1
|
Chen P, Zhou JB, Chu XP, Feng YY, Zeng QB, Lei JH, Wong KP, Chan TI, Lam CW, Zhu WL, Chu WK, Hu F, Luo GH, Chan KI, Deng CX. Establishing a cryopreserved biobank of living tumor tissues for drug sensitivity testing. Bioact Mater 2025; 46:582-596. [PMID: 40061435 PMCID: PMC11889390 DOI: 10.1016/j.bioactmat.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/05/2024] [Accepted: 09/04/2024] [Indexed: 03/17/2025] Open
Abstract
The cryopreservation of cancer tissues to generate frozen libraries is a common practice used worldwide for storing patient samples for later applications. However, frozen samples stored by existing methods cannot be used for initiating living cell cultures, such as patient-derived tumor organoids (PDOs), which offer great potential for personalized treatment. To overcome this challenge, we developed a novel procedure for culturing PDOs using frozen live tumor tissues. We show that tumor specimens stored using this technique maintain their viability and can be successfully used to generate organoids even after long-term freezing, with an impressive success rate of 95.2 %. Importantly, we found that the structural features, tumor marker expression, and drug responses of organoids derived from frozen tissues are similar to those derived from fresh tissues. Moreover, organoids derived from frozen tissues can be routinely passaged and frozen, making them ideal for high-throughput drug screening at any time. Notably, cryopreserved tumor tissues can also be utilized in air-liquid interface (ALI) culture. This method allows for preserving the original tumor microenvironment, making it an invaluable resource for conducting tests on antitumor drug responses, including immune checkpoint inhibitors (ICIs). This innovation has the potential to enable the identification of potentially effective drugs for patients and facilitate the development of novel therapeutic drugs. Thus, we have established protocols for the long-term cryopreservation of cancer tissues to maintain their viability and microenvironment, which are useful for personalized therapy.
Collapse
Affiliation(s)
- Ping Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-Bo Zhou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiang-Peng Chu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Yang-Yang Feng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Qi-Bing Zeng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Josh-Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Ka-Pou Wong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | | | | | - Wen-Li Zhu
- Kiang Wu Hospital, Macau SAR 999078, China
| | | | - Feng Hu
- Kiang Wu Hospital, Macau SAR 999078, China
| | | | | | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| |
Collapse
|
2
|
Yang Q, Li M, Xiao Z, Feng Y, Lei L, Li S. A New Perspective on Precision Medicine: The Power of Digital Organoids. Biomater Res 2025; 29:0171. [PMID: 40129676 PMCID: PMC11931648 DOI: 10.34133/bmr.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
Precision medicine is a personalized medical model based on the individual's genome, phenotype, and lifestyle that provides tailored treatment plans for patients. In this context, tumor organoids, a 3-dimensional preclinical model based on patient-derived tumor cell self-organization, combined with digital analysis methods, such as high-throughput sequencing and image processing technology, can be used to analyze the genome, transcriptome, and cellular heterogeneity of tumors, so as to accurately track and assess the growth process, genetic characteristics, and drug responsiveness of tumor organoids, thereby facilitating the implementation of precision medicine. This interdisciplinary approach is expected to promote the innovation of cancer diagnosis and enhance personalized treatment. In this review, the characteristics and culture methods of tumor organoids are summarized, and the application of multi-omics, such as bioinformatics and artificial intelligence, and the digital methods of organoids in precision medicine research are discussed. Finally, this review explores the main causes and potential solutions for the bottleneck in the clinical translation of digital tumor organoids, proposes the prospects of multidisciplinary cooperation and clinical transformation to narrow the gap between laboratory and clinical settings, and provides references for research and development in this field.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Yekai Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
3
|
Peng Z, Lv X, Sun H, Zhao L, Huang S. 3D tumor cultures for drug resistance and screening development in clinical applications. Mol Cancer 2025; 24:93. [PMID: 40119343 PMCID: PMC11927140 DOI: 10.1186/s12943-025-02281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Tumor drug resistance presents a growing challenge in medical practice, particularly during anti-cancer therapies, where the emergence of drug-resistant cancer cells significantly complicates clinical treatment. In recent years, three-dimensional (3D) tumor culture technology, which more effectively simulates the in vivo physiological environment, has gained increasing attention in tumor drug resistance research and clinical applications. By mimicking the in vivo cellular microenvironment, 3D tumor culture technology not only recapitulates cell-cell interactions but also more faithfully reproduces the biological effects of therapeutic agents. Consequently, 3D tumor culture technology is emerging as a crucial tool in biomedical and clinical research. We summarize the benefits of 3D culture models and organoid technology, explore their application in the realm of drug resistance, drug screening, and personalized therapy, and discuss their potential application prospects and challenges in clinical transformation, with the aim of providing insights for optimizing cancer treatment strategies and advancing precision therapy.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi, China
| | - Xiaolan Lv
- Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council -Consejo Superior de Investigaciones Científicas,(UAM-CSIC), Madrid, 28049, Spain
| | - Lina Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Yang D, Zhang X, Hu Z, Sun Q, Fu H, Yao J, Zheng B, Zhang X, Wang W. Organoid-based single cell sequencing revealed the lineage evolution during docetaxel treatment in gastric cancer. Cancer Lett 2025; 619:217617. [PMID: 40118243 DOI: 10.1016/j.canlet.2025.217617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Docetaxel resistance in gastric cancer poses a major therapeutic challenge. In this study, we established docetaxel-sensitive and -resistant gastric cancer organoids and performed single-cell RNA sequencing to identify cellular and molecular alterations. We observed significant shifts in cell populations, with increased secretory, immune-chemotactic, and transitional gastric cancer cells in the resistant group. Key resistance-related genes, including FOS, IFI27, and PTTG1IP, were upregulated in resistant organoids and gastric cancer patients. A pseudo-time trajectory analysis revealed that resistant cells predominantly occupied terminal differentiation stages. Knocking down FOS, IFI27, and PTTG1IP enhanced docetaxel sensitivity in both cell lines and organoids, regulating ROS production, autophagy, and apoptosis. In vivo, silencing these genes reduced tumor growth in response to docetaxel. These findings suggest that targeting FOS, IFI27, and PTTG1IP could overcome resistance and improve treatment outcomes for gastric cancer patients.
Collapse
Affiliation(s)
- Dejun Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| | - Xin Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital (Changhai Hospital) of Naval Medical University, Yangpu District, No. 168 Changhai Road, Shanghai, 200433, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qiang Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Jun Yao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Binbin Zheng
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| | - Weijun Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
5
|
Schäffers OJM, Gribnau J, van Rijn BB, Bunnik EM. Ethical considerations for advancing research using organoid models derived from the placenta. Hum Reprod Update 2025:dmaf007. [PMID: 40096642 DOI: 10.1093/humupd/dmaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The advent of organoid culture systems has revolutionized our ability to model and study complex tissues in vitro. The placenta is one of the last human organs to have a functional organoid model developed: trophoblast organoids. These 3-dimensional structures, derived from placental tissue, offer researchers a valuable tool for studying previously inaccessible processes that occur within the womb and play a significant role in determining the health of the offspring. While primarily used for research, trophoblast organoids hold promise for clinical applications, including prenatal diagnostics and therapeutic interventions, both of which may have commercial interest. However, to ensure that research with organoid models derived from the placenta is conducted responsibly, the relevant ethics of these models need to be addressed. OBJECTIVE AND RATIONALE Ethical considerations related to organoid models derived from the placenta, such as trophoblast organoids are important but remain unexplored in literature. Therefore, the goal of this review is to explore the ethical considerations related to trophoblast organoids. SEARCH METHODS Since there is no ethical research specifically addressing organoid models of the placenta to date, we have based our findings on discussions related to other organoid models and research involving fetal tissue, placenta, or umbilical cord blood. We employed a scoping review method to search PubMed, Embase, Medline (all), Bioethics Research Library, and Google Scholar for research articles, books, or other correspondence on ethical issues regarding these indicated topics, with no date limits. OUTCOMES Ethical considerations related to trophoblast organoids can be divided into three distinct categories. First, there is a need to assess the moral value of trophoblast organoids, including their potential relational and symbolic dimensions. Second, it is important to understand ethical issues associated with ownership and commercialization of trophoblast organoids. Last, there are considerations related to appropriate informed consent procedures. It is worth noting that these three categories are interconnected, with the second and third being largely dependent on the moral value attributed to trophoblast organoids. Future research should assess the perspectives of various stakeholders, including parents who may donate placental tissue for organoid research. WIDER IMPLICATIONS This review offers valuable insights into the ethical landscape surrounding the derivation of tissues or products from pregnancies, and their further application, highlighting areas that require attention and discussion within both the scientific community and the broader society. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Olivier J M Schäffers
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas B van Rijn
- Department of Obstetrics and Gynaecology, Maxima Medical Center, Veldhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Eline M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Mercadante M, Scheben A, Estrada J, Savas-Carstens J, Sullivan W, Housel N, Volpari T, Hebner J, Sapar M, Rusielewicz T, Monsma FJ, Semrau S, Wang Y, Martin LA. A patient-derived ovarian cancer organoid platform to study susceptibility to natural killer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641285. [PMID: 40093054 PMCID: PMC11908259 DOI: 10.1101/2025.03.06.641285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Intratumoral heterogeneity drives therapy resistance and relapses in advanced stage cancers, such as ovarian cancer. Here, we present a live cell imaging assay using patient-derived ovarian cancer organoids for real time capture and quantification of natural killer cell-mediated apoptotic events in >500 organoids simultaneously. Our assay revealed significant inter- and intratumor response heterogeneity and identified a rare resistant organoid population, opening avenues to test immunomodulatory strategies that overcome resistance.
