblastoma.
Collapse
Affiliation(s)
- Marta Pojo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Ana Xavier-Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Ana Isabel Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Tiago Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Sara Correia
- Centre of Biological Engineering/Department of Informatics, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Ana J. Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Sandra Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Afonso A. Pinto
- Department of Neurosurgery, Hospital de Braga, Sete Fontes, 4710-243 São Victor, Braga, Portugal
| | - José M. Lopes
- Department of Pathology, Hospital S. João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Molecular Pathology and Immunology at the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n 4200-465 Porto, Portugal
- Medical Faculty, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui M. Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
- Barretos Cancer Hospital, Molecular Oncology Research Center, Rua Antenor Duarte Vilela, 1331 - Doutor Paulo Prata, Barretos - SP, 14780-000, Brasil
| | - Miguel Rocha
- Centre of Biological Engineering/Department of Informatics, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
31
|
Han L, Qiu P, Zeng Z, Jorgensen JL, Mak DH, Burks JK, Schober W, McQueen TJ, Cortes J, Tanner SD, Roboz GJ, Kantarjian HM, Kornblau SM, Guzman ML, Andreeff M, Konopleva M. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytometry A 2015; 87:346-56. [PMID: 25598437 DOI: 10.1002/cyto.a.22628] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the unique phenotypes and complex signaling pathways of leukemia stem cells (LSCs) will provide insights and druggable targets that can be used to eradicate acute myeloid leukemia (AML). Current work on AML LSCs is limited by the number of parameters that conventional flow cytometry (FCM) can analyze because of cell autofluorescence and fluorescent dye spectral overlap. Single-cell mass cytometry (CyTOF) substitutes rare earth elements for fluorophores to label antibodies, which allows measurements of up to 120 parameters in single cells without correction for spectral overlap. The aim of this study was the evaluation of intracellular signaling in antigen-defined stem/progenitor cell subsets in primary AML. CyTOF and conventional FCM yielded comparable results on LSC phenotypes defined by CD45, CD34, CD38, CD123, and CD99. Intracellular phosphoprotein responses to ex vivo cell signaling inhibitors and cytokine stimulation were assessed in myeloid leukemia cell lines and one primary AML sample. CyTOF and conventional FCM results were confirmed by western blotting. In the primary AML sample, we investigated the cell responses to ex vivo stimulation with stem cell factor and BEZ235-induced inhibition of PI3K and identified activation patterns in multiple PI3K downstream signaling pathways including p-4EBP1, p-AKT, and p-S6, particularly in CD34(+) subsets. We evaluated multiple signaling pathways in antigen-defined subpopulations in primary AML cells with FLT3-ITD mutations. The data demonstrated the heterogeneity of cell phenotype distribution and distinct patterns of signaling activation across AML samples and between AML and normal samples. The mTOR targets p-4EBP1 and p-S6 were exclusively found in FLT3-ITD stem/progenitor cells, but not in their normal counterparts, suggesting both as novel targets in FLT3 mutated AML. Our data suggest that CyTOF can identify functional signaling pathways in antigen-defined subpopulations in primary AML, which may provide a rationale for designing therapeutics targeting LSC-enriched cell populations.
Collapse
Affiliation(s)
- Lina Han
- Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Saadatpour A, Guo G, Orkin SH, Yuan GC. Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol 2014; 15:525. [PMID: 25517911 PMCID: PMC4262970 DOI: 10.1186/s13059-014-0525-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A fundamental challenge for cancer therapy is that each tumor contains a highly heterogeneous cell population whose structure and mechanistic underpinnings remain incompletely understood. Recent advances in single-cell gene expression profiling have created new possibilities to characterize this heterogeneity and to dissect the potential intra-cancer cellular hierarchy. RESULTS Here, we apply single-cell analysis to systematically characterize the heterogeneity within leukemic cells using the MLL-AF9 driven mouse model of acute myeloid leukemia. We start with fluorescence-activated cell sorting analysis with seven surface markers, and extend by using a multiplexing quantitative polymerase chain reaction approach to assay the transcriptional profile of a panel of 175 carefully selected genes in leukemic cells at the single-cell level. By employing a set of computational tools we find striking heterogeneity within leukemic cells. Mapping to the normal hematopoietic cellular hierarchy identifies two distinct subtypes of leukemic cells; one similar to granulocyte/monocyte progenitors and the other to macrophage and dendritic cells. Further functional experiments suggest that these subtypes differ in proliferation rates and clonal phenotypes. Finally, co-expression network analysis reveals similarities as well as organizational differences between leukemia and normal granulocyte/monocyte progenitor networks. CONCLUSIONS Overall, our single-cell analysis pinpoints previously uncharacterized heterogeneity within leukemic cells and provides new insights into the molecular signatures of acute myeloid leukemia.
