1
|
Grinstein M, Tsai SL, Montoro D, Freedman BR, Dingwall HL, Villaseñor S, Zou K, Sade-Feldman M, Tanaka MJ, Mooney DJ, Capellini TD, Rajagopal J, Galloway JL. A latent Axin2 +/Scx + progenitor pool is the central organizer of tendon healing. NPJ Regen Med 2024; 9:30. [PMID: 39420021 PMCID: PMC11487078 DOI: 10.1038/s41536-024-00370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
A tendon's ordered extracellular matrix (ECM) is essential for transmitting force but is also highly prone to injury. How tendon cells embedded within and surrounding this dense ECM orchestrate healing is not well understood. Here, we identify a specialized quiescent Scx+/Axin2+ population in mouse and human tendons that initiates healing and is a major functional contributor to repair. Axin2+ cells express stem cell markers, expand in vitro, and have multilineage differentiation potential. Following tendon injury, Axin2+-descendants infiltrate the injury site, proliferate, and differentiate into tenocytes. Transplantation assays of Axin2-labeled cells into injured tendons reveal their dual capacity to significantly proliferate and differentiate yet retain their Axin2+ identity. Specific loss of Wnt secretion in Axin2+ or Scx+ cells disrupts their ability to respond to injury, severely compromising healing. Our work highlights an unusual paradigm, wherein specialized Axin2+/Scx+ cells rely on self-regulation to maintain their identity as key organizers of tissue healing.
Collapse
Affiliation(s)
- Mor Grinstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stephanie L Tsai
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Daniel Montoro
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Heather L Dingwall
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Steffany Villaseñor
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ken Zou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- The Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Miho J Tanaka
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Hayashi K, Horisaka K, Harada Y, Ogawa Y, Yamashita T, Kitano T, Wakita M, Fukusumi T, Inohara H, Hara E, Matsumoto T. Polyploidy mitigates the impact of DNA damage while simultaneously bearing its burden. Cell Death Discov 2024; 10:436. [PMID: 39397009 PMCID: PMC11471775 DOI: 10.1038/s41420-024-02206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Polyploidy is frequently enhanced under pathological conditions, such as tissue injury and cancer in humans. Polyploidization is critically involved in cancer evolution, including cancer initiation and the acquisition of drug resistance. However, the effect of polyploidy on cell fate remains unclear. In this study, we explored the effects of polyploidization on cellular responses to DNA damage and cell cycle progression. Through various comparisons based on ploidy stratifications of cultured cells, we found that polyploidization and the accumulation of genomic DNA damage mutually induce each other, resulting in polyploid cells consistently containing more genomic DNA damage than diploid cells under both physiological and stress conditions. Notably, despite substantial DNA damage, polyploid cells demonstrated a higher tolerance to its impact, exhibiting delayed cell cycle arrest and reduced secretion of inflammatory cytokines associated with DNA damage-induced senescence. Consistently, in mice with ploidy tracing, hepatocytes with high ploidy appeared to potentially persist in the damaged liver, while being susceptible to DNA damage. Polyploidy acts as a reservoir of genomic damage by mitigating the impact of DNA damage, while simultaneously enhancing its accumulation.
Collapse
Affiliation(s)
- Kazuki Hayashi
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Kisara Horisaka
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiyuki Harada
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuta Ogawa
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Takako Yamashita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Taku Kitano
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Wakita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Hara
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Aging Biology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Tomonori Matsumoto
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Chen F, Zhang K, Wang M, He Z, Yu B, Wang X, Pan X, Luo Y, Xu S, Lau JTY, Han C, Shi Y, Sun YE, Li S, Hu YP. VEGF-FGF Signaling Activates Quiescent CD63 + Liver Stem Cells to Proliferate and Differentiate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308711. [PMID: 38881531 PMCID: PMC11434209 DOI: 10.1002/advs.202308711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the liver stem cells (LSCs) holds great promise for new insights into liver diseases and liver regeneration. However, the heterogenicity and plasticity of liver cells have made it controversial. Here, by employing single-cell RNA-sequencing technology, transcriptome features of Krt19+ bile duct lineage cells isolated from Krt19CreERT; Rosa26R-GFP reporter mouse livers are examined. Distinct biliary epithelial cells which include adult LSCs, as well as their downstream hepatocytes and cholangiocytes are identified. Importantly, a novel cell surface LSCs marker, CD63, as well as CD56, which distinguished active and quiescent LSCs are discovered. Cell expansion and bi-potential differentiation in culture demonstrate the stemness ability of CD63+ cells in vitro. Transplantation and lineage tracing of CD63+ cells confirm their contribution to liver cell mass in vivo upon injury. Moreover, CD63+CD56+ cells are proved to be activated LSCs with vigorous proliferation ability. Further studies confirm that CD63+CD56- quiescent LSCs express VEGFR2 and FGFR1, and they can be activated to proliferation and differentiation through combination of growth factors: VEGF-A and bFGF. These findings define an authentic adult liver stem cells compartment, make a further understanding of fate regulation on LSCs, and highlight its contribution to liver during pathophysiologic processes.
Collapse
Affiliation(s)
- Fei Chen
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, School of Medicine and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200065, China
| | - Minjun Wang
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Zhiying He
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Bing Yu
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Xin Wang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xinghua Pan
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Yuping Luo
- Stem Cell Translational Research Center, School of Medicine and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200065, China
| | - Shoujia Xu
- Shanghai Baixian Biotechnology co., Ltd, Shanghai, 201318, China
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufang Shi
- Child Health Institute of New Jersey, Robert-Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Yi E Sun
- Stem Cell Translational Research Center, School of Medicine and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200065, China
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Siguang Li
- Stem Cell Translational Research Center, School of Medicine and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200065, China
| | - Yi-Ping Hu
- Department of Cell Biology, Basic Medical College, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| |
Collapse
|
4
|
Darmasaputra GS, Geerlings CC, Chuva de Sousa Lopes SM, Clevers H, Galli M. Binucleated human hepatocytes arise through late cytokinetic regression during endomitosis M phase. J Cell Biol 2024; 223:e202403020. [PMID: 38727809 PMCID: PMC11090133 DOI: 10.1083/jcb.202403020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/15/2024] Open
Abstract
Binucleated polyploid cells are common in many animal tissues, where they arise by endomitosis, a non-canonical cell cycle in which cells enter M phase but do not undergo cytokinesis. Different steps of cytokinesis have been shown to be inhibited during endomitosis M phase in rodents, but it is currently unknown how human cells undergo endomitosis. In this study, we use fetal-derived human hepatocyte organoids (Hep-Orgs) to investigate how human hepatocytes initiate and execute endomitosis. We find that cells in endomitosis M phase have normal mitotic timings, but lose membrane anchorage to the midbody during cytokinesis, which is associated with the loss of four cortical anchoring proteins, RacGAP1, Anillin, SEPT9, and citron kinase (CIT-K). Moreover, reduction of WNT activity increases the percentage of binucleated cells in Hep-Orgs, an effect that is dependent on the atypical E2F proteins, E2F7 and E2F8. Together, we have elucidated how hepatocytes undergo endomitosis in human Hep-Orgs, providing new insights into the mechanisms of endomitosis in mammals.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cindy C. Geerlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
5
|
Yin K, Büttner M, Deligiannis IK, Strzelecki M, Zhang L, Talavera-López C, Theis F, Odom DT, Martinez-Jimenez CP. Polyploidisation pleiotropically buffers ageing in hepatocytes. J Hepatol 2024; 81:289-302. [PMID: 38583492 DOI: 10.1016/j.jhep.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND & AIMS Polyploidy in hepatocytes has been proposed as a genetic mechanism to buffer against transcriptional dysregulation. Here, we aim to demonstrate the role of polyploidy in modulating gene regulatory networks in hepatocytes during ageing. METHODS We performed single-nucleus RNA sequencing in hepatocyte nuclei of different ploidy levels isolated from young and old wild-type mice. Changes in the gene expression and regulatory network were compared to three independent strains that were haploinsufficient for HNF4A, CEBPA or CTCF, representing non-deleterious perturbations. Phenotypic characteristics of the liver section were additionally evaluated histologically, whereas the genomic allele composition of hepatocytes was analysed by BaseScope. RESULTS We observed that ageing in wild-type mice results in nuclei polyploidy and a marked increase in steatosis. Haploinsufficiency of liver-specific master regulators (HFN4A or CEBPA) results in the enrichment of hepatocytes with tetraploid nuclei at a young age, affecting the genomic regulatory network, and dramatically suppressing ageing-related steatosis tissue wide. Notably, these phenotypes are not the result of subtle disruption to liver-specific transcriptional networks, since haploinsufficiency in the CTCF insulator protein resulted in the same phenotype. Further quantification of genotypes of tetraploid hepatocytes in young and old HFN4A-haploinsufficient mice revealed that during ageing, tetraploid hepatocytes lead to the selection of wild-type alleles, restoring non-deleterious genetic perturbations. CONCLUSIONS Our results suggest a model whereby polyploidisation leads to fundamentally different cell states. Polyploid conversion enables pleiotropic buffering against age-related decline via non-random allelic segregation to restore a wild-type genome. IMPACT AND IMPLICATIONS The functional role of hepatocyte polyploidisation during ageing is poorly understood. Using single-nucleus RNA sequencing and BaseScope approaches, we have studied ploidy dynamics during ageing in murine livers with non-deleterious genetic perturbations. We have identified that hepatocytes present different cellular states and the ability to buffer ageing-associated dysfunctions. Tetraploid nuclei exhibit robust transcriptional networks and are better adapted to genomically overcome perturbations. Novel therapeutic interventions aimed at attenuating age-related changes in tissue function could be exploited by manipulation of ploidy dynamics during chronic liver conditions.
