1
|
Wang Y, Zhang W, Zhang C, Van HQT, Seino T, Zhang Y. Reducing functionally defective old HSCs alleviates aging-related phenotypes in old recipient mice. Cell Res 2025:10.1038/s41422-024-01057-5. [PMID: 39743633 DOI: 10.1038/s41422-024-01057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
Aging is a process accompanied by functional decline in tissues and organs with great social and medical consequences. Developing effective anti-aging strategies is of great significance. In this study, we demonstrated that transplantation of young hematopoietic stem cells (HSCs) into old mice can mitigate aging phenotypes, underscoring the crucial role of HSCs in the aging process. Through comprehensive molecular and functional analyses, we identified a subset of HSCs in aged mice that exhibit "younger" molecular profiles and functions, marked by low levels of CD150 expression. Mechanistically, CD150low HSCs from old mice but not their CD150high counterparts can effectively differentiate into downstream lineage cells. Notably, transplantation of old CD150low HSCs attenuates aging phenotypes and prolongs lifespan of elderly mice compared to those transplanted with unselected or CD150high HSCs. Importantly, reducing the dysfunctional CD150high HSCs can alleviate aging phenotypes in old recipient mice. Thus, our study demonstrates the presence of "younger" HSCs in old mice, and that aging-associated functional decline can be mitigated by reducing dysfunctional HSCs.
Collapse
Affiliation(s)
- Yuting Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wenhao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Hoang Q Tran Van
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Takashi Seino
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Cossu V, Bertola N, Fresia C, Sabatini F, Ravera S. Redox Imbalance and Antioxidant Defenses Dysfunction: Key Contributors to Early Aging in Childhood Cancer Survivors. Antioxidants (Basel) 2024; 13:1397. [PMID: 39594539 PMCID: PMC11590913 DOI: 10.3390/antiox13111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Survival rates for childhood cancer survivors (CCS) have improved, although they display a risk for early frailty due to the long-term effects of chemo/radiotherapy, including early aging. This study investigates antioxidant defenses and oxidative damage in mononuclear cells (MNCs) from CCS, comparing them with those from age-matched and elderly healthy individuals. Results show impaired antioxidant responses and increased oxidative stress in CCS MNCs, which exhibited uncoupled oxidative phosphorylation, leading to higher production of reactive oxygen species, similar to metabolic issues seen in elderly individuals. Key antioxidant enzymes, namely glucose-6-phosphate dehydrogenase, hexose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase, showed reduced activity, likely due to lower expression of nuclear factor erythroid 2-related factor 2 (Nrf2). This imbalance caused significant damage to lipids, proteins, and DNA, potentially contributing to cellular dysfunction and a higher risk of cancer recurrence. These oxidative and metabolic dysfunctions persist over time, regardless of cancer type or treatment. However, treatment with N-acetylcysteine improved Nrf2 expression, boosted antioxidant defenses, reduced oxidative damage, and restored oxidative phosphorylation efficiency, suggesting that targeting the redox imbalance could enhance long-term CCS health.
Collapse
Affiliation(s)
- Vanessa Cossu
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| | - Nadia Bertola
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| | - Chiara Fresia
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy; (C.F.); (F.S.)
| | - Federica Sabatini
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy; (C.F.); (F.S.)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy;
| |
Collapse
|
3
|
Wang N, Yang S, Li Y, Gou F, Lv Y, Zhao X, Wang Y, Xu C, Zhou B, Dong F, Ju Z, Cheng T, Cheng H. p21/Zbtb18 repress the expression of cKit to regulate the self-renewal of hematopoietic stem cells. Protein Cell 2024; 15:840-857. [PMID: 38721703 PMCID: PMC11528518 DOI: 10.1093/procel/pwae022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 11/03/2024] Open
Abstract
The maintenance of hematopoietic stem cells (HSCs) is a complex process involving numerous cell-extrinsic and -intrinsic regulators. The first member of the cyclin-dependent kinase family of inhibitors to be identified, p21, has been reported to perform a wide range of critical biological functions, including cell cycle regulation, transcription, differentiation, and so on. Given the previous inconsistent results regarding the functions of p21 in HSCs in a p21-knockout mouse model, we employed p21-tdTomato (tdT) mice to further elucidate its role in HSCs during homeostasis. The results showed that p21-tdT+ HSCs exhibited increased self-renewal capacity compared to p21-tdT- HSCs. Zbtb18, a transcriptional repressor, was upregulated in p21-tdT+ HSCs, and its knockdown significantly impaired the reconstitution capability of HSCs. Furthermore, p21 interacted with ZBTB18 to co-repress the expression of cKit in HSCs and thus regulated the self-renewal of HSCs. Our data provide novel insights into the physiological role and mechanisms of p21 in HSCs during homeostasis independent of its conventional role as a cell cycle inhibitor.