Collapse
|
33
|
Wiseman DH, Greystoke BF, Somervaille TCP. The variety of leukemic stem cells in myeloid malignancy. Oncogene 2014; 33:3091-8. [PMID: 23831573 DOI: 10.1038/onc.2013.269] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 12/23/2022]
Abstract
Human acute myeloid leukemias (AMLs) are sustained by leukemic stem cells (LSCs) that generate through aberrant differentiation the blast cells that make up the bulk of the malignant clone. LSCs were first identified as rare cells with an immunophenotype shared with normal hematopoietic stem cells (HSCs). However, refinements of xenotransplantation assays, alternative methods of quantitation and syngeneic murine models have all led to an appreciation that LSCs display marked variability in frequency, immunophenotype and differentiation potential, both between and even within leukemias. Insights from next-generation sequencing efforts have dramatically extended understanding of the mutational landscape and clonal organization of AML and have added an additional layer of complexity to the biology of LSCs: a requirement to consider the effect of the various recurrently occurring genetic lesions in AML on the initiation and maintenance of leukemic subclones. Despite these advances, cure rates in AML remain substantially unchanged in recent years. A renewed focus on the biological properties of chemotherapy-resistant LSCs, a cellular entity of prime clinical importance, will be required to develop additional therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- D H Wiseman
- Cancer Research UK Leukaemia Biology Laboratory, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK
| | - B F Greystoke
- Cancer Research UK Leukaemia Biology Laboratory, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK
| | - T C P Somervaille
- Cancer Research UK Leukaemia Biology Laboratory, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK
| |
Collapse
|
34
|
Anaplastic large cell lymphoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Oncogene 2014; 34:1843-52. [PMID: 24814516 DOI: 10.1038/onc.2014.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/13/2014] [Accepted: 03/28/2014] [Indexed: 01/02/2023]
Abstract
Cancer stem cells or tumour-propagating cells (TPCs) have been identified for a number of cancers, but data pertaining to their existence in lymphoma so far remain elusive. We show for the first time that a small subset of cells purified from human anaplastic lymphoma kinase (ALK)-positive and -negative, anaplastic large cell lymphoma cell lines and primary patient tumours using the side population (SP) technique have serial tumour-propagating capacity both in vitro and in vivo; they give rise to both themselves and the bulk tumour population as well as supporting growth of the latter through the production of soluble factors. In vivo serial dilution assays utilising a variety of model systems inclusive of human cell lines, primary human tumours and nucleophosmin (NPM)-ALK-induced murine tumours demonstrate the TPC frequency to vary from as many as 1/54 to 1/1336 tumour cells. In addition, the SP cells express higher levels of pluripotency-associated transcription factors and are enriched for a gene expression profile consistent with early thymic progenitors. Finally, our data show that the SP cells express higher levels of the NPM-ALK oncogene and are sensitive to an ALK inhibitor.
Collapse
|
35
|
Lee N, Barthel SR, Schatton T. Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? J Transl Med 2014; 94:13-30. [PMID: 24126889 PMCID: PMC3941309 DOI: 10.1038/labinvest.2013.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.
Collapse
Affiliation(s)
- Nayoung Lee
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven R. Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Schatton
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Transplantation Research Center, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA,To whom correspondence should be addressed: Tobias Schatton, Pharm.D., Ph.D., Department of Dermatology, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| |
Collapse
|
36
|
|
37
|
Zhao Y, Alakhova DY, Kabanov AV. Can nanomedicines kill cancer stem cells? Adv Drug Deliv Rev 2013; 65:1763-83. [PMID: 24120657 DOI: 10.1016/j.addr.2013.09.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have the ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs.