Collapse
Affiliation(s)
- Kelvin Yin
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany
| | - Maren Büttner
- Institute of Computational Biology, Computational Health Department, Helmholtz Munich, Neuherberg, Germany
| | | | | | - Liwei Zhang
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany
| | - Carlos Talavera-López
- Division of Infectious Diseases and Tropical Medicine, Ludwig-Maximilian-Universität Klinikum, Germany
| | - Fabian Theis
- Institute of Computational Biology, Computational Health Department, Helmholtz Munich, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748 Garching. Munich, Germany; German Cancer Research Centre, Heidelberg, Germany.
| | - Duncan T Odom
- German Cancer Research Center, Division of Regulatory Genomics and Cancer Evolution (B270), Heidelberg, Germany; Cancer Research UK Cambridge Institute, University of Cambridge, CB20RE, United Kingdom.
| | - Celia P Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany; TUM School of Medicine, Technical University of Munich, Munich, Germany; Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Spain.
| |
Collapse
|
6
|
Sui B, Wang R, Chen C, Kou X, Wu D, Fu Y, Lei F, Wang Y, Liu Y, Chen X, Xu H, Liu Y, Kang J, Liu H, Kwok RTK, Tang BZ, Yan H, Wang M, Xiang L, Yan X, Zhang X, Ma L, Shi S, Jin Y. Apoptotic Vesicular Metabolism Contributes to Organelle Assembly and Safeguards Liver Homeostasis and Regeneration. Gastroenterology 2024; 167:343-356. [PMID: 38342194 DOI: 10.1053/j.gastro.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND & AIMS Apoptosis generates plenty of membrane-bound nanovesicles, the apoptotic vesicles (apoVs), which show promise for biomedical applications. The liver serves as a significant organ for apoptotic material removal. Whether and how the liver metabolizes apoptotic vesicular products and contributes to liver health and disease is unrecognized. METHODS apoVs were labeled and traced after intravenous infusion. Apoptosis-deficient mice by Fas mutant (Fasmut) and Caspase-3 knockout (Casp3-/-) were used with apoV replenishment to evaluate the physiological apoV function. Combinations of morphologic, biochemical, cellular, and molecular assays were applied to assess the liver while hepatocyte analysis was performed. Partial hepatectomy and acetaminophen liver failure models were established to investigate liver regeneration and disease recovery. RESULTS We discovered that the liver is a major metabolic organ of circulatory apoVs, in which apoVs undergo endocytosis by hepatocytes via a sugar recognition system. Moreover, apoVs play an indispensable role to counteract hepatocellular injury and liver impairment in apoptosis-deficient mice upon replenishment. Surprisingly, apoVs form a chimeric organelle complex with the hepatocyte Golgi apparatus through the soluble N-ethylmaleimide-sensitive factor attachment protein receptor machinery, which preserves Golgi integrity, promotes microtubule acetylation by regulating α-tubulin N-acetyltransferase 1, and consequently facilitates hepatocyte cytokinesis for liver recovery. The assembly of the apoV-Golgi complex is further revealed to contribute to liver homeostasis, regeneration, and protection against acute liver failure. CONCLUSIONS These findings establish a previously unrecognized functional and mechanistic framework that apoptosis through vesicular metabolism safeguards liver homeostasis and regeneration, which holds promise for hepatic disease therapeutics.
Collapse
Affiliation(s)
- Bingdong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Runci Wang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Di Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yu Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Fangcao Lei
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore, Singapore
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junjun Kang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haixiang Liu
- Department of Chemical and Biological Engineering, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan Tsz Kin Kwok
- Department of Chemical and Biological Engineering, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Hexin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Minjun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, The Second Military Medical University, Shanghai, China
| | - Lei Xiang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xutong Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xiao Zhang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Lan Ma
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China.
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
9
|
Chen Y, Yang Y, Lu J, Chen H, Shi Z, Wang X, Xu N, Xu X, Wang S. Neutrophil and macrophage crosstalk might be a potential target for liver regeneration. FEBS Open Bio 2024; 14:922-941. [PMID: 38710666 PMCID: PMC11148125 DOI: 10.1002/2211-5463.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/17/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
The regenerative capability of the liver is remarkable, but further research is required to understand the role that neutrophils play in this process. In the present study, we reanalyzed single-cell RNA sequencing data from a mouse partial hepatectomy (PH) model to track the transcriptional changes in hepatocytes and non-parenchymal cells. Notably, we unraveled the regenerative capacity of hepatocytes at diverse temporal points after PH, unveiling the contributions of three distinct zones in the liver regeneration process. In addition, we observed that the depletion of neutrophils reduced the survival and liver volume after PH, confirming the important role of neutrophils in liver regeneration. CellChat analysis revealed an intricate crosstalk between neutrophils and macrophages promoting liver regeneration and, using weighted gene correlation network analysis, we identified the most significant genetic module associated with liver regeneration. Our study found that hepatocytes in the periportal zone of the liver are more active than in other zones, suggesting that the crosstalk between neutrophils and macrophages might be a potential target for liver regeneration treatment.
Collapse
Affiliation(s)
- Yiyuan Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical University, Affiliated Hangzhou First People's HospitalHangzhouChina
| | - Yijie Yang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical University, Affiliated Hangzhou First People's HospitalHangzhouChina
| | - Jinjiao Lu
- The Fourth School of Clinical MedicineZhejiang Chinese Medical University, Affiliated Hangzhou First People's HospitalHangzhouChina
| | - Huan Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical University, Affiliated Hangzhou First People's HospitalHangzhouChina
| | - Zhixiong Shi
- Zhejiang University School of MedicineHangzhouChina
| | - Xiaodong Wang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical University, Affiliated Hangzhou First People's HospitalHangzhouChina
| | - Nan Xu
- Zhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Institute of Organ TransplantationZhejiang UniversityHangzhouChina
| | - Shuai Wang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical University, Affiliated Hangzhou First People's HospitalHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
10
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
11
|
Matchett KP, Wilson-Kanamori JR, Portman JR, Kapourani CA, Fercoq F, May S, Zajdel E, Beltran M, Sutherland EF, Mackey JBG, Brice M, Wilson GC, Wallace SJ, Kitto L, Younger NT, Dobie R, Mole DJ, Oniscu GC, Wigmore SJ, Ramachandran P, Vallejos CA, Carragher NO, Saeidinejad MM, Quaglia A, Jalan R, Simpson KJ, Kendall TJ, Rule JA, Lee WM, Hoare M, Weston CJ, Marioni JC, Teichmann SA, Bird TG, Carlin LM, Henderson NC. Multimodal decoding of human liver regeneration. Nature 2024; 630:158-165. [PMID: 38693268 PMCID: PMC11153152 DOI: 10.1038/s41586-024-07376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
The liver has a unique ability to regenerate1,2; however, in the setting of acute liver failure (ALF), this regenerative capacity is often overwhelmed, leaving emergency liver transplantation as the only curative option3-5. Here, to advance understanding of human liver regeneration, we use paired single-nucleus RNA sequencing combined with spatial profiling of healthy and ALF explant human livers to generate a single-cell, pan-lineage atlas of human liver regeneration. We uncover a novel ANXA2+ migratory hepatocyte subpopulation, which emerges during human liver regeneration, and a corollary subpopulation in a mouse model of acetaminophen (APAP)-induced liver regeneration. Interrogation of necrotic wound closure and hepatocyte proliferation across multiple timepoints following APAP-induced liver injury in mice demonstrates that wound closure precedes hepatocyte proliferation. Four-dimensional intravital imaging of APAP-induced mouse liver injury identifies motile hepatocytes at the edge of the necrotic area, enabling collective migration of the hepatocyte sheet to effect wound closure. Depletion of hepatocyte ANXA2 reduces hepatocyte growth factor-induced human and mouse hepatocyte migration in vitro, and abrogates necrotic wound closure following APAP-induced mouse liver injury. Together, our work dissects unanticipated aspects of liver regeneration, demonstrating an uncoupling of wound closure and hepatocyte proliferation and uncovering a novel migratory hepatocyte subpopulation that mediates wound closure following liver injury. Therapies designed to promote rapid reconstitution of normal hepatic microarchitecture and reparation of the gut-liver barrier may advance new areas of therapeutic discovery in regenerative medicine.