Collapse
Affiliation(s)
| | - Armin Scheben
- The New York Stem Cell Foundation Research Institute, New York, NY
| | - Jacob Estrada
- The New York Stem Cell Foundation Research Institute, New York, NY
| | | | - William Sullivan
- The New York Stem Cell Foundation Research Institute, New York, NY
| | | | - Tatiana Volpari
- The New York Stem Cell Foundation Research Institute, New York, NY
| | - Jax Hebner
- The New York Stem Cell Foundation Research Institute, New York, NY
| | - Maria Sapar
- The New York Stem Cell Foundation Research Institute, New York, NY
| | - Tom Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY
| | | | - Stefan Semrau
- The New York Stem Cell Foundation Research Institute, New York, NY
| | - Yinan Wang
- The New York Stem Cell Foundation Research Institute, New York, NY
| | - Laura A Martin
- The New York Stem Cell Foundation Research Institute, New York, NY
| |
Collapse
|
7
|
Yue SSK, Tong Y, Siu HC, Ho SL, Law SYK, Tsui WY, Chan D, Huang Y, Chan ASY, Yun SW, Hui HS, Choi JE, Hsu MSS, Lai FPL, Chan AS, Yuen ST, Clevers H, Leung SY, Yan HHN. Divergent lineage trajectories and genetic landscapes in human gastric intestinal metaplasia organoids associated with early neoplastic progression. Gut 2025; 74:522-538. [PMID: 39572083 DOI: 10.1136/gutjnl-2024-332594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/27/2024] [Indexed: 03/08/2025]
Abstract
BACKGROUND Gastric intestinal metaplasia (IM) is a precancerous stage spanning a morphological spectrum that is poorly represented by human cell line models. OBJECTIVE We aim to establish and characterise human IM cell models to better understand IM progression along the cancer spectrum. DESIGN A large human gastric IM organoid (IMO) cohort (n=28), their clonal derivatives and normal gastric organoids (n=42) for comparison were established. Comprehensive multi-omics profiling and functional characterisation were performed. RESULTS Single-cell transcriptomes revealed IMO cells spanning a spectrum from hybrid gastric/intestinal to advanced intestinal differentiation. Their lineage trajectories connected different cycling and quiescent stem and progenitors, highlighting differences in gastric to IM transition and the potential origin of IM from STMN1 cycling isthmus stem cells. Hybrid IMOs showed impaired differentiation potential, high lineage plasticity beyond gastric or intestinal fates and reactivation of a fetal gene programme.Cell populations in gastric IM and cancer tissues were highly similar to those derived from IMOs and exhibited a fetal signature. Genomically, IMOs showed elevated mutation burden, frequent chromosome 20 gain and epigenetic deregulation of many intestinal and gastric genes. Functionally, IMOs were FGF10 independent and showed downregulated FGFR2. Several IMOs exhibited a cell-matrix adhesion independent subpopulation that displayed chromosome 20 gain but lacked key cancer driver mutations, potentially representing the earliest neoplastic precursor of IM-induced gastric cancer. CONCLUSIONS Overall, our IMO biobank captured the heterogeneous nature of IM, revealing mechanistic insights on IM pathogenesis and progression, offering an ideal platform for studying early gastric neoplastic transformation and chemoprevention.
Collapse
Affiliation(s)
- Sarah S K Yue
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yin Tong
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Hoi Cheong Siu
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Siu Lun Ho
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Y K Law
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wai Yin Tsui
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Dessy Chan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yuanhua Huang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Annie S Y Chan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shui Wa Yun
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ho Sang Hui
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jee-Eun Choi
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Matthew S S Hsu
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Frank P L Lai
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - April S Chan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Siu Tsan Yuen
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, St. Paul's Hospital, No. 2, Eastern Hospital Road, Causeway Bay, Hong Kong SAR, China
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Oncode Institute, Utrecht, The Netherlands
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Helen H N Yan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
8
|
Issing C, Menche C, Richter MR, Mosa MH, von der Grün J, Fleischmann M, Thoenissen P, Winkelmann R, Darvishi T, Loth AG, Ghanaati S, Rödel F, Wild PJ, Brandts CH, Stöver T, Farin HF. Head and neck tumor organoid biobank for modelling individual responses to radiation therapy according to the TP53/HPV status. J Exp Clin Cancer Res 2025; 44:85. [PMID: 40045309 PMCID: PMC11881459 DOI: 10.1186/s13046-025-03345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/22/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Head and neck cancers (HNC) represent an extremely heterogeneous group of diseases with a poorly predictable therapy outcome. Patient-derived tumor organoids (PDTO) offer enormous potential for individualized therapy testing and a better mechanistic understanding of the main HNC drivers. METHODS Here, we have established a comprehensive molecularly and functionally characterized head and neck organoid biobank (HNOB) recapitulating the clinically relevant subtypes of TP53 mutant and human papillomavirus type 16 (HPV 16) infection-driven HNC. Organoids were exposed to radiotherapy, and responses were correlated with clinical data. Genetically engineered normal and tumor organoids were used for testing the direct functional consequences of TP53-loss and HPV infection. RESULTS The HNOB consisting of 18 organoid models, including 15 tumor models, was generated. We identified subtype-associated transcriptomic signatures and pathological features, including sensitivity to TP53 stabilization by the MDM2 inhibitor Nutlin-3. Furthermore, we describe an in vitro radio response assay revealing phenotypic heterogeneity linked to the individual patient's treatment outcome, including relapse probability. Using genetically engineered organoids, the possibility of co-existence of both cancer drivers was confirmed. TP53 loss, as well as HPV, increased growth in normal and tumor organoids. TP53 loss-of-function alone was insufficient to promote radiation resistance, whereas HPV 16 oncogenes E6/E7 mediated radiosensitivity via induction of cell cycle arrest. CONCLUSION Our results highlight the translational value of the head and neck organoid models not only for patient stratification but also for mechanistic validation of therapy responsiveness of specific cancer drivers.
Collapse
Affiliation(s)
- Christian Issing
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany.
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- University Cancer Center (UCT) Frankfurt, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany.
- Mildred-Scheel Early Career Center Frankfurt, Frankfurt/Main, Germany.
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mara Romero Richter
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Mohammed H Mosa
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Jens von der Grün
- Mildred-Scheel Early Career Center Frankfurt, Frankfurt/Main, Germany
- Department of Radio-oncology, University Hospital Zürich, Zürich, Switzerland
| | - Maximilian Fleischmann
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Philipp Thoenissen
- Clinic of Oral, Cranio-Maxillofacial and Plastic Facial Surgery, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Ria Winkelmann
- Dr. Senckenberg Institute for Pathology and Human Genetics, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Tahmineh Darvishi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Andreas G Loth
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Shahram Ghanaati
- Clinic of Oral, Cranio-Maxillofacial and Plastic Facial Surgery, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Franz Rödel
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Peter J Wild
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- University Cancer Center (UCT) Frankfurt, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
- Dr. Senckenberg Institute for Pathology and Human Genetics, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Christian H Brandts
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- University Cancer Center (UCT) Frankfurt, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Timo Stöver
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Liu B, Bukhari I, Li F, Ren F, Xia X, Hu B, Liu H, Meyer TF, Marshall BJ, Tay A, Fu Y, Wu W, Tang Y, Mi Y, Zheng PY. Enhanced LRP8 expression induced by Helicobacter pylori drives gastric cancer progression by facilitating β-Catenin nuclear translocation. J Adv Res 2025; 69:299-312. [PMID: 38609049 DOI: 10.1016/j.jare.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to β-catenin, thereby promoting nuclear translocation and transcriptional activity of β-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/β-catenin complex. This complex further amplifies H. pylori-induced β-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.
Collapse
Affiliation(s)
- Bin Liu
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ihtisham Bukhari
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fazhan Li
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Feifei Ren
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xue Xia
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Baitong Hu
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany; Laboratory of Infection Oncology, Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts University of Kiel, Kiel, Germany
| | - Barry J Marshall
- Helicobacter Pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands 6009, Australia
| | - Alfred Tay
- Helicobacter Pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands 6009, Australia
| | - Yuming Fu
- Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wanqing Wu
- Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Youcai Tang
- Department of Pediatrics, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Peng-Yuan Zheng
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
10
|
Cui R, Duan H, Hu W, Li C, Zhong S, Liang L, Chen S, Hu H, He Z, Wang Z, Guo X, Chen Z, Xu C, Zhu Y, Chen Y, Sai K, Yang Q, Guo C, Mou Y, Jiang X. Establishment of Human Pituitary Neuroendocrine Tumor Derived Organoid and Its Pilot Application for Drug Screening. J Clin Endocrinol Metab 2025; 110:e827-e840. [PMID: 38656317 DOI: 10.1210/clinem/dgae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 04/26/2024]
Abstract
CONTEXT Precision medicine for pituitary neuroendocrine tumors (PitNETs) is limited by the lack of reliable research models. OBJECTIVE To generate patient-derived organoids (PDOs), which could serve as a platform for personalized drug screening for PitNET patients. DESIGN From July 2019 to May 2022, a total of 32 human PitNET specimens were collected for the establishment of organoids with an optimized culture protocol. SETTING This study was conducted at Sun Yat-Sen University Cancer Center. PATIENTS PitNET patients who were pathologically confirmed were enrolled in this study. INTERVENTIONS Histological staining and whole-exome sequencing were utilized to confirm the pathologic and genomic features of PDOs. A drug response assay on PDOs was also performed. MAIN OUTCOME MEASURES PDOs retained key genetic and morphological features of their parental tumors. RESULTS PDOs were successfully established from various types of PitNET samples with an overall success rate of 87.5%. Clinical nonfunctioning PitNETs-derived organoids (22/23, 95.7%) showed a higher likelihood of successful generation compared to those from functioning PitNETs (6/9, 66.7%). Preservation of cellular structure, subtype-specific neuroendocrine profiles, mutational features, and tumor microenvironment heterogeneity from parental tumors was observed. A distinctive response profile in drug tests was observed among the organoids from patients with different subtypes of PitNETs. With the validation of key characteristics from parental tumors in histological, genomic, and microenvironment heterogeneity consistency assays, we demonstrated the predictive value of the PDOs in testing individual drugs. CONCLUSION The established PDOs, retaining typical features of parental tumors, indicate a translational significance in innovating personalized treatment for refractory PitNETs.