Collapse
|
38
|
Charafe-Jauffret E, Ginestier C, Bertucci F, Cabaud O, Wicinski J, Finetti P, Josselin E, Adelaide J, Nguyen TT, Monville F, Jacquemier J, Thomassin-Piana J, Pinna G, Jalaguier A, Lambaudie E, Houvenaeghel G, Xerri L, Harel-Bellan A, Chaffanet M, Viens P, Birnbaum D. ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res 2013; 73:7290-300. [PMID: 24142344 DOI: 10.1158/0008-5472.can-12-4704] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer stem-like cells (CSC) have been widely studied, but their clinical relevance has yet to be established in breast cancer. Here, we report the establishment of primary breast tumor-derived xenografts (PDX) that encompass the main diversity of human breast cancer and retain the major clinicopathologic features of primary tumors. Successful engraftment was correlated with the presence of ALDH1-positive CSCs, which predicted prognosis in patients. The xenografts we developed showed a hierarchical cell organization of breast cancer with the ALDH1-positive CSCs constituting the tumorigenic cell population. Analysis of gene expression from functionally validated CSCs yielded a breast CSC signature and identified a core transcriptional program of 19 genes shared with murine embryonic, hematopoietic, and neural stem cells. This generalized stem cell program allowed the identification of potential CSC regulators, which were related mainly to metabolic processes. Using an siRNA genetic screen designed to target the 19 genes, we validated the functional role of this stem cell program in the regulation of breast CSC biology. Our work offers a proof of the functional importance of CSCs in breast cancer, and it establishes the reliability of PDXs for use in developing personalized CSC therapies for patients with breast cancer.
Collapse
Affiliation(s)
- Emmanuelle Charafe-Jauffret
- Authors' Affiliations: INSERM, U1068, CRCM, Molecular Oncology, Institut Paoli-Calmettes, Biopathology, Aix-Marseille Univ, UM 105, F-13284, Départements d'Oncologie Médicale, Chirugie oncologique, and Radiologie, Institut Paoli-Calmettes, Marseille; and Plateforme ARN interference PArI, CEA SACLAY, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Freeman SD, Virgo P, Couzens S, Grimwade D, Russell N, Hills RK, Burnett AK. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol 2013; 31:4123-31. [PMID: 24062403 DOI: 10.1200/jco.2013.49.1753] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Older patients with acute myeloid leukemia (AML) have a high relapse rate after standard chemotherapy. We investigated whether measuring chemotherapy sensitivity by multiparameter flow cytometric minimal residual disease (MFC-MRD) detection has prognostic value in patients older than age 60 years or is simply a surrogate for known age-related risk factors. PATIENT AND METHODS Eight hundred ninety-two unselected patients treated intensively in the United Kingdom National Cancer Research Institute AML16 Trial were assessed prospectively for MFC-MRD during treatment. Eight hundred thirty-three patients had leukemia-associated immunophenotypes (LAIPs) identified by pretreatment screening. Four hundred twenty-seven patients entered complete remission (CR) after one or two courses (designated C1 and C2, respectively) and were MFC-MRD assessable by LAIP detection in CR bone marrow for at least one of these time points. MRD positivity was defined as residual disease detectable by LAIP. RESULTS MFC-MRD negativity, which was achieved in 51% of patients after C1 (n = 286) and 64% of patients after C2 (n = 279), conferred significantly better 3-year survival from CR (C1: 42% v 26% in MRD-positive patients, P < .001; C2: 38% v 18%, respectively; P < .001) and reduced relapse (C1: 71% v 83% in MRD-positive patients, P < .001; C2: 79% v 91%, respectively; P < .001), with higher risk of early relapse in MRD-positive patients (median time to relapse, 8.5 v 17.1 months, respectively). In multivariable analysis, MRD status at the post-C1 time point independently predicted survival, identifying a subgroup of intermediate-risk patients with particularly poor outcome. However, survival benefit from gemtuzumab ozogamicin was not associated with MFC-MRD chemotherapy sensitivity. CONCLUSION Early assessment of treatment response using flow cytometry provides powerful independent prognostic information in older adults with AML, lending support to the incorporation of MRD detection to refine risk stratification and inform clinical trial design in this challenging group of patients.