Collapse
Affiliation(s)
- K P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - J R Wilson-Kanamori
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - J R Portman
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - C A Kapourani
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - F Fercoq
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - S May
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - E Zajdel
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - M Beltran
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - E F Sutherland
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - J B G Mackey
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - M Brice
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - G C Wilson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - S J Wallace
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - L Kitto
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - N T Younger
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - R Dobie
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - D J Mole
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- University Department of Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - G C Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
- Division of Transplant Surgery, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - S J Wigmore
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- University Department of Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - P Ramachandran
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - C A Vallejos
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- The Alan Turing Institute, London, UK
| | - N O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - M M Saeidinejad
- Institute for Liver and Digestive Health, University College London, London, UK
| | - A Quaglia
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - R Jalan
- Institute for Liver and Digestive Health, University College London, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - K J Simpson
- Department of Hepatology, University of Edinburgh and Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - T J Kendall
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - J A Rule
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - W M Lee
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - M Hoare
- Early Cancer Institute, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - C J Weston
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - J C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge, UK
| | - S A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, Cambridge, UK
| | - T G Bird
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - L M Carlin
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - N C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Willimann M, Tiyaboonchai A, Adachi K, Li B, Waldburger L, Nakai H, Grompe M, Thöny B. AAV Capsid Screening for Translational Pig Research Using a Mouse Xenograft Liver Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596409. [PMID: 38853940 PMCID: PMC11160762 DOI: 10.1101/2024.05.29.596409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In gene therapy, delivery vectors are a key component for successful gene delivery and safety, based on which adeno-associated viruses (AAVs) gained popularity in particular for the liver, but also for other organs. Traditionally, rodents have been used as animal models to develop and optimize treatments, but species and organ specific tropism of AAV desire large animal models more closely related to humans for preclinical in-depth studies. Relevant AAV variants with the potential for clinical translation in liver gene therapy were previously evolved in vivo in a xenogeneic mouse model transplanted with human hepatocytes. Here, we selected and evaluated efficient AAV capsids using chimeric mice with a >90% xenografted pig hepatocytes. The pig is a valuable preclinical model for therapy studies due to its anatomic and immunological similarities to humans. Using a DNA-barcoded recombinant AAV library containing 47 different capsids and subsequent Illumina sequencing of barcodes in the AAV vector genome DNA and transcripts in the porcine hepatocytes, we found the AAVLK03 and AAVrh20 capsid to be the most efficient delivery vectors regarding transgene expression in porcine hepatocytes. In attempting to validate these findings with primary porcine hepatocytes, we observed capsid-specific differences in cell entry and transgene expression efficiency where the AAV2, AAVAnc80, and AAVDJ capsids showed superior efficiency to AAVLK03 and AAVrh20. This work highlights intricacies of in vitro testing with primary hepatocytes and the requirements for suitable pre-clinical animal models but suggests the chimeric mouse to be a valuable model to predict AAV capsids to transduce porcine hepatocytes efficiently.
Collapse
Affiliation(s)
- Melanie Willimann
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Amita Tiyaboonchai
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Kei Adachi
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Bin Li
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Lea Waldburger
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Hiroyuki Nakai
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Markus Grompe
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Beat Thöny
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| |
Collapse
|
13
|
Yang J, Zou S, Qiu Z, Lai M, Long Q, Chen H, Lai PL, Zhang S, Rao Z, Xie X, Gong Y, Liu A, Li M, Bai X. Mecp2 fine-tunes quiescence exit by targeting nuclear receptors. eLife 2024; 12:RP89912. [PMID: 38747706 PMCID: PMC11095939 DOI: 10.7554/elife.89912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.
Collapse
Affiliation(s)
- Jun Yang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Shitian Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zeyou Qiu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Mingqiang Lai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Qing Long
- Department of Biochemistry, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Huan Chen
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Ping lin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Sheng Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhi Rao
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Xiaoling Xie
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Yan Gong
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Anling Liu
- Department of Biochemistry, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Mangmang Li
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
14
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
De Chiara L, Lazzeri E, Romagnani P. Polyploid tubular cells: a shortcut to stress adaptation. Kidney Int 2024; 105:709-716. [PMID: 38199322 DOI: 10.1016/j.kint.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024]
Abstract
Tubular epithelial cells (TCs) compose the majority of kidney parenchyma and play fundamental roles in maintaining homeostasis. Like other tissues, mostly immature TC with progenitor capabilities are able to replace TC lost during injury via clonal expansion and differentiation. In contrast, differentiated TC lack this capacity. However, as the kidney is frequently exposed to toxic injuries, evolution positively selected a response program that endows differentiated TC to maintain residual kidney function during kidney injury. Recently, we and others have described polyploidization of differentiated TC, a mechanism to augment the function of remnant TC after injury by rapid hypertrophy. Polyploidy is a condition characterized by >2 complete sets of chromosomes. Polyploid cells often display an increased functional capacity and are generally more resilient to stress as evidenced by being conserved across many plants and eukaryote species from flies to mammals. Here, we discuss the occurrence of TC polyploidy in different contexts and conditions and how this integrates into existing concepts of kidney cell responses to injury. Collectively, we aim at stimulating the acquisition of novel knowledge in the kidney field as well as accelerating the translation of this basic response mechanism to the clinical sphere.
Collapse
Affiliation(s)
- Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Elena Lazzeri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy.
| |
Collapse
|
16
|
Herriage HC, Huang YT, Calvi BR. The antagonistic relationship between apoptosis and polyploidy in development and cancer. Semin Cell Dev Biol 2024; 156:35-43. [PMID: 37331841 PMCID: PMC10724375 DOI: 10.1016/j.semcdb.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
17
|
Darmasaputra GS, van Rijnberk LM, Galli M. Functional consequences of somatic polyploidy in development. Development 2024; 151:dev202392. [PMID: 38415794 PMCID: PMC10946441 DOI: 10.1242/dev.202392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyploid cells contain multiple genome copies and arise in many animal tissues as a regulated part of development. However, polyploid cells can also arise due to cell division failure, DNA damage or tissue damage. Although polyploidization is crucial for the integrity and function of many tissues, the cellular and tissue-wide consequences of polyploidy can be very diverse. Nonetheless, many polyploid cell types and tissues share a remarkable similarity in function, providing important information about the possible contribution of polyploidy to cell and tissue function. Here, we review studies on polyploid cells in development, underlining parallel functions between different polyploid cell types, as well as differences between developmentally-programmed and stress-induced polyploidy.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
18
|
Ruz-Maldonado I, Gonzalez JT, Zhang H, Sun J, Bort A, Kabir I, Kibbey RG, Suárez Y, Greif DM, Fernández-Hernando C. Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage. Nat Commun 2024; 15:1247. [PMID: 38341404 PMCID: PMC10858916 DOI: 10.1038/s41467-024-45439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John T Gonzalez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Richard G Kibbey
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
19
|
Porat-Shliom N. Compartmentalization, cooperation, and communication: The 3Cs of Hepatocyte zonation. Curr Opin Cell Biol 2024; 86:102292. [PMID: 38064779 PMCID: PMC10922296 DOI: 10.1016/j.ceb.2023.102292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/15/2024]
Abstract
The unique architecture of the liver allows for spatial compartmentalization of its functions, also known as liver zonation. In contrast to organelles and cells, this compartment is devoid of a surrounding membrane, rendering traditional biochemical tools ineffective for studying liver zonation. Recent advancements in tissue imaging and single-cell technologies have provided new insights into the complexity of tissue organization, rich cellular composition, and the gradients that shape zonation. Hepatocyte gene expression profiles and metabolic programs differ based on their location. Non-parenchymal cells further support hepatocytes from different zones through local secretion of factors that instruct hepatocyte activities. Collectively, these elements form a cohesive and dynamic network of cell-cell interactions that vary across space, time, and disease states. This review will examine the cell biology of hepatocytes in vivo, presenting the latest discoveries and emerging principles that govern tissue-level and sub-cellular compartmentalization.