Collapse
Affiliation(s)
- Run Cui
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
- Department of Neurosurgery, Guangdong 2nd Provincial Peoples Hospital, Guangzhou, 523058 Guangdong, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Wanming Hu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510000 Guangdong, China
| | - Chang Li
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Sheng Zhong
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Lun Liang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Siyu Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Hongrong Hu
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Zhenqiang He
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Zhenning Wang
- Department of Neurosurgery, Dongguan People's Hospital, Dongguan, 523058 Guangdong, China
| | - Xiaoyu Guo
- Department of Neurosurgery, First Affiliated Hospital of Ji'nan University, Guangzhou, 510630 Guangdong, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510320 Guangdong, China
| | - Cong Xu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510320 Guangdong, China
| | - Yu Zhu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510320 Guangdong, China
| | - Yinsheng Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Ke Sai
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Qunying Yang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Xiaobing Jiang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| |
Collapse
|
11
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2025; 48:1-26. [PMID: 38806997 PMCID: PMC11850459 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Paul CD, Yankaskas C, Shahi Thakuri P, Balhouse B, Salen S, Bullock A, Beam S, Chatman A, Djikeng S, Yang XJ, Wong G, Dey I, Holmes S, Dockey A, Bailey-Steinitz L, Zheng L, Li W, Chandra V, Nguyen J, Sharp J, Willems E, Kennedy M, Dallas MR, Kuninger D. Long-term maintenance of patient-specific characteristics in tumoroids from six cancer indications. Sci Rep 2025; 15:3933. [PMID: 39890889 PMCID: PMC11785764 DOI: 10.1038/s41598-025-86979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Tumoroids, sometimes referred to as cancer organoids, are patient-derived cancer cells grown as 3D, self-organized multicellular structures that maintain key characteristics (e.g., genotype, gene expression levels) of the tumor from which they originated. These models have emerged as valuable tools for studying tumor biology, cytotoxicity, and response of patient-derived cells to cancer therapies. However, the establishment and maintenance of tumoroids has historically been challenging, labor intensive, and highly variable from lab to lab, hindering their widespread use. Here, we characterize the establishment and/or expansion of colorectal, lung, head and neck, breast, pancreas, and endometrial tumoroids using the standardized, serum-free Gibco OncoPro Tumoroid Culture Medium. Newly derived tumoroid lines (n = 20) were analyzed by targeted genomic profiling and RNA sequencing and were representative of tumor tissue samples. Tumoroid lines were stable for over 250 days in culture and freeze-thaw competent. Previously established tumoroid lines were also transitioned to OncoPro medium and exhibited, on average, similar growth rates and conserved donor-specific characteristics when compared to original media systems. Additionally, OncoPro medium was compatible with both embedded culture in extracellular matrix and growth in a suspension format for facile culture and scale up. An example application of these models for assessing the cytotoxicity of a natural killer cell line and primary natural killer cells over time and at various doses demonstrated the compatibility of these models with assays used in compound and cell therapy development. We anticipate that the standardization and versatility of this approach will have important benefits for basic cancer research, drug discovery, and personalized medicine and help make tumoroid models more accessible to the cancer research community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sylvia Beam
- Thermo Fisher Scientific, Frederick, MD, USA
| | | | | | | | | | - Isha Dey
- Thermo Fisher Scientific, Bengaluru, Karnataka, India
| | | | | | | | - Lina Zheng
- Thermo Fisher Scientific, Carlsbad, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
De Domenico M, Allegri L, Caldarelli G, d'Andrea V, Di Camillo B, Rocha LM, Rozum J, Sbarbati R, Zambelli F. Challenges and opportunities for digital twins in precision medicine from a complex systems perspective. NPJ Digit Med 2025; 8:37. [PMID: 39825012 PMCID: PMC11742446 DOI: 10.1038/s41746-024-01402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Digital twins (DTs) in precision medicine are increasingly viable, propelled by extensive data collection and advancements in artificial intelligence (AI), alongside traditional biomedical methodologies. We argue that including mechanistic simulations that produce behavior based on explicitly defined biological hypotheses and multiscale mechanisms is beneficial. It enables the exploration of diverse therapeutic strategies and supports dynamic clinical decision-making through insights from network science, quantitative biology, and digital medicine.
Collapse
Affiliation(s)
- Manlio De Domenico
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy.
- Padua Center for Network Medicine, University of Padua, Padova, Italy.
- Padua Neuroscience Center, University of Padua, Padova, Italy.
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy.
| | - Luca Allegri
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
| | - Guido Caldarelli
- DSMN and ECLT Ca' Foscari University of Venice, Venezia, Italy
- Institute of Complex Systems (ISC) CNR unit Sapienza University, Rome, Italy
- London Institute for Mathematical Sciences, Royal Institution, London, UK
| | - Valeria d'Andrea
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy
| | - Barbara Di Camillo
- Padua Center for Network Medicine, University of Padua, Padova, Italy
- Department of Information Engineering, University of Padua, Padova, Italy
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | - Luis M Rocha
- School of Systems Science and Industrial Eng., Binghamton University, Binghamton, NY, USA
- Universidade Católica Portuguesa, Católica Biomedical Research Centre, Lisbon, Portugal
| | - Jordan Rozum
- School of Systems Science and Industrial Eng., Binghamton University, Binghamton, NY, USA
| | - Riccardo Sbarbati
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy
| | - Francesco Zambelli
- Department of Physics and Astronomy "Galileo Galilei", University of Padua, Padova, Italy
- Istituto Nazionale di Fisica Nucleare, sez. di Padova, Italy
| |
Collapse
|
14
|
Zuo J, Fang Y, Wang R, Liang S. High-throughput solutions in tumor organoids: from culture to drug screening. Stem Cells 2025; 43:sxae070. [PMID: 39460616 PMCID: PMC11811636 DOI: 10.1093/stmcls/sxae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Tumor organoids have emerged as an ideal in vitro model for patient-derived tissues, as they recapitulate the characteristics of the source tumor tissue to a certain extent, offering the potential for personalized tumor therapy and demonstrating significant promise in pharmaceutical research and development. However, establishing and applying this model involves multiple labor-intensive and time-consuming experimental steps and lacks standardized protocols and uniform identification criteria. Thus, high-throughput solutions are essential for the widespread adoption of tumor organoid models. This review provides a comprehensive overview of current high-throughput solutions across the entire workflow of tumor organoids, from sampling and culture to drug screening. Furthermore, we explore various technologies that can control and optimize single-cell preparation, organoid culture, and drug screening with the ultimate goal of ensuring the automation and high efficiency of the culture system and identifying more effective tumor therapeutics.
Collapse
Affiliation(s)
- Jianing Zuo
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan, Dalian 116001, Liaoning, China
| | - Yanhua Fang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan, Dalian 116001, Liaoning, China
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruoyu Wang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan, Dalian 116001, Liaoning, China
| | - Shanshan Liang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan, Dalian 116001, Liaoning, China
| |
Collapse
|
15
|
Sui Z, Wu X, Wang J, Tan S, Zhao C, Yu Z, Wu C, Wang X, Guo L. Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2. Stem Cell Res Ther 2025; 16:7. [PMID: 39789648 PMCID: PMC11715222 DOI: 10.1186/s13287-024-04128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids. METHODS We successfully established an MSCs/fibroblast co-culture system to form LCOs. We analyzed the morphological and histological similarities between LCOs co-cultured with fibroblast and primary lung cancer lesions through HE and IF staining. We evaluated whether LCOs co-cultured with fibroblast retained the original genetic mutations of their source tumors based on WES. RNA sequencing was used to analyze the differences in gene expression profiles between LCOs co-cultured with fibroblast and paracancerous organoids (POs). Importantly, we have successfully validated the impact of Kindlin-2 on the regulation of MSCs in organoid formation through lentiviral vector-mediated interference or overexpression of kindlin-2. RESULTS Our findings demonstrate that the addition of MSCs/fibroblasts to three tumor samples, initially incapable of forming organoids by traditional methods, successfully facilitated the cultivation of tumor organoids. Importantly, these organoids co-cultured with fibroblast faithfully recapitulate the tissue morphology of original lung tumors and replicate the genetic profile observed in the parental tumors even after prolonged in vitro culture. Moreover, drug responses exhibited by these organoids co-cultured with MSCs/fibroblasts are consistent with those observed in the original tumors. Mechanistically, we have also identified kindlin-2 as a crucial regulator linking extracellular matrix (ECM) and mitochondria that influence MSC/fibroblast-mediated support for tumor organoid formation. CONCLUSION The results obtained from our research enhance the understanding of the mechanisms implicated in the formation of tumor organoids and aid in creating stronger patient-specific tumor organoid models. This advancement supports the refinement of personalized drug response assessments for use in clinical settings.
Collapse
Affiliation(s)
- Zhilin Sui
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xianxian Wu
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jiaxin Wang
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - ShihJye Tan
- Department of Biology, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chao Zhao
- Institute of Scientific Instrumentation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhentao Yu
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| | - Xiaoxiao Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
- Department of Biology, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Ling Guo
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Department of Biology, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Chen J, Cheng S, Gu L, Huang Z, Zhang C, Sun C, Chen S. Establishment and characterization of a sigmoid colon cancer organoid with spinal metastasis. Front Cell Dev Biol 2025; 12:1510264. [PMID: 39830210 PMCID: PMC11739105 DOI: 10.3389/fcell.2024.1510264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Background Sigmoid colon cancer with spinal metastases is rare in distant metastasis. In addition, the prognosis of colon cancer patients with spinal metastases is extremely poor. In order to find effective therapeutic agents, we need to know the biological characteristics of such patients from related models. Methods We collected sigmoid colon cancer tissue from a young female subject who was diagnosed with sigmoid colon cancer with multiple spinal metastases. We successfully established a sigmoid colon cancer organoid using this tissue and investigated drug screening in the patient. HE staining, immunohistochemistry, and DNA sequencing were utilized to compare the biological characteristics between the original tumor and the organoid. Furthermore, we investigated the drug screening of the sigmoid colon cancer organoid in vitro. Results A colon cancer organoid from sigmoid colon cancer with spinal metastases was successfully established. The organoid culture maintained the morphological features, histological features, and genomic landscape of the corresponding sigmoid colon cancer cells. Moreover, we performed drug screening tests to evaluate the effects of chemotherapeutic drugs and targeted drugs. Conclusion The sigmoid colon cancer organoid with spinal metastases was a favorable preclinical model to explore the clinicopathologic characteristics of colon cancer patients with spinal metastases.
Collapse
Affiliation(s)
- Jingyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shumin Cheng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Liang Gu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhangsen Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chunhui Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
17
|
Zhu Z, Cheng Y, Liu X, Ding W, Liu J, Ling Z, Wu L. Advances in the Development and Application of Human Organoids: Techniques, Applications, and Future Perspectives. Cell Transplant 2025; 34:9636897241303271. [PMID: 39874083 PMCID: PMC11775963 DOI: 10.1177/09636897241303271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing. Recent advancements have led to the successful development of a variety of organoid types, reflecting a broad range of human organs and tissues. This progress has expanded their application across several domains, including regenerative medicine, where organoids offer potential for tissue replacement and repair; disease modeling, which allows for the study of disease mechanisms and progression in a controlled environment; drug discovery and evaluation, where organoids provide a more accurate platform for testing drug efficacy and safety; and microecological research, where they contribute to understanding the interactions between microbes and host tissues. This review provides a comprehensive overview of the historical development of organoid technology, highlights the key achievements and ongoing challenges in the field, and discusses the current and emerging applications of organoids in both laboratory research and clinical practice.