Collapse
Affiliation(s)
- Sylvie D Freeman
- Sylvie D. Freeman, University of Birmingham and University Hospitals Birmingham National Health Service (NHS) Trust, Birmingham; Paul Virgo, North Bristol NHS Trust, Bristol; Steve Couzens, University Hospital of Wales; Robert K. Hills and Alan K. Burnett, Cardiff University, Heath Park, Cardiff; David Grimwade, King's College London School of Medicine and Guy's and St Thomas' NHS Foundation Trust, London; and Nigel Russell, Nottingham University Hospital NHS Trust, Nottingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Guo G, Luc S, Marco E, Lin TW, Peng C, Kerenyi MA, Beyaz S, Kim W, Xu J, Das PP, Neff T, Zou K, Yuan GC, Orkin SH. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 2013; 13:492-505. [PMID: 24035353 DOI: 10.1016/j.stem.2013.07.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/04/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023]
Abstract
Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method, we analyzed over 1,500 single cells throughout the mouse hematopoietic system and illustrate its utility for revealing important biological insights. The comprehensive single cell data set permits mapping of the mouse hematopoietic stem cell differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems.
Collapse
Affiliation(s)
- Guoji Guo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Williams SA, Anderson WC, Santaguida MT, Dylla SJ. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. J Transl Med 2013; 93:970-82. [PMID: 23917877 DOI: 10.1038/labinvest.2013.92] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/27/2013] [Accepted: 06/13/2013] [Indexed: 12/12/2022] Open
Abstract
Cancer is a heterogeneous disease manifest in many forms. Tumor histopathology can differ significantly among patients and cellular heterogeneity within tumors is common. A primary goal of cancer biologists is to better understand tumorigenesis and cancer progression; however, the complex nature of tumors has posed a substantial challenge to unlocking cancer's secrets. The cancer stem cell (CSC) paradigm for the pathobiology of solid tumors appropriately acknowledges phenotypic and functional tumor cell heterogeneity observed in solid tumors and accounts for the disconnect between drug approval based on response and the general inability of approved therapies to meaningfully impact survival due to their failure to eradicate these most important of cellular targets. First proposed to exist decades ago, CSC have only recently begun to be precisely identified due to technical advancements that facilitate identification, isolation, and interrogation of distinct tumor cell subpopulations with differing ability to form and perpetuate tumors. Precise identification of CSC populations and the complete hierarchy of cells within solid tumors will facilitate more accurate characterization of patient subtypes and ultimately contribute to more personalized and effective therapies. Rapid advancement in the understanding of tumor biology as it exists in patients requires cooperation among institutions, surgeons, pathologists, cancer biologists and patients alike, primarily because this translational research is best done with patient-derived tissue grown in the xenograft setting as patient-derived xenografts. This review calls for a broader change in the approaches taken to study cancer pathobiology, highlights what implications the CSC paradigm has for pathologists and cancer biologists alike, and calls for greater collaboration between institutions, physicians and scientists in order to more rapidly advance our collective understanding of cancer.
Collapse
Affiliation(s)
- Samuel A Williams
- Cancer Biology, Stem CentRx, Inc., South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
42
|
Cancer Stem Cells: Prospective Isolation and Progress Toward Functional Biomarker Identification. CURRENT PATHOBIOLOGY REPORTS 2013. [DOI: 10.1007/s40139-013-0013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Affiliation(s)
- Andrei V Krivtsov
- Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
44
|
Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG. Chemical Analysis of Single Cells. Anal Chem 2012; 85:522-42. [DOI: 10.1021/ac303290s] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raphaël Trouillon
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Melissa K. Passarelli
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Jun Wang
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Michael E. Kurczy
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| |
Collapse
|
45
|
Abstract
The cancer stem cell (CSC) concept, which arose more than a decade ago, proposed that tumor growth is sustained by a subpopulation of highly malignant cancerous cells. These cells, termed CSCs, comprise the top of the tumor cell hierarchy and have been isolated from many leukemias and solid tumors. Recent work has discovered that this hierarchy is embedded within a genetically heterogeneous tumor, in which various related but distinct subclones compete within the tumor mass. Thus, genetically distinct CSCs exist on top of each subclone, revealing a highly complex cellular composition of tumors. The CSC concept has therefore evolved to better model the complex and highly dynamic processes of tumorigenesis, tumor relapse, and metastasis.
Collapse
Affiliation(s)
- Irène Baccelli
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, D-69120 Heidelberg, Germany
| | | |
Collapse
|
46
|
Abstract
The cancer stem cell (CSC) model has been established as a cellular mechanism that contributes to phenotypic and functional heterogeneity in diverse cancer types. Recent observations, however, have highlighted many complexities and challenges: the CSC phenotype can vary substantially between patients, tumors may harbor multiple phenotypically or genetically distinct CSCs, metastatic CSCs can evolve from primary CSCs, and tumor cells may undergo reversible phenotypic changes. Although the CSC concept will have clinical relevance in specific cases, accumulating evidence suggests that it will be imperative to target all CSC subsets within the tumor to prevent relapse.