Collapse
Affiliation(s)
- Natalie Porat-Shliom
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Kasturi M, Mathur V, Gadre M, Srinivasan V, Vasanthan KS. Three Dimensional Bioprinting for Hepatic Tissue Engineering: From In Vitro Models to Clinical Applications. Tissue Eng Regen Med 2024; 21:21-52. [PMID: 37882981 PMCID: PMC10764711 DOI: 10.1007/s13770-023-00576-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 10/27/2023] Open
Abstract
Fabrication of functional organs is the holy grail of tissue engineering and the possibilities of repairing a partial or complete liver to treat chronic liver disorders are discussed in this review. Liver is the largest gland in the human body and plays a responsible role in majority of metabolic function and processes. Chronic liver disease is one of the leading causes of death globally and the current treatment strategy of organ transplantation holds its own demerits. Hence there is a need to develop an in vitro liver model that mimics the native microenvironment. The developed model should be a reliable to understand the pathogenesis, screen drugs and assist to repair and replace the damaged liver. The three-dimensional bioprinting is a promising technology that recreates in vivo alike in vitro model for transplantation, which is the goal of tissue engineers. The technology has great potential due to its precise control and its ability to homogeneously distribute cells on all layers in a complex structure. This review gives an overview of liver tissue engineering with a special focus on 3D bioprinting and bioinks for liver disease modelling and drug screening.
Collapse
Affiliation(s)
- Meghana Kasturi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mrunmayi Gadre
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
21
|
Guild J, Juul NH, Andalon A, Taenaka H, Coffey RJ, Matthay MA, Desai TJ. Evidence for lung barrier regeneration by differentiation prior to binucleated and stem cell division. J Cell Biol 2023; 222:e202212088. [PMID: 37843535 PMCID: PMC10579698 DOI: 10.1083/jcb.202212088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
With each breath, oxygen diffuses across remarkably thin alveolar type I (AT1) cells into underlying capillaries. Interspersed cuboidal AT2 cells produce surfactant and act as stem cells. Even transient disruption of this delicate barrier can promote capillary leak. Here, we selectively ablated AT1 cells, which uncovered rapid AT2 cell flattening with near-continuous barrier preservation, culminating in AT1 differentiation. Proliferation subsequently restored depleted AT2 cells in two phases, mitosis of binucleated AT2 cells followed by replication of mononucleated AT2 cells. M phase entry of binucleated and S phase entry of mononucleated cells were both triggered by AT1-produced hbEGF signaling via EGFR to Wnt-active AT2 cells. Repeated AT1 cell killing elicited exuberant AT2 proliferation, generating aberrant daughter cells that ceased surfactant function yet failed to achieve AT1 differentiation. This hyperplasia eventually resolved, yielding normal-appearing alveoli. Overall, this specialized regenerative program confers a delicate simple epithelium with functional resiliency on par with the physical durability of thicker, pseudostratified, or stratified epithelia.
Collapse
Affiliation(s)
- Joshua Guild
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas H. Juul
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andres Andalon
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
| | - Robert J. Coffey
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A. Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco; San Francisco, CA, USA
| | - Tushar J. Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Mitaka T, Ichinohe N, Tanimizu N. "Small Hepatocytes" in the Liver. Cells 2023; 12:2718. [PMID: 38067145 PMCID: PMC10705974 DOI: 10.3390/cells12232718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Mature hepatocytes (MHs) in an adult rodent liver are categorized into the following three subpopulations based on their proliferative capability: type I cells (MH-I), which are committed progenitor cells that possess a high growth capability and basal hepatocytic functions; type II cells (MH-II), which possess a limited proliferative capability; and type III cells (MH-III), which lose the ability to divide (replicative senescence) and reach the final differentiated state. These subpopulations may explain the liver's development and growth after birth. Generally, small-sized hepatocytes emerge in mammal livers. The cells are characterized by being morphologically identical to hepatocytes except for their size, which is substantially smaller than that of ordinary MHs. We initially discovered small hepatocytes (SHs) in the primary culture of rat hepatocytes. We believe that SHs are derived from MH-I and play a role as hepatocytic progenitors to supply MHs. The population of MH-I (SHs) is distributed in the whole lobules, a part of which possesses a self-renewal capability, and decreases with age. Conversely, injured livers of experimental models and clinical cases showed the emergence of SHs. Studies demonstrate the involvement of SHs in liver regeneration. SHs that appeared in the injured livers are not a pure population but a mixture of two distinct origins, MH-derived and hepatic-stem-cell-derived cells. The predominant cell-derived SHs depend on the proliferative capability of the remaining MHs after the injury. This review will focus on the SHs that appeared in the liver and discuss the significance of SHs in liver regeneration.
Collapse
Affiliation(s)
- Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Institute of Regenerative Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.I.); (N.T.)
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Institute of Regenerative Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.I.); (N.T.)
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Institute of Regenerative Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.I.); (N.T.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
23
|
He S, Guo Z, Zhou M, Wang H, Zhang Z, Shi M, Li X, Yang X, He L. Spatial-temporal proliferation of hepatocytes during pregnancy revealed by genetic lineage tracing. Cell Stem Cell 2023; 30:1549-1558.e5. [PMID: 37794588 DOI: 10.1016/j.stem.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 08/04/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
The maternal liver undergoes dramatic enlargement to adapt to the increased metabolic demands during pregnancy. However, the cellular sources for liver growth during pregnancy remain largely elusive. Here, we employed a proliferation recording system, ProTracer, to examine the spatial-temporal proliferation of hepatocytes during pregnancy. We discovered that during early to late pregnancy, hepatocyte proliferation initiated from zone 1, to zone 2, and lastly to zone 3, with the majority of new hepatocytes being generated in zone 2. Additionally, using single-cell RNA sequencing, we observed that Ccnd1 was highly enriched in zone 2 hepatocytes. We further applied dual-recombinase-mediated genetic lineage tracing to reveal that Ccnd1+ hepatocytes expanded preferentially during pregnancy. Moreover, we demonstrated that estrogen induces liver enlargement during pregnancy, which was abolished in Ccnd1 knockout mice. Our work revealed a unique spatial-temporal hepatocyte proliferation pattern during pregnancy, with Ccnd1+ hepatocytes in zone 2 serving as the major cellular source for hepatic enlargement.
Collapse
Affiliation(s)
- Shun He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Zhihou Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Mingshan Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Haichang Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Zhuonan Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China
| | - Mengyang Shi
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Xufeng Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Xueying Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Lingjuan He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang, China.
| |
Collapse
|
24
|
Wilson SR, Duncan AW. The Ploidy State as a Determinant of Hepatocyte Proliferation. Semin Liver Dis 2023; 43:460-471. [PMID: 37967885 PMCID: PMC10862383 DOI: 10.1055/a-2211-2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The liver's unique chromosomal variations, including polyploidy and aneuploidy, influence hepatocyte identity and function. Among the most well-studied mammalian polyploid cells, hepatocytes exhibit a dynamic interplay between diploid and polyploid states. The ploidy state is dynamic as hepatocytes move through the "ploidy conveyor," undergoing ploidy reversal and re-polyploidization during proliferation. Both diploid and polyploid hepatocytes actively contribute to proliferation, with diploids demonstrating an enhanced proliferative capacity. This enhanced potential positions diploid hepatocytes as primary drivers of liver proliferation in multiple contexts, including homeostasis, regeneration and repopulation, compensatory proliferation following injury, and oncogenic proliferation. This review discusses the influence of ploidy variations on cellular activity. It presents a model for ploidy-associated hepatocyte proliferation, offering a deeper understanding of liver health and disease with the potential to uncover novel treatment approaches.
Collapse
Affiliation(s)
- Sierra R. Wilson
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W. Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Unterweger IA, Klepstad J, Hannezo E, Lundegaard PR, Trusina A, Ober EA. Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics. PLoS Biol 2023; 21:e3002315. [PMID: 37792696 PMCID: PMC10550115 DOI: 10.1371/journal.pbio.3002315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type-specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver.