Collapse
Affiliation(s)
- Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingbin Wu
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|
18
|
Taurin S, Alzahrani R, Aloraibi S, Ashi L, Alharmi R, Hassani N. Patient-derived tumor organoids: A preclinical platform for personalized cancer therapy. Transl Oncol 2025; 51:102226. [PMID: 39622151 DOI: 10.1016/j.tranon.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/11/2024] Open
Abstract
Patient-derived tumor organoids (PDTOs) represent a significant advancement in cancer research and personalized medicine. These organoids, derived from various cancer types, have shown the ability to retain the genetic and molecular characteristics of the original tumors, allowing for the detailed study of tumor biology and drug responses on an individual basis. The success rates of establishing PDTOs vary widely and are influenced by factors such as cancer type, tissue quality, and media composition. Furthermore, the dynamic nature of organoid cultures may also lead to unique molecular characteristics that deviate from the original tumors, affecting their interpretation in clinical settings without the implementation of rigorous validation and establishment of standardized protocols. Recent studies have supported the correlation between PDTOs and the corresponding patient response. Although these studies involved a small number of patients, they promoted the integration of PDTOs in observational and interventional clinical trials to advance translational cancer therapies.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain.
| | - Reem Alzahrani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Sahar Aloraibi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Layal Ashi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Rawan Alharmi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Noora Hassani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
19
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research. Cancers (Basel) 2025; 17:108. [PMID: 39796734 PMCID: PMC11719888 DOI: 10.3390/cancers17010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies. Methods: Previously, we collected metadata of academic publications on organoids or organ-on-chip platforms from PubMed, Web of Science, Scopus, EMBASE, and bioRxiv, published between January 2011 and June 2023. Here, we selected documents from this metadata corpus that were computationally determined as relevant to tumor research and analyzed them using an in-house text analysis algorithm. Additionally, we collected and analyzed metadata from ClinicalTrials.gov of clinical studies related to tumor organoids or ToC as of March 2023. Results and Discussion: From 3551 academic publications and 139 clinical trials, we identified 55 and 24 tumor classes modeled as tumor organoids and ToC models, respectively. The research was particularly active in neural and hepatic/pancreatic tumor organoids, as well as gastrointestinal, neural, and reproductive ToC models. Comparative analysis with cancer statistics showed that lung, lymphatic, and cervical tumors were under-represented in tumor organoid research. Our findings also illustrate varied research topics, including tumor physiology, therapeutic approaches, immune cell involvement, and analytical techniques. Mapping the research geographically highlighted the focus on colorectal cancer research in the Netherlands, though overall the specific research focus of countries did not reflect regional cancer prevalence. These insights not only map the current research landscape but also indicate potential new directions in tumor model research.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Richard P. Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christine L. Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, The Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
20
|
Arafeh R, Shibue T, Dempster JM, Hahn WC, Vazquez F. The present and future of the Cancer Dependency Map. Nat Rev Cancer 2025; 25:59-73. [PMID: 39468210 DOI: 10.1038/s41568-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Despite tremendous progress in the past decade, the complex and heterogeneous nature of cancer complicates efforts to identify new therapies and therapeutic combinations that achieve durable responses in most patients. Further advances in cancer therapy will rely, in part, on the development of targeted therapeutics matched with the genetic and molecular characteristics of cancer. The Cancer Dependency Map (DepMap) is a large-scale data repository and research platform, aiming to systematically reveal the landscape of cancer vulnerabilities in thousands of genetically and molecularly annotated cancer models. DepMap is used routinely by cancer researchers and translational scientists and has facilitated the identification of several novel and selective therapeutic strategies for multiple cancer types that are being tested in the clinic. However, it is also clear that the current version of DepMap is not yet comprehensive. In this Perspective, we review (1) the impact and current uses of DepMap, (2) the opportunities to enhance DepMap to overcome its current limitations, and (3) the ongoing efforts to further improve and expand DepMap.
Collapse
Affiliation(s)
- Rand Arafeh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | | | - William C Hahn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
21
|
Hu X, Wu H, Hu K, Kang Y, Hua G, Cheng M, Yan W, Huang W. Establishing patient-derived tumor organoids of bone metastasis from lung adenocarcinoma reveals the transcriptomic changes underlying denosumab treatment. Clin Exp Metastasis 2024; 42:8. [PMID: 39739069 DOI: 10.1007/s10585-024-10321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025]
Abstract
Patient-derived tumor organoids (PDTOs) models have been widely used to investigate the response of primary cancer tissues to anti-cancer agents. Nonetheless, only few case study tried to establish PDTOs and test treatment response based on bone metastasis (BoM) tissues. Fresh BoM tissues were obtained from lung cancer (LC) patients who underwent spinal metastatic tumor surgery for PDTOs culture. Morphology of LC-BoM-PDTOs were characterized during the process: they were high-efficient in self-assembly and regeneration, forming mature 3D-multicellular structures in 2-3 weeks. To be more specific, organoids of BoM derived from patients with EGFR mutation tended to be follicular conglomeration and resembled "a bunch of grapes", while organoids of BoM derived from patients without driver gene mutation were featured with full sphere and "a ripe sunflower". PDTOs of BoM retained good consistencies of HE morphology and immunohistochemical markers expression with their parental BoM tissues. Down-regulation of receptor activator of nuclear factor kappa-B ligand (RANKL) expression in LC-BoM-PDTOs after in vitro DMAb intervention was associated with earlier clinical ossification efficacy of DMAb on BoM (median time: 5 vs. 8 months, P = 0.049). Accordingly, BoM-PDTOs can be expected to be a preferred model for predicting treatment response of bone metastatic tumors, considering its high-efficient expansion and good biological consistency with parental bone tumor tissues.
Collapse
Affiliation(s)
- Xianglin Hu
- Department of Musculoskeletal Oncology, Spine Tumor Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huajian Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China
| | - Kewen Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yani Kang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guoqiang Hua
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Research and Early Development (RED) of D1 Medical Technology Company, Shanghai, China
| | - Mo Cheng
- Department of Musculoskeletal Oncology, Spine Tumor Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Spine Tumor Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wending Huang
- Department of Musculoskeletal Oncology, Spine Tumor Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Bai Z, Wang H, Han J, An J, Yang Z, Mo X. Multiomics integration and machine learning reveal prognostic programmed cell death signatures in gastric cancer. Sci Rep 2024; 14:31060. [PMID: 39730893 DOI: 10.1038/s41598-024-82233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Gastric cancer (GC) is characterized by notable heterogeneity and the impact of molecular subtypes on treatment and prognosis. The role of programmed cell death (PCD) in cellular processes is critical, yet its specific function in GC is underexplored. This study applied multiomics approaches, integrating transcriptomic, epigenetic, and somatic mutation data, with consensus clustering algorithms to classify GC molecular subtypes and assess their biological and immunological features. A machine learning model was developed to create the Gastric Cancer Multi-Omics Programmed Cell Death Signature (GMPS), targeting PCD-related genes. We verified the expression of the GMPS hub genes using the RT-qPCR method. The prognostic influence of GMPS on GC was then evaluated. Single-cell analysis was performed to examine the heterogeneity of PCD characteristics in GC. Findings indicate that GMPS notably correlates with patient survival rates, tumor mutational burden (TMB), and copy number variations (CNV), demonstrating substantial prognostic predictive power. Moreover, GMPS is closely associated with the tumor microenvironment (TME) and immune therapy response. This research elucidates the molecular subtypes of GC, highlighting PCD's critical role in prognosis assessment. The relationship between GMPS and immune therapy response, alongside gastric cancer's microenvironmental features, provides insights for personalized treatment.
Collapse
Affiliation(s)
- Zihao Bai
- Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hao Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Jingru Han
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Jia An
- Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Xuming Mo
- Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China.
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
23
|
Tan R, Hong F, Wang T, Zhong N, Zhao H, Xu RH, Shen L, Liu Y, Yao X, Xiang D, Gao D, Xiong J, Hui L, Zhao B, Miao Z, Hao J, Li Y, Hu S, Fu B, Hua G, Wang L, Zeng ZL, Chen C, Wu J, Wang C, Wang C, Zhan X, Song C, Sun Z, Yu C, Yang Y, Niu G, Wang Y, Zhao T, Chen YG. Standard: Human gastric cancer organoids. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:33. [PMID: 39729207 DOI: 10.1186/s13619-024-00217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Gastric cancer is one of the most common malignancies with poor prognosis. The use of organoids to simulate gastric cancer has rapidly developed over the past several years. Patient-derived gastric cancer organoids serve as in vitro models that closely mimics donor characteristics, offering new opportunities for both basic and applied research. The "Human Gastric Cancer Organoid" is part of a series of guidelines for human gastric cancer organoids in China, jointly drafted by experts from the Chinese Society for Cell Biology and its branches, and initially released on October 29, 2024. This standard outlines terminology, technical requirements, assessment protocols, and applies to production, evaluation procedures, and quality control for human gastric cancer organoids. The publication of this guideline aims to assist institutions in endorsing, establishing, and applying best practices, advancing the international standardization of human gastric cancer organoids for clinical development and therapeutic application.