Collapse
|
47
|
Abstract
In recent years, major advances in single-cell measurement systems have included the introduction of high-throughput versions of traditional flow cytometry that are now capable of measuring intracellular network activity, the emergence of isotope labels that can enable the tracking of a greater variety of cell markers and the development of super-resolution microscopy techniques that allow measurement of RNA expression in single living cells. These technologies will facilitate our capacity to catalog and bring order to the inherent diversity present in cancer cell populations. Alongside these developments, new computational approaches that mine deep data sets are facilitating the visualization of the shape of the data and enabling the extraction of meaningful outputs. These applications have the potential to reveal new insights into cancer biology at the intersections of stem cell function, tumor-initiating cells and multilineage tumor development. In the clinic, they may also prove important not only in the development of new diagnostic modalities but also in understanding how the emergence of tumor cell clones harboring different sets of mutations predispose patients to relapse or disease progression.
Collapse
|
48
|
Common signaling networks characterize leukemia-initiating cells in acute myeloid leukemia. Cell Stem Cell 2012; 10:109-10. [PMID: 22305558 DOI: 10.1016/j.stem.2012.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Identification and characterization of leukemia-initiating cells (LICs) is important to understand leukemogenesis and develop novel therapies for leukemia. In this issue of Cell Stem Cell, Gibbs et al. (2012) demonstrate that common active signaling pathways in LICs may be targeted to treat acute myeloid leukemia.
Collapse
|
49
|
Abstract
The existence of cancer stem cells has long been postulated, but was proven less than 20 years ago following the demonstration that only a small sub-fraction of leukemic cells from acute myeloid leukemia patients were able to propagate the disease in xenografts. These cells were termed leukemic stem cells since they exist at the apex of a loose hierarchy, possess extensive self-renewal and the ability to undergo limited differentiation into leukemic blasts. Acute myeloid leukemia is a heterogeneous condition at both the phenotypic and molecular level with a variety of distinct genetic alterations giving rise to the disease. Recent studies have highlighted that this heterogeneity extends to the leukemic stem cell, with this dynamic compartment evolving to overcome various selection pressures imposed upon it during disease progression. The result is a complex situation in which multiple pools of leukemic stem cells may exist within individual patients which differ both phenotypically and molecularly. Since leukemic stem cells are thought to be resistant to current chemotherapeutic regimens and mediate disease relapse, their study also has potentially profound clinical implications. Numerous studies have generated important recent advances in the field, including the identification of novel leukemic stem cell-specific cell surface antigens and gene expression signatures. These tools will no doubt prove invaluable for the rational design of targeted therapies in the future.
Collapse
Affiliation(s)
- Sarah J Horton
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge, UK
| | | |
Collapse
|
50
|
Class I phosphoinositide 3-kinases in normal and pathologic hematopoietic cells. Curr Top Microbiol Immunol 2012; 362:163-84. [PMID: 23086418 DOI: 10.1007/978-94-007-5025-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Class I phosphoinositide 3-kinases which produce the D3-phosphoinositide second messenger phosphatidylinositol 3,4,5-trisphosphate in response to membrane receptors activation play a critical role in cell proliferation, survival, metabolism, and motility. These lipid kinases and the phosphatases regulating the level of D3-phosphoinositides have been an intense area of research these last two decades. The class I phosphoinositide 3-kinases signaling is found aberrantly activated in numerous human cancers, including in malignant hemopathies, and are important therapeutic targets for cancer therapy. Haematopoiesis is an ongoing process which generates the distinct blood cell types from a common hematopoietic stem cell through the action of a variety of cytokines. In the human adult hematopoiesis occurs primarily in the bone marrow, and defects in hematopoiesis result in diseases, such as anemia, thrombocytopenia, myeloproliferative syndromes, or leukemia. Here we give a brief overview of the role of class I phosphoinositide 3-kinases in hematopoietic stem cells, in hematopoietic lineage development and in leukemia, particularly in acute myeloid leukemia and summarize the potential therapeutic implications.
Collapse
|