Collapse
Affiliation(s)
- Iris. A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Julie Klepstad
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Andalusian Center for Developmental Biology, CSIC, University Pablo de Olavide, Seville, Spain
| | - Edouard Hannezo
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Pia R. Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| |
Collapse
|
26
|
Matsuura T, Ueda Y, Harada Y, Hayashi K, Horisaka K, Yano Y, So S, Kido M, Fukumoto T, Kodama Y, Hara E, Matsumoto T. Histological diagnosis of polyploidy discriminates an aggressive subset of hepatocellular carcinomas with poor prognosis. Br J Cancer 2023; 129:1251-1260. [PMID: 37715023 PMCID: PMC10576083 DOI: 10.1038/s41416-023-02408-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Although genome duplication, or polyploidization, is believed to drive cancer evolution and affect tumor features, its significance in hepatocellular carcinoma (HCC) is unclear. We aimed to determine the characteristics of polyploid HCCs by evaluating chromosome duplication and to discover surrogate markers to discriminate polyploid HCCs. METHODS The ploidy in human HCC was assessed by fluorescence in situ hybridization for multiple chromosomes. Clinicopathological and expression features were compared between polyploid and near-diploid HCCs. Markers indicating polyploid HCC were explored by transcriptome analysis of cultured HCC cells. RESULTS Polyploidy was detected in 36% (20/56) of HCCs and discriminated an aggressive subset of HCC that typically showed high serum alpha-fetoprotein, poor differentiation, and poor prognosis compared to near-diploid HCCs. Molecular subtyping revealed that polyploid HCCs highly expressed alpha-fetoprotein but did not necessarily show progenitor features. Histological examination revealed abundant polyploid giant cancer cells (PGCCs) with a distinct appearance and frequent macrotrabecular-massive architecture in polyploid HCCs. Notably, the abundance of PGCCs and overexpression of ubiquitin-conjugating enzymes 2C indicated polyploidy in HCC and efficiently predicted poor prognosis in combination. CONCLUSIONS Histological diagnosis of polyploidy using surrogate markers discriminates an aggressive subset of HCC, apart from known HCC subgroups, and predict poor prognosis in HCC.
Collapse
Affiliation(s)
- Takanori Matsuura
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihide Ueda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Harada
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuki Hayashi
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kisara Horisaka
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshihiko Yano
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi So
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Kido
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| |
Collapse
|
27
|
Chen F, Schönberger K, Tchorz JS. Distinct hepatocyte identities in liver homeostasis and regeneration. JHEP Rep 2023; 5:100779. [PMID: 37456678 PMCID: PMC10339260 DOI: 10.1016/j.jhepr.2023.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023] Open
Abstract
The process of metabolic liver zonation is spontaneously established by assigning distributed tasks to hepatocytes along the porto-central blood flow. Hepatocytes fulfil critical metabolic functions, while also maintaining hepatocyte mass by replication when needed. Recent technological advances have enabled us to fine-tune our understanding of hepatocyte identity during homeostasis and regeneration. Subsets of hepatocytes have been identified to be more regenerative and some have even been proposed to function like stem cells, challenging the long-standing view that all hepatocytes are similarly capable of regeneration. The latest data show that hepatocyte renewal during homeostasis and regeneration after liver injury is not limited to rare hepatocytes; however, hepatocytes are not exactly the same. Herein, we review the known differences that give individual hepatocytes distinct identities, recent findings demonstrating how these distinct identities correspond to differences in hepatocyte regenerative capacity, and how the plasticity of hepatocyte identity allows for division of labour among hepatocytes. We further discuss how these distinct hepatocyte identities may play a role during liver disease.
Collapse
Affiliation(s)
- Feng Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | | | - Jan S. Tchorz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
28
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
29
|
Moein S, Ahmadbeigi N, Adibi R, Kamali S, Moradzadeh K, Nematollahi P, Nardi NB, Gheisari Y. Regenerative potential of multinucleated cells: bone marrow adiponectin-positive multinucleated cells take the lead. Stem Cell Res Ther 2023; 14:173. [PMID: 37403181 DOI: 10.1186/s13287-023-03400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Polyploid cells can be found in a wide evolutionary spectrum of organisms. These cells are assumed to be involved in tissue regeneration and resistance to stressors. Although the appearance of large multinucleated cells (LMCs) in long-term culture of bone marrow (BM) mesenchymal cells has been reported, the presence and characteristics of such cells in native BM and their putative role in BM reconstitution following injury have not been fully investigated. METHODS BM-derived LMCs were explored by time-lapse microscopy from the first hours post-isolation to assess their colony formation and plasticity. In addition, sub-lethally irradiated mice were killed every other day for four weeks to investigate the histopathological processes during BM regeneration. Moreover, LMCs from GFP transgenic mice were transplanted to BM-ablated recipients to evaluate their contribution to tissue reconstruction. RESULTS BM-isolated LMCs produced mononucleated cells with characteristics of mesenchymal stromal cells. Time-series inspections of BM sections following irradiation revealed that LMCs are highly resistant to injury and originate mononucleated cells which reconstitute the tissue. The regeneration process was synchronized with a transient augmentation of adipocytes suggesting their contribution to tissue repair. Additionally, LMCs were found to be adiponectin positive linking the observations on multinucleation and adipogenesis to BM regeneration. Notably, transplantation of LMCs to myeloablated recipients could reconstitute both the hematopoietic system and BM stroma. CONCLUSIONS A population of resistant multinucleated cells reside in the BM that serves as the common origin of stromal and hematopoietic lineages with a key role in tissue regeneration. Furthermore, this study underscores the contribution of adipocytes in BM reconstruction.
Collapse
Affiliation(s)
- Shiva Moein
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Adibi
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Kamali
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Kobra Moradzadeh
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Nematollahi
- Department of Pathology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, Porto Alegre, RS, 90620-001, Brazil
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
30
|
Ivanovic Z. On cancer, stemness, and deep evolutionary homologies. Genes Dis 2023; 10:1143-1144. [PMID: 37397547 PMCID: PMC10311101 DOI: 10.1016/j.gendis.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/10/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
- Zoran Ivanovic
- Corresponding author. Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, CS21010 33075, Cedex, France.
| |
Collapse
|
31
|
Sanz-Gómez N, González-Álvarez M, De Las Rivas J, de Cárcer G. Whole-Genome Doubling as a source of cancer: how, when, where, and why? Front Cell Dev Biol 2023; 11:1209136. [PMID: 37342233 PMCID: PMC10277508 DOI: 10.3389/fcell.2023.1209136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - María González-Álvarez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| |
Collapse
|
32
|
Zhang W, Cui Y, Du Y, Yang Y, Fang T, Lu F, Kong W, Xiao C, Shi J, Reid LM, He Z. Liver cell therapies: cellular sources and grafting strategies. Front Med 2023; 17:432-457. [PMID: 37402953 DOI: 10.1007/s11684-023-1002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023]
Abstract
The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuan Du
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yong Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Fang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Fengfeng Lu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Canjun Xiao
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Jun Shi
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
33
|
Singh VP, Hassan H, Deng F, Tsuchiya D, McKinney S, Ferro K, Gerton JL. Myc promotes polyploidy in murine trophoblast cells and suppresses senescence. Development 2023; 150:dev201581. [PMID: 37278344 PMCID: PMC10309589 DOI: 10.1242/dev.201581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.
Collapse
Affiliation(s)
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fengyan Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
34
|
Zhou Z, Li C, Tan Z, Sun G, Peng B, Ren T, He J, Wang Y, Sun Y, Wang F, Li W. A spatiotemporally controlled recombinant cccDNA mouse model for studying HBV and developing drugs against the virus. Antiviral Res 2023:105642. [PMID: 37253400 DOI: 10.1016/j.antiviral.2023.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
Covalently closed circular (ccc) DNA is the template for hepatitis B virus (HBV) replication. The lack of small animal models for characterizing chronic HBV infection has hampered research progress in HBV pathogenesis and drug development. Here, we generated a spatiotemporally controlled recombinant cccDNA (rcccDNA) mouse model by combining Cre/loxP-mediated DNA recombination with the liver-specific "Tet-on/Cre" system. The mouse model harbors three transgenes: a single copy of the HBV genome (integrated at the Rosa26 locus, RHBV), H11-albumin-rtTA (spatiotemporal conditional module), and (tetO)7-Cre (tetracycline response element), and is named as RHTC mouse. By supplying the RHTC mice with doxycycline (DOX)-containing drinking water for two days, the animals generate rcccDNA in hepatocytes, and the rcccDNA supports active HBV gene expression and can maintain HBV viremia persistence for over 60 weeks. Persistent HBV gene expression induces intrahepatic inflammation, fibrosis, and dysplastic pathology, which closely mirrors the disease progression in clinical patients. Bepirovirsen, an antisense oligonucleotide (ASO) targeting all HBV RNA species, showed dose-dependent antiviral effects in the RHTC mouse model. The spatiotemporally controlled rcccDNA mouse is convenient and reliable, providing versatile small animal model for studying cccDNA-centric HBV biology as well as evaluating antiviral therapeutics.