Collapse
Affiliation(s)
- Ronghui Tan
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Fan Hong
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Ting Wang
- The State Key Laboratory of Membrane Biology, Tsinghua‑Peking Center for Life Sciences,, School of Life Sciences , Tsinghua University, Beijing, 100084, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Nanshan Zhong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongling Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Gastrointestinal Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, 200232, China
- Department of Biliary-Pancreatic Surgery, Renji HospitalAffiliated to, Shanghai Jiaotong University School of Medicine , Shanghai, 200127, China
| | - Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, 230027, China
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, 200232, China
- Department of Biliary-Pancreatic Surgery, Renji HospitalAffiliated to, Shanghai Jiaotong University School of Medicine , Shanghai, 200127, China
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330031, China
| | - Lijian Hui
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai, 200031, China
| | - Bing Zhao
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, 110001, China
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, 110001, China
| | - Jie Hao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 510080, China
| | - Boqiang Fu
- National Institute of Metrology, Beijing, 100029, China
| | - Guoqiang Hua
- Department of Radiation Oncology and Cancer Institute, Fudan University Shanghai Cancer Center Fudan University, Shanghai, 200433, China
- D1Med Technology (Shanghai) Inc, Shanghai, 201802, China
| | - Lei Wang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chong Chen
- Gastric Cancer Centerand, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Peking University International Cancer Institute, Peking University, Beijing, 100191, China
| | - Changlin Wang
- China National Institute of Standardization, Beijing, 100191, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chunnian Wang
- Department of Gastrointestinal Pathology, Ningbo Diagnostic Pathology Center, Ningbo, 315021, China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Chen Song
- Huayi Regeneration Technology Co., Ltd, Chengdu, 611135, China
| | - Zhijian Sun
- K2 Oncology Co., Ltd, KeChuang Street, Beijing, 100176, China
| | - Chunping Yu
- Lilly (China) Research and Development Center, Shanghai, 201203, China
| | | | - Gengming Niu
- Shanghai OneTar Biomedicine Co., Ltd, Shanghai, 201203, China
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Tongbiao Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ye-Guang Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- The State Key Laboratory of Membrane Biology, Tsinghua‑Peking Center for Life Sciences,, School of Life Sciences , Tsinghua University, Beijing, 100084, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
24
|
Huang W, Xu Z, Li S, Zhou J, Zhao B. Living Biobanks of Organoids: Valuable Resource for Translational Research. Biopreserv Biobank 2024; 22:543-549. [PMID: 38959173 PMCID: PMC11656124 DOI: 10.1089/bio.2023.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
The emergence of organoids is considered a revolutionary model, changing the landscape of traditional translational research. These three-dimensional miniatures of human organs or tissues, cultivated from stem cells or biospecimens obtained from patients, faithfully replicate the structural and functional characteristics of specific target organs or tissues. In this extensive review, we explore the profound impact of organoids and assess the current state of living organoid biobanks, which are essential repositories for cryopreserving organoids derived from a variety of diseases. These resources hold significant value for translational research. We delve into the diverse origins of organoids, the underlying technologies, and their roles in recapitulating human development, disease modeling, as well as their potential applications in the pharmaceutical field. With a particular emphasis on biobanking organoids for prospective applications, we discuss how these advancements expedite the transition from bench to bedside translational research, thereby fostering personalized medicine and enriching our comprehension of human health.
Collapse
Affiliation(s)
- Wenqing Huang
- Department of Central Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Republic of China
| | - Zhaoting Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, Republic of China
| | - Shuang Li
- Department of Central Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Republic of China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Republic of China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, Republic of China
| |
Collapse
|
25
|
Yang J, Song X, Zhang H, Liu Q, Wei R, Guo L, Yuan C, Chen F, Xue K, Lai Y, Wang L, Shi J, Zhou C, Wang J, Yu Y, Mei Q, Hu L, Wang H, Zhang C, Zhang Q, Li H, Gu Y, Zhao W, Yu H, Wang J, Liu Z, Li H, Zheng S, Liu J, Yang L, Li W, Xu R, Chen J, Zhou Y, Cheng X, Yu Y, Wang D, Sun X, Yu H. Single-cell transcriptomic landscape deciphers olfactory neuroblastoma subtypes and intra-tumoral heterogeneity. NATURE CANCER 2024; 5:1919-1939. [PMID: 39543363 DOI: 10.1038/s43018-024-00855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Olfactory neuroblastoma (ONB) is a rare malignancy known to originate from the olfactory epithelium. The complex tumor ecosystem of this pathology remains unclear. Here, we explored the cellular components within ten ONB tumors and one olfactory mucosa sample based on single-cell RNA profiles. We showed the intra-tumoral heterogeneity by identifying five unique expression programs among malignant epithelial cells. A distinct three-classification system (neural, basal, mesenchymal) for ONB was established according to the distinguished gene expression patterns. Biomarkers for categorizing bulk tumors into uncharacterized subtypes were elucidated. Different responses towards certain chemotherapy regimens could be cautiously inferred according to the molecular features representing the three tumor types, thus helping with precision chemotherapy. We also analyzed subclusters of the tumor microenvironment (TME) and the interactions among different cell types within the TME. The relative abundance of immunosuppressive tumor-associated macrophages suggests potential benefits of immunotherapies targeting macrophages.
Collapse
Affiliation(s)
- Jingyi Yang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- Olfactory Neuroblastoma Diagnosis and Treatment Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Xiaole Song
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- Mucosal Melanoma Diagnosis and Treatment Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Huankang Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Quan Liu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Ruoyan Wei
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Luo Guo
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China
| | - Cuncun Yuan
- Department of Pathology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Fu Chen
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Kai Xue
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Yuting Lai
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Li Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Junfeng Shi
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Chengle Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Juan Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Pharmaceutical Industry Research Institute, Shanghai, PR China
| | - Yingxuan Yu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Pharmaceutical Industry Research Institute, Shanghai, PR China
| | - Qibing Mei
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Pharmaceutical Industry Research Institute, Shanghai, PR China
| | - Li Hu
- Department of Experimental Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Huan Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Chen Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Qianqian Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Houyong Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Ye Gu
- Department of Neurosurgery and Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Weidong Zhao
- Department of Neurosurgery and Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Huapeng Yu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Jingjing Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Zhuofu Liu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Han Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Shixing Zheng
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Juan Liu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Lu Yang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Wanpeng Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Rui Xu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Jiani Chen
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Yumin Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- Olfactory Disorder Diagnosis and Treatment Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Dehui Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Xicai Sun
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- Olfactory Neuroblastoma Diagnosis and Treatment Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Hongmeng Yu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China.
- Research Unit of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Chinese Academy of Medical Sciences, Shanghai, PR China.
| |
Collapse
|
26
|
Niazi V, Parseh B. Organoid models of breast cancer in precision medicine and translational research. Mol Biol Rep 2024; 52:2. [PMID: 39570495 DOI: 10.1007/s11033-024-10101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
One of the most famous and heterogeneous cancers worldwide is breast cancer (BC). Owing to differences in the gene expression profiles and clinical features of distinct BC subtypes, different treatments are prescribed for patients. However, even with more thorough pathological evaluations of tumors than in the past, available treatments do not perform equally well for all individuals. Precision medicine is a new approach that considers the effects of patients' genes, lifestyle, and environment to choose the right treatment for an individual patient. As a powerful tool, the organoid culture system can maintain the morphological and genetic characteristics of patients' tumors. Evidence also shows that organoids have high predictive value for patient treatment. In this review, a variety of BC studies performed on organoid culture systems are evaluated. Additionally, the potential of using organoid models in BC translational research, especially in immunotherapy, drug screening, and precision medicine, has been reported.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran.
| |
Collapse
|
27
|
Wang Z, Di Y, Wen X, Liu Y, Ye L, Zhang X, Qin J, Wang Y, Chu H, Li G, Zhang W, Wang X, He W. NIT2 dampens BRD1 phase separation and restrains oxidative phosphorylation to enhance chemosensitivity in gastric cancer. Sci Transl Med 2024; 16:eado8333. [PMID: 39565874 DOI: 10.1126/scitranslmed.ado8333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
5-Fluorouracil (5-FU) chemoresistance contributes to poor therapeutic response and prognosis of gastric cancer (GC), for which effective strategies to overcome chemoresistance are limited. Here, using a CRISPR-Cas9 system, we identified that nitrilase family member 2 (NIT2) reverses chemoresistance independent of its metabolic function. Depletion or low expression of NIT2 led to 5-FU resistance in GC cell lines, patient-derived organoids, and xenografted tumors. Mechanistically, NIT2 interacted with bromodomain-containing protein 1 (BRD1) to inhibit HBO1-mediated acetylation of histone H3 at lysine-14 (H3K14ac) and RELA-targeted oxidative phosphorylation (OXPHOS) gene expression. Upon 5-FU stimulation, NIT2 phosphorylation by Src at Y49 promoted the dissociation of NIT2 from BRD1, followed by binding to E3 ligase CCNB1IP1, causing autophagic degradation of NIT2. Consequently, reduced NIT2 protein resulted in BRD1 forming phase separation and binding to histone H3, as well as increased RELA stability due to suppression of inhibitor of growth family member 4-mediated RELA ubiquitination. In addition, NIT2 expression negatively correlated with H3K14ac and OXPHOS and positively correlated with the chemotherapeutic responses and prognosis of patients with GC. Our findings reveal the moonlighting function of NIT2 in chemoresistance and underscore that OXPHOS blockade by metformin enhances 5-FU chemosensitivity upon NIT2 loss.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuqin Di
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Molecular Diagnosis and Gene Testing Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ye Liu
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, Liaoning 116029, China
- Laboratory of Molecular Modeling, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Youpeng Wang
- Center of Hepato-Pancreato-Biliary Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Huiying Chu
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, Liaoning 116029, China
- Laboratory of Molecular Modeling, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Guohui Li
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian, Liaoning 116029, China
- Laboratory of Molecular Modeling, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Weijing Zhang
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiongjun Wang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Weiling He
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| |
Collapse
|
28
|
Pan C, Wang X, Yang C, Fu K, Wang F, Fu L. The culture and application of circulating tumor cell-derived organoids. Trends Cell Biol 2024:S0962-8924(24)00210-1. [PMID: 39523200 DOI: 10.1016/j.tcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology. However, isolating and enriching CTCs from blood remains challenging due to their scarcity, exacerbated by the lack of an optimized culture medium for CTC-derived organoids (CTCDOs). In this review, we summarize the origin, isolation, enrichment, culture, validation, and clinical application of CTCs and CTCDOs.
Collapse
Affiliation(s)
- Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
29
|
Tong L, Cui W, Zhang B, Fonseca P, Zhao Q, Zhang P, Xu B, Zhang Q, Li Z, Seashore-Ludlow B, Yang Y, Si L, Lundqvist A. Patient-derived organoids in precision cancer medicine. MED 2024; 5:1351-1377. [PMID: 39341206 DOI: 10.1016/j.medj.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Organoids are three-dimensional (3D) cultures, normally derived from stem cells, that replicate the complex structure and function of human tissues. They offer a physiologically relevant model to address important questions in cancer research. The generation of patient-derived organoids (PDOs) from various human cancers allows for deeper insights into tumor heterogeneity and spatial organization. Additionally, interrogating non-tumor stromal cells increases the relevance in studying the tumor microenvironment, thereby enhancing the relevance of PDOs in personalized medicine. PDOs mark a significant advancement in cancer research and patient care, signifying a shift toward more innovative and patient-centric approaches. This review covers aspects of PDO cultures to address the modeling of the tumor microenvironment, including extracellular matrices, air-liquid interface and microfluidic cultures, and organ-on-chip. Specifically, the role of PDOs as preclinical models in gene editing, molecular profiling, drug testing, and biomarker discovery and their potential for guiding personalized treatment in clinical practice are discussed.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Weiyingqi Cui
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Boya Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Pedro Fonseca
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qian Zhao
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Ping Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Beibei Xu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Li Z, Sun C, Fei H, Li Z, Zhao D, Guo C, Du C. ASO Author Reflections: The Gastric Cancer Patients with Unfavorable Tumor Regression Despite Neoadjuvant Chemotherapy may Require Adjuvant Chemotherapy After Surgery, but How? Ann Surg Oncol 2024:10.1245/s10434-024-16457-5. [PMID: 39514151 DOI: 10.1245/s10434-024-16457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Zefeng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chongyuan Sun
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Fei
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chunguang Guo
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chunxia Du
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
31
|
Zeng G, Yu Y, Wang M, Liu J, He G, Yu S, Yan H, Yang L, Li H, Peng X. Advancing cancer research through organoid technology. J Transl Med 2024; 22:1007. [PMID: 39516934 PMCID: PMC11545094 DOI: 10.1186/s12967-024-05824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The complexity of tumors and the challenges associated with treatment often stem from the limitations of existing models in accurately replicating authentic tumors. Recently, organoid technology has emerged as an innovative platform for tumor research. This bioengineering approach enables researchers to simulate, in vitro, the interactions between tumors and their microenvironment, thereby enhancing the intricate interplay between tumor cells and their surroundings. Organoids also integrate multidimensional data, providing a novel paradigm for understanding tumor development and progression while facilitating precision therapy. Furthermore, advancements in imaging and genetic editing techniques have significantly augmented the potential of organoids in tumor research. This review explores the application of organoid technology for more precise tumor simulations and its specific contributions to cancer research advancements. Additionally, we discuss the challenges and evolving trends in developing comprehensive tumor models utilizing organoid technology.
Collapse
Affiliation(s)
- Guolong Zeng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Meiting Wang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Sixuan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Huining Yan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, China.
| |
Collapse
|
32
|
Yuan T, Fu X, Hu R, Zheng X, Jiang D, Jing L, Kuang X, Guo Z, Luo X, Liu Y, Zou X, Luker GD, Mi S, Liu C, Sun W. Bioprinted, spatially defined breast tumor microenvironment models of intratumoral heterogeneity and drug resistance. Trends Biotechnol 2024; 42:1523-1550. [PMID: 39112274 DOI: 10.1016/j.tibtech.2024.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 11/17/2024]
Abstract
Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand-receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy.
Collapse
Affiliation(s)
- Tianying Yuan
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, 518055, Shenzhen, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Xihong Fu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Rongcheng Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaochun Zheng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Dong Jiang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Lanyu Jing
- Department of Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaying Kuang
- Department of Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Zhongwei Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, 450001, Zhengzhou, China
| | - Xu Luo
- Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Yixin Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Shengli Mi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| | - Chun Liu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China.
| | - Wei Sun
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, 518055, Shenzhen, China; Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, 100084, Beijing, China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Guo L, Zhou Y, Ma R. Exploring the anti-gastric cancer mechanism of action of Bidentis Bipinnatae Herba based on network pharmacology, molecular docking, and cellular experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8681-8690. [PMID: 38822119 DOI: 10.1007/s00210-024-03169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
The purpose of this study is to explore the potential molecular mechanism of Bidentis Bipinnatae Herba against gastric cancer by using network pharmacology methods, molecular docking, and cellular experimental validation. Medicinal plants related to gastric cancer were queried through TCMSP, SymMap, and Herb databases. The TCSMP database (drug-likeness ≥ 0.18) was used to retrieve the bioactive constituents. TCSMP, SwissTargetPrediction, and Herb databases were used to retrieve the target genes, and Cytoscape software was used to construct the "active ingredient-target" network. After protein interaction analysis using String 11.0 platform, the hub genes were screened using CytoHubba. The obtained hub genes were uploaded to the cBioPortal for pathway enrichment. The genes involved in gastric cancer-related RTK-RAS pathway were molecularly docked and experimentally validated. Bidentis Bipinnatae Herba was common to TCMSP, SymMap, and Herb databases. A total of nine active ingredients were obtained in Bidentis Bipinnatae Herba, acting on 192 targets. Seven hub genes were obtained from these target genes and enriched in the RTK-RAS pathway in gastric cancer. MAPK1 and EGFR had good molecular docking results with their corresponding chemicals. Cellular experiments showed that the treatment of luteolin, quercetin, and Okanin reduced the expression of EGFR in AGS cells; the treatment of luteolin and quercetin could reduce the expression of MAPK1. Bidentis Bipinnatae Herba contained active components, which may be anti-gastric cancer in a multi-target (MAPK1 and EGFR) manner.
Collapse
Affiliation(s)
- Linglong Guo
- Department of Oncology, Yizheng Hospital of TCM, Yizheng, 211400, China
| | - Yuyi Zhou
- Graduate School, Zhejiang Chinese Medical University, Zhejiang, 310053, China
| | - Rui Ma
- Department of Traditional Chinese Medicine, Nanjing Luhe People's Hospital, No. 9, Jiankang Lane, Xiongzhou Street, Luhe District, Nanjing, 211500, China.
| |
Collapse
|
34
|
Bar-Hai N, Ben-Yishay R, Arbili-Yarhi S, Herman N, Avidan-Noy V, Menes T, Mansour A, Awwad F, Balint-Lahat N, Goldinger G, Hout-Siloni G, Adileh M, Berger R, Ishay-Ronen D. Modeling epithelial-mesenchymal transition in patient-derived breast cancer organoids. Front Oncol 2024; 14:1470379. [PMID: 39469640 PMCID: PMC11513879 DOI: 10.3389/fonc.2024.1470379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
Cellular plasticity is enhanced by dedifferentiation processes such as epithelial-mesenchymal transition (EMT). The dynamic and transient nature of EMT-like processes challenges the investigation of cell plasticity in patient-derived breast cancer models. Here, we utilized patient-derived organoids (PDOs) as a model to study the susceptibility of primary breast cancer cells to EMT. Upon induction with TGF-β, PDOs exhibited EMT-like features, including morphological changes, E-cadherin downregulation and cytoskeletal reorganization, leading to an invasive phenotype. Image analysis and the integration of deep learning algorithms enabled the implantation of microscopy-based quantifications demonstrating repetitive results between organoid lines from different breast cancer patients. Interestingly, epithelial plasticity was also expressed in terms of alterations in luminal and myoepithelial distribution upon TGF-β induction. The effective modeling of dynamic processes such as EMT in organoids and their characteristic spatial diversity highlight their potential to advance research on cancer cell plasticity in cancer patients.
Collapse
Affiliation(s)
- Neta Bar-Hai
- Oncology Institute, Shaba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Naama Herman
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | - Vered Avidan-Noy
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | - Tehillah Menes
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | - Aiham Mansour
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | - Fahim Awwad
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | | | - Gil Goldinger
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, Shaba Medical Center, Ramat-Gan, Israel
| | | | - Mohammad Adileh
- Department of Surgery, Mount Scopus, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Raanan Berger
- Oncology Institute, Shaba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Ishay-Ronen
- Oncology Institute, Shaba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Vasiliadou I, Cattaneo C, Chan PYK, Henley-Smith R, Gregson-Williams H, Collins L, Wojewodka G, Guerrero-Urbano T, Jeannon JP, Connor S, Davis J, Pasto A, Mustapha R, Ng T, Kong A. Correlation of the treatment sensitivity of patient-derived organoids with treatment outcomes in patients with head and neck cancer (SOTO): protocol for a prospective observational study. BMJ Open 2024; 14:e084176. [PMID: 39389599 PMCID: PMC11474813 DOI: 10.1136/bmjopen-2024-084176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Organoids have been successfully used in several areas of cancer research and large living biobanks of patient-derived organoids (PDOs) have been developed from various malignancies. The characteristics of the original tumour tissue such as mutation signatures, phenotype and genetic diversity are well preserved in organoids, thus showing promising results for the use of this model in translational research. In this study, we aim to assess whether we can generate PDOs from head and neck squamous cell carcinoma (HNSCC) samples and whether PDOs can be used to predict treatment sensitivity in HNSCC patients as well as to explore potential biomarkers. METHODS AND ANALYSIS This is a prospective observational study at a single centre (Guy's and St Thomas' NHS Foundation Trust) to generate PDOs from patients' samples to assess treatment response and to correlate with patients' treatment outcomes. Patients will be included if they are diagnosed with HNSCC undergoing curative treatment (primary surgery or radiotherapy) or presenting with recurrent or metastatic cancers and they will be categorised into three groups (cohort 1: primary surgery, cohort 2: primary radiotherapy and cohort 3: recurrent/metastatic disease). Research tumour samples will be collected and processed into PDOs and chemosensitivity/radiosensitivity will be assessed using established methods. Moreover, blood and other biological samples (eg, saliva) will be collected at different time intervals during treatment and will be processed in the laboratory for plasma and peripheral blood mononuclear cell (PBMC) isolation. Plasma and saliva will be used for circulating tumour DNA analysis and PBMC will be stored for assessment of the peripheral immune characteristics of the patients as well as to perform co-culture experiments with PDOs. SOTO study (correlation of the treatment Sensitivity of patient-derived Organoids with Treatment Outcomes in patients with head and neck cancer) uses the collaboration of several specialties in head and neck cancer and has the potential to explore multiple areas of research with the aim of offering a valid and effective approach to personalised medicine for cancer patients. ETHICS AND DISSEMINATION This study was approved by North West-Greater Manchester South Research Ethics Committee (REC Ref: 22/NW/0023) on 21 March 2022. An informed consent will be obtained from all participants prior to inclusion in the study. Results will be disseminated via peer-reviewed publications and presentations at international conferences. TRIAL REGISTRATION NUMBER NCT05400239.