Collapse
Affiliation(s)
- Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Cong Li
- National Institute of Biological Sciences, Beijing, China; Graduate Program in School of Life Sciences, Peking University, Beijing, China
| | - Zexi Tan
- National Institute of Biological Sciences, Beijing, China
| | - Guoliang Sun
- National Institute of Biological Sciences, Beijing, China; Graduate Program in School of Life Sciences, Peking University, Beijing, China
| | - Bo Peng
- National Institute of Biological Sciences, Beijing, China; Graduate Program in School of Life Sciences, Peking University, Beijing, China
| | - Tengfei Ren
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jiabei He
- National Institute of Biological Sciences, Beijing, China; College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yixue Wang
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
35
|
Li H, Weng W, Zhou B. Perfect duet: Dual recombinases improve genetic resolution. Cell Prolif 2023; 56:e13446. [PMID: 37060165 PMCID: PMC10212704 DOI: 10.1111/cpr.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 04/16/2023] Open
Abstract
As a powerful genetic tool, site-specific recombinases (SSRs) have been widely used in genomic manipulation to elucidate cell fate plasticity in vivo, advancing research in stem cell and regeneration medicine. However, the low resolution of conventional single-recombinase-mediated lineage tracing strategies, which rely heavily on the specificity of one marker gene, has led to controversial conclusions in many scientific questions. Therefore, different SSRs systems are combined to improve the accuracy of lineage tracing. Here we review the recent advances in dual-recombinase-mediated genetic approaches, including the development of novel genetic recombination technologies and their applications in cell differentiation, proliferation, and genetic manipulation. In comparison with the single-recombinase system, we also discuss the advantages of dual-genetic strategies in solving scientific issues as well as their technical limitations.
Collapse
Affiliation(s)
- Hongxin Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wendong Weng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- New Cornerstone Science LaboratoryShenzhenChina
| |
Collapse
|
36
|
Xu G, Fatima A, Breitbach M, Kuzmenkin A, Fügemann CJ, Ivanyuk D, Kim KP, Cantz T, Pfannkuche K, Schoeler HR, Fleischmann BK, Hescheler J, Šarić T. Electrophysiological Properties of Tetraploid Cardiomyocytes Derived from Murine Pluripotent Stem Cells Generated by Fusion of Adult Somatic Cells with Embryonic Stem Cells. Int J Mol Sci 2023; 24:ijms24076546. [PMID: 37047520 PMCID: PMC10095437 DOI: 10.3390/ijms24076546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Most cardiomyocytes (CMs) in the adult mammalian heart are either binucleated or contain a single polyploid nucleus. Recent studies have shown that polyploidy in CMs plays an important role as an adaptive response to physiological demands and environmental stress and correlates with poor cardiac regenerative ability after injury. However, knowledge about the functional properties of polyploid CMs is limited. In this study, we generated tetraploid pluripotent stem cells (PSCs) by fusion of murine embryonic stem cells (ESCs) and somatic cells isolated from bone marrow or spleen and performed a comparative analysis of the electrophysiological properties of tetraploid fusion-derived PSCs and diploid ESC-derived CMs. Fusion-derived PSCs exhibited characteristics of genuine ESCs and contained a near-tetraploid genome. Ploidy features and marker expression were also retained during the differentiation of fusion-derived cells. Fusion-derived PSCs gave rise to CMs, which were similar to their diploid ESC counterparts in terms of their expression of typical cardiospecific markers, sarcomeric organization, action potential parameters, response to pharmacologic stimulation with various drugs, and expression of functional ion channels. These results suggest that the state of ploidy does not significantly affect the structural and electrophysiological properties of murine PSC-derived CMs. These results extend our knowledge of the functional properties of polyploid CMs and contribute to a better understanding of their biological role in the adult heart.
Collapse
|
37
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
38
|
Yan ZJ, Chen L, Wang HY. To be or not to be: The double-edged sword roles of liver progenitor cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188870. [PMID: 36842766 DOI: 10.1016/j.bbcan.2023.188870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/28/2023]
Abstract
Given the liver's remarkable and unique regenerative capacity, researchers have long focused on liver progenitor cells (LPCs) and liver cancer stem cells (LCSCs). LPCs can differentiate into both hepatocytes and cholangiocytes. However, the mechanism underlying cell conversion and its distinct contribution to liver homeostasis and tumorigenesis remain unclear. In this review, we discuss the complicated conversions involving LPCs and LCSCs. As the critical intermediate state in malignant transformation, LPCs play double-edged sword roles. LPCs are not only involved in hepatic wound-healing responses by supplementing liver cells and bile duct cells in the damaged liver but may transform into LCSCs under dysregulation of key signaling pathways, resulting in refractory malignant liver tumors. Because LPC lineages are temporally and spatially dynamic, we discuss crucial LPC subgroups and summarize regulatory factors correlating with the trajectories of LPCs and LCSCs in the liver tumor microenvironment. This review elaborates on the double-edged sword roles of LPCs to help understand the liver's regenerative potential and tumor heterogeneity. Understanding the sources and transformations of LPCs is essential in determining how to exploit their regenerative capacity in the future.
Collapse
Affiliation(s)
- Zi-Jun Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| |
Collapse
|
39
|
Huppert SS, Schwartz RE. Multiple Facets of Cellular Homeostasis and Regeneration of the Mammalian Liver. Annu Rev Physiol 2023; 85:469-493. [PMID: 36270290 PMCID: PMC9918695 DOI: 10.1146/annurev-physiol-032822-094134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver regeneration occurs in response to diverse injuries and is capable of functionally reestablishing the lost parenchyma. This phenomenon has been known since antiquity, encapsulated in the Greek myth where Prometheus was to be punished by Zeus for sharing the gift of fire with humanity by having an eagle eat his liver daily, only to have the liver regrow back, thus ensuring eternal suffering and punishment. Today, this process is actively leveraged clinically during living donor liver transplantation whereby up to a two-thirds hepatectomy (resection or removal of part of the liver) on a donor is used for transplant to a recipient. The donor liver rapidly regenerates to recover the lost parenchymal mass to form a functional tissue. This astonishing regenerative process and unique capacity of the liver are examined in further detail in this review.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA;
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
40
|
He J, Deng C, Krall L, Shan Z. ScRNA-seq and ST-seq in liver research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:11. [PMID: 36732412 PMCID: PMC9895469 DOI: 10.1186/s13619-022-00152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/11/2022] [Indexed: 02/04/2023]
Abstract
Spatial transcriptomics, which combine gene expression data with spatial information, has quickly expanded in recent years. With application of this method in liver research, our knowledge about liver development, regeneration, and diseases have been greatly improved. While this field is moving forward, a variety of problems still need to be addressed, including sensitivity, limited capacity to obtain exact single-cell information, data processing methods, as well as others. Methods like single-cell RNA sequencing (scRNA-seq) are usually used together with spatial transcriptome sequencing (ST-seq) to clarify cell-specific gene expression. In this review, we explore how advances of scRNA-seq and ST-seq, especially ST-seq, will pave the way to new opportunities to investigate fundamental questions in liver research. Finally, we will discuss the strengths, limitations, and future perspectives of ST-seq in liver research.
Collapse
Affiliation(s)
- Jia He
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Chengxiang Deng
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Leonard Krall
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhao Shan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
41
|
Nandakumar S, Buttitta L. Using Mosaic Cell Labeling to Visualize Polyploid Cells in the Drosophila Brain. Methods Mol Biol 2023; 2545:413-425. [PMID: 36720826 DOI: 10.1007/978-1-0716-2561-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Traditional methods used to study endoreplication have limitations when used to identify rare events of polyploidization in complex, densely-packed tissues. Here, we describe a method to identify and visualize polyploid cells in situ using an existing mosaic, multicolor labeling technique named "CoinFLP" (Bosch et al., Development 142(3):597-606, 2015). CoinFLP allows easy visualization of polyploid cells in situ and can be combined with other techniques such as immunofluorescence for cell-type-specific labeling and flow cytometry to perform quantifications and can also be used for genetic manipulations. Further, by modifying the time of labeling, this technique can also be used to distinguish events of cell fusion from endocycle (Nandakumar et al., eLife 25:9, 2020)-allowing one to infer the method of polyploidization.
Collapse
Affiliation(s)
- Shyama Nandakumar
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Laura Buttitta
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
42
|
Rigual MDM, Sánchez Sánchez P, Djouder N. Is liver regeneration key in hepatocellular carcinoma development? Trends Cancer 2023; 9:140-157. [PMID: 36347768 DOI: 10.1016/j.trecan.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
The liver is the largest organ of the mammalian body and has the remarkable ability to fully regenerate in order to maintain tissue homeostasis. The adult liver consists of hexagonal lobules, each with a central vein surrounded by six portal triads localized in the lobule border containing distinct parenchymal and nonparenchymal cells. Because the liver is continuously exposed to diverse stress signals, several sophisticated regenerative processes exist to restore its functional status following impairment. However, these stress signals can affect the liver's capacity to regenerate and may lead to the development of hepatocellular carcinoma (HCC), one of the most aggressive liver cancers. Here, we review the mechanisms of hepatic regeneration and their potential to influence HCC development.
Collapse
Affiliation(s)
- María Del Mar Rigual
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Paula Sánchez Sánchez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain.
| |
Collapse
|
43
|
Zhang X, Li S, Ren X, Xiang P, Zhang Y, Wang T, Qin Q, Sun F, Liu J, Gao L, Ma C, Yue X, Yang X, Han S, Liang X. TIPE1 promotes liver regeneration by enhancing ROS-FoxO1 axis mediated autophagy. FEBS J 2023; 290:1117-1133. [PMID: 36111440 DOI: 10.1111/febs.16629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
The strong regenerative ability of the liver safeguards the crucial hepatic functions. The balance between hepatocyte proliferation and death is critical for restoring liver size and physiology. Tumour necrosis factor (TNF) alpha-induced protein 8-like 1 (TIPE1) is highly expressed in liver and has been identified as a candidate regulator for cell proliferation and death, being involved in a variety of biological processes and diseases. However, the role of TIPE1 in liver regeneration remains unexplored. In the present study, we found that TIPE1 expression was elevated in the regenerating liver induced by either partial hepatectomy or 10% carbon tetrachloride administration. Mice with hepatocyte conditional Tipe1 knockout presented significantly impaired liver regeneration. Mechanistically, hepatic Tipe1 deficiency decreased the level of reactive oxygen species in hepatocytes, which in turn led to the inhibition of Forkhead box O1 acetylation and microtubule-associated protein 1 light chain 3 I to microtubule-associated protein 1 light chain 3 II conversion, and the accumulation of sequestosome 1. By contrast, forced expression of TIPE1 in hepatocyte significantly promoted liver regeneration following 70% partial hepatectomy and enhanced hepatocyte reactive oxygen species/acetylated-Forkhead box O1 level and autophagy. These findings indicate that TIPE1 plays a crucial role in liver regeneration by finely regulating the oxidative stress and autophagy and is a potential target for medical intervention of liver regeneration.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Depertment of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Shuangjie Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinghua Qin
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengkai Sun
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingkang Liu
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Shuang Han
- Department of Gastroenterology, Honghui Hospital, Xi'an Jiaotong University, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
44
|
Zhou S, Yang K, Chen S, Lian G, Huang Y, Yao H, Zhao Y, Huang K, Yin D, Lin H, Li Y. CCL3 secreted by hepatocytes promotes the metastasis of intrahepatic cholangiocarcinoma by VIRMA-mediated N6-methyladenosine (m 6A) modification. J Transl Med 2023; 21:43. [PMID: 36691046 PMCID: PMC9869516 DOI: 10.1186/s12967-023-03897-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant disease characterized by onset occult, rapid progression, high relapse rate, and high mortality. However, data on how the tumor microenvironment (TME) regulates ICC metastasis at the transcriptomic level remains unclear. This study aimed to explore the mechanisms and interactions between hepatocytes and ICC cells. METHODS We analyzed the interplay between ICC and liver microenvironment through cytokine antibody array analysis. Then we investigated the role of N6-methyladenosine (m6A) modification and the downstream target in vitro, in vivo experiments, and in clinical specimens. RESULTS Our study demonstrated that cytokine CCL3, which is secreted by hepatocytes, promotes tumor metastasis by regulating m6A modification via vir-like m6A methyltransferase associated (VIRMA) in ICC cells. Moreover, immunohistochemical analyses showed that VIRMA correlated with poor outcomes in ICC patients. Finally, we confirmed both in vitro and in vivo that CCL3 could activate VIRMA and its critical downstream target SIRT1, which fuels tumor metastasis in ICC. CONCLUSIONS In conclusion, our results enhanced our understanding of the interaction between hepatocytes and ICC cells, and revealed the molecular mechanism of the CCL3/VIRMA/SIRT1 pathway via m6A-mediated regulation in ICC metastasis. These studies highlight potential targets for the diagnosis, treatment, and prognosis of ICC.
Collapse
Affiliation(s)
- Shurui Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kege Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuzhou Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hanming Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Haoming Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Pancreato-Biliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
45
|
Bozhkov AI, Novikova AV, Klimova EM, Ionov IA, Akzhyhitov RA, Kurhuzova NI, Bilovetska SG, Moskalov VB, Haiovyi SS. Vitamin A Reduces the Mortality of Animals with Induced Liver Fibrosis by Providing a Multi-level Body Defense System. J Clin Exp Hepatol 2023; 13:48-63. [PMID: 36647402 PMCID: PMC9840181 DOI: 10.1016/j.jceh.2022.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Background Liver diseases remain the most important medical and biological problem. Works devoted to the study of the vitamin A role have shown conflicting results of its effect on the fibrosis development. We tested the hypothesis that an increase of the copper content in the liver, an example of which is Wilson's disease, shifts the balance in the redox system towards pro-oxidants, which leads to the antioxidant systems inhibition, including a decrease in the vitamin A content; this affects the levels of liver function regulation and the development of fibrosis. Methods In animals with Cu-induced liver fibrosis, neutrophil activity, the immunocompetent cells content, the activity of alanine aminotransferase and γ-glutamylaminotransferase, the content of urea and creatinine in blood serum, as well as the vitamin A content in the liver, copper ions and its regenerative potential were determined. Results It was found that three consecutive injections of copper sulfate to animals with an interval of 48 h between injections led to the death of 40% of the animals, and 60% showed resistance. The content of vitamin A in "resistant" animals at the beginning of the development of the fibrosis was reduced by 4 times compared to the control, the functional activity of the liver was somewhat reduced, and a connective tissue capsule was formed around the liver lobes in 75% of the animals. If animals with the initial stage of liver fibrosis received daily vitamin A at a dose of 300 IU/100 g of body weight, which was accompanied by its multiple increase in the liver (15 times on day 14), the mortality of animals decreased by almost 7 times, the functional activity of the liver did not differ from control. In the blood of these animals, the number of leukocytes, granulocytes, and monocytes was increased and phagocytic activity was increased. At the same time, the connective tissue capsule was developed more intensively than in animals receiving only copper sulfate, and was detected in 91% of the animals. Fragments of the liver, even more than in the case of fibrosis, lost the ability to regenerate in culture. Conclusion We came to the conclusion that vitamin A leads to the connective tissue "specialization" formation of the liver and triggers vicious circles of metabolism and includes several levels of regulation systems. Further studies of the vitamin A effect mechanisms on the liver with fibrosis will allow the use of this antioxidant in the treatment.
Collapse
Affiliation(s)
- Anatoly I. Bozhkov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Pl. Svobody, 61022 Kharkiv, Ukraine
| | - Anna V. Novikova
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Pl. Svobody, 61022 Kharkiv, Ukraine
| | - Elena M. Klimova
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Pl. Svobody, 61022 Kharkiv, Ukraine
- State Institution Zaycev V. T. Institute of General and Urgent Surgery of National Academy of Medical Sciences of Ukraine, 61103 Kharkiv, Ukraine
| | - Igor A. Ionov
- H. S. Skovoroda Kharkiv National Pedagogical University, 29, Alchevskyh (Artema) Str., 61002 Kharkiv, Ukraine
| | - Rustam A. Akzhyhitov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Pl. Svobody, 61022 Kharkiv, Ukraine
| | - Nataliia I. Kurhuzova
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Pl. Svobody, 61022 Kharkiv, Ukraine
| | - Svitlana G. Bilovetska
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Pl. Svobody, 61022 Kharkiv, Ukraine
| | - Vitalii B. Moskalov
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Pl. Svobody, 61022 Kharkiv, Ukraine
| | - Stanislav S. Haiovyi
- Biology Research Institute V. N. Karazin Kharkiv National University, 4 Pl. Svobody, 61022 Kharkiv, Ukraine
| |
Collapse
|
46
|
IL6 supports long-term expansion of hepatocytes in vitro. Nat Commun 2022; 13:7345. [PMID: 36446858 PMCID: PMC9708838 DOI: 10.1038/s41467-022-35167-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocytes are very difficult to expand in vitro. A few studies have demonstrated that chemical cocktails with growth factors or Wnt ligands can support long-term expansion of hepatocytes via dedifferentiation. However, the culture conditions are complex, and clonal expansion of hepatic progenitors with full differentiation capacity are rarely reported. Here, we discover IL6, combined with EGF and HGF, promotes long-term expansion (>30 passages in ~150 days with theoretical expansion of ~1035 times) of primary mouse hepatocytes in vitro in simple 2D culture, by converting hepatocytes into induced hepatic progenitor cells (iHPCs), which maintain the capacity of differentiation into hepatocytes. IL6 also supports the establishment of single hepatocyte-derived iHPC clones. The summation of the downstream STAT3, ERK and AKT pathways induces a number of transcription factors which support rapid growth. This physiological and simple way may provide ideas for culturing previously difficult-to-culture cell types and support their future applications.