Collapse
Affiliation(s)
| | | | | | - Rhonda Henley-Smith
- Head and Neck Pathology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | | | - Lisette Collins
- Head and Neck Pathology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | | | | | | | - Steve Connor
- Head and Neck Radiology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Jessica Davis
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Anna Pasto
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Rami Mustapha
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Tony Ng
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Anthony Kong
- Comprehensive Cancer Centre, King's College London, London, UK
| |
Collapse
|
36
|
Kim SE, Yun S, Doh J, Kim HN. Imaging-Based Efficacy Evaluation of Cancer Immunotherapy in Engineered Tumor Platforms and Tumor Organoids. Adv Healthc Mater 2024; 13:e2400475. [PMID: 38815251 DOI: 10.1002/adhm.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Suji Yun
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Junsang Doh
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX institute, Soft Foundry Institute, Seoul National University, Seoul, 08826, South Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
37
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
38
|
Tan Z, Pan K, Sun M, Pan X, Yang Z, Chang Z, Yang X, Zhu J, Zhan L, Liu Y, Li X, Lin K, Chen L, Mo H, Luo W, Kan C, Duan L, Zheng H. CCKBR+ cancer cells contribute to the intratumor heterogeneity of gastric cancer and confer sensitivity to FOXO inhibition. Cell Death Differ 2024; 31:1302-1317. [PMID: 39164456 PMCID: PMC11445462 DOI: 10.1038/s41418-024-01360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
The existence of heterogeneity has plunged cancer treatment into a challenging dilemma. We profiled malignant epithelial cells from 5 gastric adenocarcinoma patients through single-cell sequencing (scRNA-seq) analysis, demonstrating the heterogeneity of gastric adenocarcinoma (GA), and identified the CCKBR+ stem cell-like cancer cells associated poorly differentiated and worse prognosis. We further conducted targeted analysis using single-cell transcriptome libraries, including 40 samples, to confirm these screening results. In addition, we revealed that FOXOs are involved in the progression and development of CCKBR+ gastric adenocarcinoma. Inhibited the expression of FOXOs and disrupting cancer cell stemness reduce the CCKBR+ GA organoid formation and impede tumor progression. Mechanically, CUT&Tag sequencing and Lectin pulldown revealed that FOXOs can activate ST3GAL3/4/5 as well as ST6GALNAC6, promoting elevated sialyation levels in CCKBR+ tumor cells. This FOXO-sialyltransferase axis contributes to the maintenance of homeostasis and the growth of CCKBR+ tumor cells. This insight provides novel perspectives for developing targeted therapeutic strategies aimed at the treating CCKBR associated gastric cancer.
Collapse
Affiliation(s)
- Zhenya Tan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ke Pan
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Minqiong Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xianzhu Pan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Anhui Medical College, Hefei, 230032, China
| | - Zhi Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiling Chang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xue Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jicheng Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Li Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaofei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Keqiong Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lin Chen
- Department of General Surgery, Anhui Provincial Cancer Hospital, Hefei, 230032, China
| | - Hui Mo
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Luo
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Lunxi Duan
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Hong Zheng
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
39
|
Jiang M, Tu R, Pan Y, Cui Y, Qi X, Qin H, Liu L, Wang X, Xue Y, Xu Y, Peng Z, Zhang C, Yang J. Patient-derived organoids and mini-PDX for predicting MET N375S-mutated lung cancer patient clinical therapeutic response. Heliyon 2024; 10:e37884. [PMID: 39328538 PMCID: PMC11425092 DOI: 10.1016/j.heliyon.2024.e37884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Lung cancer as a molecularly and histologically high heterogonous disease, there is an urgent need to predict lung cancer patients' responses to anti-cancer treatment, and patient-derived organoids (PDOs) have been recognized as a valuable platform for preclinical drug screening. In this study, we successfully established 26 PDO lines from various subtypes of lung cancers including benign tumor, adenocarcinoma, squamous cell carcinoma, adenosquamous carcinoma, large-cell carcinoma, and small-cell carcinoma. These PDOs were shown to retain the major genomic and histological characteristics of primary tumors and remain stable during long-term culture. With the help of targeted genomic sequencing, we found that lung cancer that harbors METN375S mutation is selectively sensitive to afatinib, and a combination of afatinib and gemcitabine induced synthetic lethality in PDO and mini-PDX models. In summary, our findings demonstrate the potential of PDO in predicting lung cancer drug response, and reveal a promising strategy for METN375S mutant lung cancer treatment.
Collapse
Affiliation(s)
- Meng Jiang
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Rongfu Tu
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Yiwen Pan
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yuxin Cui
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xin Qi
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Hongyu Qin
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Lijuan Liu
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiaorui Wang
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ying Xue
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yao Xu
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ziyang Peng
- Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710061, China
| | - Chengsheng Zhang
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jin Yang
- Precision Medicine Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
40
|
Benčurová K, Tran L, Friske J, Bevc K, Helbich TH, Hacker M, Bergmann M, Zeitlinger M, Haug A, Mitterhauser M, Egger G, Balber T. An in vivo tumour organoid model based on the chick embryonic chorioallantoic membrane mimics key characteristics of the patient tissue: a proof-of-concept study. EJNMMI Res 2024; 14:86. [PMID: 39331331 PMCID: PMC11436503 DOI: 10.1186/s13550-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. RESULTS The main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. CONCLUSIONS We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.
Collapse
Affiliation(s)
- Katarína Benčurová
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kajetana Bevc
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Thomas H Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory Applied Metabolomics, Vienna, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria.
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Theresa Balber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Mamun TI, Younus S, Rahman MH. Gastric cancer-Epidemiology, modifiable and non-modifiable risk factors, challenges and opportunities: An updated review. Cancer Treat Res Commun 2024; 41:100845. [PMID: 39357127 DOI: 10.1016/j.ctarc.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Gastric cancer represents a significant global health challenge due to its high mortality and incidence rates, particularly in Eastern Asia, Eastern Europe, and South America. This comprehensive review synthesizes the latest epidemiological data and explores both modifiable and non-modifiable risk factors associated with gastric cancer, aiming to delineate the multifactorial etiology of this disease. Modifiable risk factors include Helicobacter pylori infection, obesity, dietary habits, smoking and alcohol consumption, whereas nonmodifiable factors comprise genetic predispositions, age, family history and male gender. The interplay of these factors significantly impacts the risk and progression of gastric cancer, suggesting potential preventive strategies. The challenges in treating gastric cancer are considerable, largely because of the late-stage diagnosis and the heterogeneity of the disease, which complicate effective treatment regimens. Current treatment strategies involve a combination of surgery, chemotherapy, radiotherapy, and targeted therapies. The FLOT regimen (5-FU, Leucovorin, Oxaliplatin and Docetaxel) is now a standard for resectable cases in Europe and the US, showing superior survival and response rates over ECF and ECX regimens. For HER2-positive gastric cancer, trastuzumab combined with chemotherapy improves overall survival, as demonstrated by the ToGA trial. Additionally, immune checkpoint inhibitors like pembrolizumab and nivolumab offer promising results. However, the five-year survival rate remains low, underscoring the urgency for improved therapeutic approaches. Recent advancements in molecular biology and cancer genomics have begun to pave the way for personalized medicine in gastric cancer care, focusing on molecular targeted therapies and immunotherapy. This review also highlights the critical need for better screening methods that could facilitate early detection and treatment, potentially improving the prognosis. By integrating epidemiological insights with new therapeutic strategies, this article aims to thoroughly understand of gastric cancer's dynamics and outline a framework for future research and clinical management, advocating for a multidisciplinary approach to tackle this formidable disease.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Sabrina Younus
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Hashibur Rahman
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
42
|
Dinić J, Jovanović Stojanov S, Dragoj M, Grozdanić M, Podolski-Renić A, Pešić M. Cancer Patient-Derived Cell-Based Models: Applications and Challenges in Functional Precision Medicine. Life (Basel) 2024; 14:1142. [PMID: 39337925 PMCID: PMC11433531 DOI: 10.3390/life14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The field of oncology has witnessed remarkable progress in personalized cancer therapy. Functional precision medicine has emerged as a promising avenue for achieving superior treatment outcomes by integrating omics profiling and sensitivity testing of patient-derived cancer cells. This review paper provides an in-depth analysis of the evolution of cancer-directed drugs, resistance mechanisms, and the role of functional precision medicine platforms in revolutionizing individualized treatment strategies. Using two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived xenograft (PDX) models, and advanced functional assays has significantly improved our understanding of tumor behavior and drug response. This progress will lead to identifying more effective treatments for more patients. Considering the limited eligibility of patients based on a genome-targeted approach for receiving targeted therapy, functional precision medicine provides unprecedented opportunities for customizing medical interventions according to individual patient traits and individual drug responses. This review delineates the current landscape, explores limitations, and presents future perspectives to inspire ongoing advancements in functional precision medicine for personalized cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (S.J.S.); (M.D.); (M.G.); (A.P.-R.)
| |
Collapse
|
43
|
Ooki A, Osumi H, Yoshino K, Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer 2024; 27:907-931. [PMID: 38922524 PMCID: PMC11335850 DOI: 10.1007/s10120-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Gastric cancer (GC) is a common malignancy that presents challenges in patient care worldwide. The mismatch repair (MMR) system is a highly conserved DNA repair mechanism that protects genome integrity during replication. Deficient MMR (dMMR) results in an increased accumulation of genetic errors in microsatellite sequences, leading to the development of a microsatellite instability-high (MSI-H) phenotype. Most MSI-H/dMMR GCs arise sporadically, mainly due to MutL homolog 1 (MLH1) epigenetic silencing. Unlike microsatellite-stable (MSS)/proficient MMR (pMMR) GCs, MSI-H/dMMR GCs are relatively rare and represent a distinct subtype with genomic instability, a high somatic mutational burden, favorable immunogenicity, different responses to treatment, and prognosis. dMMR/MSI-H status is a robust predictive biomarker for treatment with immune checkpoint inhibitors (ICIs) due to high neoantigen load, prominent tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PD-L1) overexpression. However, a subset of MSI-H/dMMR GC patients does not benefit from immunotherapy, highlighting the need for further research into predictive biomarkers and resistance mechanisms. This review provides a comprehensive overview of the clinical, molecular, immunogenic, and therapeutic aspects of MSI-H/dMMR GC, with a focus on the impact of ICIs in immunotherapy and their potential as neoadjuvant therapies. Understanding the complexity and diversity of the molecular and immunological profiles of MSI-H/dMMR GC will drive the development of more effective therapeutic strategies and molecular targets for future precision medicine.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Koichiro Yoshino
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
44
|
Xin M, Li Q, Wang D, Wang Z. Organoids for Cancer Research: Advances and Challenges. Adv Biol (Weinh) 2024; 8:e2400056. [PMID: 38977414 DOI: 10.1002/adbi.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 07/10/2024]
Abstract
As 3D culture technology advances, new avenues have opened for the development of physiological human cancer models. These preclinical models provide efficient ways to translate basic cancer research into clinical tumor therapies. Recently, cancer organoids have emerged as a model to dissect the more complex tumor microenvironment. Incorporating cancer organoids into preclinical programs have the potential to increase the success rate of oncology drug development and recapitulate the most efficacious treatment regimens for cancer patients. In this review, four main types of cancer organoids are introduced, their applications, advantages, limitations, and prospects are discussed, as well as the recent application of single-cell RNA-sequencing (scRNA-seq) in exploring cancer organoids to advance this field.