Collapse
|
47
|
Borowik AK, Davidyan A, Peelor FF, Voloviceva E, Doidge SM, Bubak MP, Mobley CB, McCarthy JJ, Dupont-Versteegden EE, Miller BF. Skeletal Muscle Nuclei in Mice are not Post-mitotic. FUNCTION 2022; 4:zqac059. [PMID: 36569816 PMCID: PMC9772608 DOI: 10.1093/function/zqac059] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The skeletal muscle research field generally accepts that nuclei in skeletal muscle fibers (ie, myonuclei) are post-mitotic and unable to proliferate. Because our deuterium oxide (D2O) labeling studies showed DNA synthesis in skeletal muscle tissue, we hypothesized that resident myonuclei can replicate in vivo. To test this hypothesis, we used a mouse model that temporally labeled myonuclei with GFP followed by D2O labeling during normal cage activity, functional overload, and with satellite cell ablation. During normal cage activity, we observed deuterium enrichment into myonuclear DNA in 7 out of 7 plantaris (PLA), 6 out of 6 tibialis anterior (TA), 5 out of 7 gastrocnemius (GAST), and 7 out of 7 quadriceps (QUAD). The average fractional synthesis rates (FSR) of DNA in myonuclei were: 0.0202 ± 0.0093 in PLA, 0.0239 ± 0.0040 in TA, 0.0076 ± 0. 0058 in GAST, and 0.0138 ± 0.0039 in QUAD, while there was no replication in myonuclei from EDL. These FSR values were largely reproduced in the overload and satellite cell ablation conditions, although there were higher synthesis rates in the overloaded PLA muscle. We further provided evidence that myonuclear replication is through endoreplication, which results in polyploidy. These novel findings contradict the dogma that skeletal muscle nuclei are post-mitotic and open potential avenues to harness the intrinsic replicative ability of myonuclei for muscle maintenance and growth.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | - Arik Davidyan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
- Department of Biological Sciences, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | - Evelina Voloviceva
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | - Stephen M Doidge
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | - Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | | | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
- Oklahoma City VA Medical Center, 921 NE 13th St, Oklahoma City, OK 73104, USA
| |
Collapse
|
48
|
Peng J, Li F, Wang J, Wang C, Jiang Y, Liu B, He J, Yuan K, Pan C, Lin M, Zhou B, Chen L, Gao D, Zhao Y. Identification of a rare Gli1 + progenitor cell population contributing to liver regeneration during chronic injury. Cell Discov 2022; 8:118. [PMID: 36316325 PMCID: PMC9622734 DOI: 10.1038/s41421-022-00474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
In adults, hepatocytes are mainly replenished from the existing progenitor pools of hepatocytes and cholangiocytes during chronic liver injury. However, it is unclear whether other cell types in addition to classical hepatocytes and cholangiocytes contribute to hepatocyte regeneration after chronic liver injuries. Here, we identified a new biphenotypic cell population that contributes to hepatocyte regeneration during chronic liver injuries. We found that a cell population expressed Gli1 and EpCAM (EpCAM+Gli1+), which was further characterized with both epithelial and mesenchymal identities by single-cell RNA sequencing. Genetic lineage tracing using dual recombinases revealed that Gli1+ nonhepatocyte cell population could generate hepatocytes after chronic liver injury. EpCAM+Gli1+ cells exhibited a greater capacity for organoid formation with functional hepatocytes in vitro and liver regeneration upon transplantation in vivo. Collectively, these findings demonstrate that EpCAM+Gli1+ cells can serve as a new source of liver progenitor cells and contribute to liver repair and regeneration.
Collapse
Affiliation(s)
- Jiayin Peng
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fei Li
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jia Wang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Chaoxiong Wang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yiao Jiang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Biao Liu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Juan He
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yuan
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chenyu Pan
- grid.24516.340000000123704535Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Moubin Lin
- grid.24516.340000000123704535Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Zhou
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Dong Gao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang China
| |
Collapse
|
49
|
De Chiara L, Conte C, Semeraro R, Diaz-Bulnes P, Angelotti ML, Mazzinghi B, Molli A, Antonelli G, Landini S, Melica ME, Peired AJ, Maggi L, Donati M, La Regina G, Allinovi M, Ravaglia F, Guasti D, Bani D, Cirillo L, Becherucci F, Guzzi F, Magi A, Annunziato F, Lasagni L, Anders HJ, Lazzeri E, Romagnani P. Tubular cell polyploidy protects from lethal acute kidney injury but promotes consequent chronic kidney disease. Nat Commun 2022; 13:5805. [PMID: 36195583 PMCID: PMC9532438 DOI: 10.1038/s41467-022-33110-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Acute kidney injury (AKI) is frequent, often fatal and, for lack of specific therapies, can leave survivors with chronic kidney disease (CKD). We characterize the distribution of tubular cells (TC) undergoing polyploidy along AKI by DNA content analysis and single cell RNA-sequencing. Furthermore, we study the functional roles of polyploidization using transgenic models and drug interventions. We identify YAP1-driven TC polyploidization outside the site of injury as a rapid way to sustain residual kidney function early during AKI. This survival mechanism comes at the cost of senescence of polyploid TC promoting interstitial fibrosis and CKD in AKI survivors. However, targeting TC polyploidization after the early AKI phase can prevent AKI-CKD transition without influencing AKI lethality. Senolytic treatment prevents CKD by blocking repeated TC polyploidization cycles. These results revise the current pathophysiological concept of how the kidney responds to acute injury and identify a novel druggable target to improve prognosis in AKI survivors. Acute kidney injury is frequent, often fatal and can leave survivors with chronic kidney disease. Here the authors show that tubular cell polyploidy reduces early fatality sustaining residual function but promotes chronic kidney disease, which can be prevented by blocking YAP1
Collapse
Affiliation(s)
- Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Carolina Conte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50139, Italy
| | - Paula Diaz-Bulnes
- Translational immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011, Oviedo, Asturias, España
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Alice Molli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Giulia Antonelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Anna Julie Peired
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50139, Italy
| | - Marta Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Gilda La Regina
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, 50134, Italy
| | - Fiammetta Ravaglia
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, 59100, Italy
| | - Daniele Guasti
- Department of Experimental & Clinical Medicine, Imaging Platform, University of Florence, Florence, 50139, Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Imaging Platform, University of Florence, Florence, 50139, Italy
| | - Luigi Cirillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Francesco Guzzi
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, 59100, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, 50139, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50139, Italy.,Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), Careggi University Hospital, Florence, 50134, Italy
| | - Laura Lasagni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, LMU Hospital, Munich, 80336, Germany
| | - Elena Lazzeri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy.
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy. .,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy.
| |
Collapse
|
50
|
Paris J, Henderson NC. Liver zonation, revisited. Hepatology 2022; 76:1219-1230. [PMID: 35175659 PMCID: PMC9790419 DOI: 10.1002/hep.32408] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/31/2022]
Abstract
The concept of hepatocyte functional zonation is well established, with differences in metabolism and xenobiotic processing determined by multiple factors including oxygen and nutrient levels across the hepatic lobule. However, recent advances in single-cell genomics technologies, including single-cell and nuclei RNA sequencing, and the rapidly evolving fields of spatial transcriptomic and proteomic profiling have greatly increased our understanding of liver zonation. Here we discuss how these transformative experimental strategies are being leveraged to dissect liver zonation at unprecedented resolution and how this new information should facilitate the emergence of novel precision medicine-based therapies for patients with liver disease.
Collapse
Affiliation(s)
- Jasmin Paris
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Neil C. Henderson
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUK,MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|