Collapse
Affiliation(s)
- Miaomaio Xin
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
- University of South Bohemia in Ceske Budejovice, Vodnany, 38925, Czech Republic
| | - Qian Li
- Changsha Medical University, Changsha, Hunan Province, 410000, China
| | - Dongyang Wang
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
| | - Zheng Wang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing, Sichuan Province, 404100, China
| |
Collapse
|
45
|
Zhou L, Luo D, Lu W, Han J, Zhao M, Li X, Shen T, Jin Z, Zeng J, Wen Y. Gastrointestinal tract organoids as novel tools in drug discovery. Front Pharmacol 2024; 15:1463114. [PMID: 39281285 PMCID: PMC11394194 DOI: 10.3389/fphar.2024.1463114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Organoids, characterized by their high physiological attributes, effectively preserve the genetic characteristics, physiological structure, and function of the simulated organs. Since the inception of small intestine organoids, other organoids for organs including the liver, lungs, stomach, and pancreas have subsequently been developed. However, a comprehensive summary and discussion of research findings on gastrointestinal tract (GIT) organoids as disease models and drug screening platforms is currently lacking. Herein, in this review, we address diseases related to GIT organoid simulation and highlight the notable advancements that have been made in drug screening and pharmacokinetics, as well as in disease research and treatment using GIT organoids. Organoids of GIT diseases, including inflammatory bowel disease, irritable bowel syndrome, necrotizing enterocolitis, and Helicobacter pylori infection, have been successfully constructed. These models have facilitated the study of the mechanisms and effects of various drugs, such as metformin, Schisandrin C, and prednisolone, in these diseases. Furthermore, GIT organoids have been used to investigate viruses that elicit GIT reactions, including Norovirus, SARS-CoV-2, and rotavirus. Previous studies by using GIT organoids have shown that dasabuvir, gemcitabine, and imatinib possess the capability to inhibit viral replication. Notably, GIT organoids can mimic GIT responses to therapeutic drugs at the onset of disease. The GIT toxicities of compounds like gefitinib, doxorubicin, and sunset yellow have also been evaluated. Additionally, these organoids are instrumental for the study of immune regulation, post-radiation intestinal epithelial repair, treatment for cystic fibrosis and diabetes, the development of novel drug delivery systems, and research into the GIT microbiome. The recent use of conditioned media as a culture method for replacing recombinant hepatocyte growth factor has significantly reduced the cost associated with human GIT organoid culture. This advancement paves the way for large-scale culture and compound screening of GIT organoids. Despite the ongoing challenges in GIT organoid development (e.g., their inability to exist in pairs, limited cell types, and singular drug exposure mode), these organoids hold considerable potential for drug screening. The use of GIT organoids in this context holds great promises to enhance the precision of medical treatments for patients living with GIT diseases.
Collapse
Affiliation(s)
- Li Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lu
- Department of Elderly Care Center, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Jun Han
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyuan Zhao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueyi Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pediatrics, Guang'an Hospital of Traditional Chinese Medicine, Guang'an, China
| |
Collapse
|
46
|
Yang R, Kwan W, Du Y, Yan R, Zang L, Li C, Zhu Z, Cheong IH, Kozlakidis Z, Yu Y. Drug-induced senescence by aurora kinase inhibitors attenuates innate immune response of macrophages on gastric cancer organoids. Cancer Lett 2024; 598:217106. [PMID: 38992487 PMCID: PMC11364160 DOI: 10.1016/j.canlet.2024.217106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer with aggressiveness and poor prognosis. It is of great significance to find sensitive drugs for DGC. In the current study, a total of 20 patient-derived organoids (PDOs) were analyzed for screening the therapeutic efficacy of small molecule kinases inhibitors on gastric cancers, especially the therapeutic difference between intestinal-type gastric cancer (IGCs) and DGCs. The IGCs are sensitive to multiple kinases inhibitors, while DGCs are resistant to most of these kinases inhibitors. It was found that DGCs showed drug-induced senescent phenotype after treatment by aurora kinases inhibitors (AURKi) Barasertib-HQPA and Danusertib. The cell diameter of cancer cells are increased with stronger staining of senescence-associated β-galactosidase (SA-β-GAL), and characteristic appearance of multinucleated giant cells. The senescent cancer cells secrete large amounts of chemokine MCP-1/CCL2, which recruit and induce macrophage to M2-type polarization in PDOs of DGC (DPDOs)-macrophage co-culture system. The up-regulation of local MCP-1/CCL2 can interact with MCP-1/CCL2 receptor (CCR2) expressed on macrophages and suppress their innate immunity to cancer cells. Overall, the special response of DGC to AURKi suggests that clinicians should select a sequential therapy with senescent cell clearance after AURKi treatment for DGC.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wingyan Kwan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yutong Du
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ranlin Yan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Lu Zang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Chen Li
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhenggang Zhu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Io Hong Cheong
- Healthy Macau New-Generation Association, 999078, Macau, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group of International Agency for Research on Cancer, World Health Organization, 25 avenue Tony Garnier, CS 90627, 69366, LYON, CEDEX 07, France.
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
47
|
Mao Y, Hu H. Establishment of advanced tumor organoids with emerging innovative technologies. Cancer Lett 2024; 598:217122. [PMID: 39029781 DOI: 10.1016/j.canlet.2024.217122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Tumor organoids have emerged as a crucial preclinical model for multiple cancer research. Their high establishment rates, stability, and ability to replicate key biological features of original tumor cells in vivo render them invaluable for exploring tumor molecular mechanisms, discovering potential anti-tumor drugs, and predicting clinical drug efficacy. Here, we review the establishment of tumor organoid models and provide an extensive overview of organoid culturing strategies. We also emphasize the significance of integrating cellular components of the tumor microenvironment and physicochemical factors in the organoid culturing system, highlighting the importance of artificial intelligence technology in advancing organoid construction. Moreover, we summarize recent advancements in utilizing organoid systems for novel anti-cancer drug screening and discuss promising trends for enhancing advanced organoids in next-generation disease modeling.
Collapse
Affiliation(s)
- Yunuo Mao
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, PR China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
48
|
Hu X, Wei J, Liu P, Zheng Q, Zhang Y, Zhang Q, Yao J, Ni J. Organoid as a promising tool for primary liver cancer research: a comprehensive review. Cell Biosci 2024; 14:107. [PMID: 39192365 DOI: 10.1186/s13578-024-01287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Primary liver cancer (PLC) is one of the most common malignant gastrointestinal tumors worldwide. Limited by the shortage of liver transplantation donors and the heterogeneity of tumors, patients with liver cancer lack effective treatment options, which leads to rapid progression and metastasis. Currently, preclinical models of PLC fall short of clinical reality and are limited in their response to disease progression and the effectiveness of drug therapy. Organoids are in vitro three-dimensional cultured preclinical models with a high degree of heterogeneity that preserve the histomorphological and genomic features of primary tumors. Liver cancer organoids have been widely used for drug screening, new target discovery, and precision medicine; thus representing a promising tool to study PLC. Here, we summarize the progress of research on liver cancer organoids and their potential application as disease models. This review provides a comprehensive introduction to this emerging technology and offers new ideas for researchers to explore in the field of precision medicine.
Collapse
Affiliation(s)
- Xuekai Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jiayun Wei
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Pinyan Liu
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Qiuxia Zheng
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yue Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Qichen Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yao
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- School of Basic Medical Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
49
|
Huang R, Huang X, Tong Y, Yan HYN, Leung SY, Stegle O, Huang Y. Robust analysis of allele-specific copy number alterations from scRNA-seq data with XClone. Nat Commun 2024; 15:6684. [PMID: 39107346 PMCID: PMC11303794 DOI: 10.1038/s41467-024-51026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Somatic copy number alterations (CNAs) are major mutations that contribute to the development and progression of various cancers. Despite a few computational methods proposed to detect CNAs from single-cell transcriptomic data, the technical sparsity of such data makes it challenging to identify allele-specific CNAs, particularly in complex clonal structures. In this study, we present a statistical method, XClone, that strengthens the signals of read depth and allelic imbalance by effective smoothing on cell neighborhood and gene coordinate graphs to detect haplotype-aware CNAs from scRNA-seq data. By applying XClone to multiple datasets with challenging compositions, we demonstrated its ability to robustly detect different types of allele-specific CNAs and potentially indicate whole genome duplication, therefore enabling the discovery of corresponding subclones and the dissection of their phenotypic impacts.
Collapse
Affiliation(s)
- Rongting Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xianjie Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
- Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Yin Tong
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Helen Y N Yan
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yuanhua Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
50
|
Yang Z, Yu J, Wong CC. Gastrointestinal Cancer Patient Derived Organoids at the Frontier of Personalized Medicine and Drug Screening. Cells 2024; 13:1312. [PMID: 39195202 PMCID: PMC11352269 DOI: 10.3390/cells13161312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Around one-third of the total global cancer incidence and mortality are related to gastrointestinal (GI) cancers. Over the past few years, rapid developments have been made in patient-derived organoid (PDO) models for gastrointestinal cancers. By closely mimicking the molecular properties of their parent tumors in vitro, PDOs have emerged as powerful tools in personalized medicine and drug discovery. Here, we review the current literature on the application of PDOs of common gastrointestinal cancers in the optimization of drug treatment strategies in the clinic and their rising importance in pre-clinical drug development. We discuss the advantages and limitations of gastrointestinal cancer PDOs and outline the microfluidics-based strategies that improve the throughput of PDO models in order to extract the maximal benefits in the personalized medicine and drug discovery process.
Collapse
Affiliation(s)
- Zhenjie Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|