Collapse
Affiliation(s)
- Nini Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Fanglin Gou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300270, China
| | - Yanling Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Chang Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Bin Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
4
|
Yang YT, Yao CY, Kao CJ, Chiu PJ, Lin ME, Hou HA, Lin CC, Chou WC, Tien HF. Clinical relevance of NFYA splice variants in patients with acute myeloid leukaemia undergoing intensive chemotherapy. Br J Haematol 2024; 205:1751-1764. [PMID: 39192759 DOI: 10.1111/bjh.19733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Aberrant alternative splicing (AS) contributes to leukemogenesis, but reports on the clinical and biological implications of aberrant AS in acute myeloid leukaemia (AML) remain limited. Here, we used RNA-seq to analyse AS in AML cells from 341 patients, comparing them to healthy CD34+ haematopoietic stem cells (HSCs). Our findings highlight distinct AS patterns in the nuclear transcription factor Y subunit alpha (NFYA) gene, with two main isoforms: NFYA-L (Long) and NFYA-S (Short), differing in exon 3 inclusion. Patients with lower NFYA-L but higher NFYA-S expression, termed NFYA-S predominance, displayed more favourable characteristics and better outcomes following intensive chemotherapy, regardless of age and European LeukemiaNet risk classification, compared to those with higher NFYA-L but lower NFYA-S expression, termed NFYA-L predominance. The prognostic effects were validated using The Cancer Genome Atlas cohort. Transcriptome analysis revealed upregulated cell cycle genes in NFYA-S predominant cases, resembling those of active HSCs, demonstrating relative chemosensitivity. Conversely, NFYA-L predominant cases, as observed in KMT2A-rearranged leukaemia, were associated with relative chemoresistance. NFYA-S overexpression in OCI-AML3 cells promoted cell proliferation, S-phase entry and increased cytarabine sensitivity, suggesting its clinical and therapeutic relevance in AML. Our study underscores NFYA AS as a potential prognostic biomarker in AML.
Collapse
Affiliation(s)
- Yi-Tsung Yang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yuan Yao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chein-Jun Kao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Ju Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ming-En Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chin Lin
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
5
|
Yanai H, McNeely T, Ayyar S, Leone M, Zong L, Park B, Beerman I. DNA methylation drives hematopoietic stem cell aging phenotypes after proliferative stress. GeroScience 2024:10.1007/s11357-024-01360-4. [PMID: 39390312 DOI: 10.1007/s11357-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Aging of hematopoietic stem cells (HSCs) is implicated in various aging phenotypes, including immune dysfunction, anemia, and malignancies. The role of HSC proliferation in driving these aging phenotypes, particularly under stress conditions, remains unclear. Therefore, we induced forced replications of HSCs in vivo by a cyclical treatment with low-dose fluorouracil (5FU) and examined the impact on HSC aging. Our findings show that proliferative stress induces several aging phenotypes, including altered leukocyte counts, decreased lymphoid progenitors, accumulation of HSCs with high expression of Slamf1, and reduced reconstitution potential, without affecting stem cell self-renewal capacity. The divisional history of HSCs was imprinted in the DNA methylome, consistent with functional decline. Specifically, DNA methylation changes included global hypermethylation in non-coding regions and similar frequencies of hypo- and hyper-methylation at promoter regions, particularly affecting genes targeted by the PRC2 complex. Importantly, initial forced replication promoted DNA damage repair accumulated with age, but continuous proliferative stress led to the accumulation of double-strand breaks, independent of functional decline. Overall, our results suggest that HSC proliferation can drive some aging phenotypes primarily through epigenetic mechanisms, including DNA methylation changes.
Collapse
Affiliation(s)
- Hagai Yanai
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Taylor McNeely
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Saipriya Ayyar
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Michael Leone
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Le Zong
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA.
| |
Collapse
|
6
|
Chagraoui J, Girard S, Mallinger L, Mayotte N, Tellechea MF, Sauvageau G. KBTBD4-mediated reduction of MYC is critical for hematopoietic stem cell expansion upon UM171 treatment. Blood 2024; 143:882-894. [PMID: 38207291 DOI: 10.1182/blood.2023021342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Ex vivo expansion of hematopoietic stem cells (HSCs) is gaining importance for cell and gene therapy, and requires a shift from dormancy state to activation and cycling. However, abnormal or excessive HSC activation results in reduced self-renewal ability and increased propensity for myeloid-biased differentiation. We now report that activation of the E3 ligase complex CRL3KBTBD4 by UM171 not only induces epigenetic changes through CoREST1 degradation but also controls chromatin-bound master regulator of cell cycle entry and proliferative metabolism (MYC) levels to prevent excessive activation and maintain lympho-myeloid potential of expanded populations. Furthermore, reconstitution activity and multipotency of UM171-treated HSCs are specifically compromised when MYC levels are experimentally increased despite degradation of CoREST1.
Collapse
Affiliation(s)
- Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Simon Girard
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Laure Mallinger
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Nadine Mayotte
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Maria Florencia Tellechea
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
7
|
Yang Z, Dong R, Mao X, He XC, Li L. Stress-protecting harbors for hematopoietic stem cells. Curr Opin Cell Biol 2024; 86:102284. [PMID: 37995509 DOI: 10.1016/j.ceb.2023.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on specialized microenvironments known as niches to maintain their self-renewal and multilineage potential to generate diverse types of blood cells continuously. Over the last two decades, substantial advancements have been made in unraveling the niche cell components and HSC localizations under homeostatic and stressed circumstances. Advances in imaging, combined with the discovery of phenotypic surface markers combinations and single cell sequencing, have greatly facilitated the systematic examination of HSC localizations. This review aims to present a summary of HSC localizations, highlighting potential distinctions between phenotypically and functionally defined HSCs, and explore the functionality of niches in ensuring the integrity and long-term maintenance of HSCs.
Collapse
Affiliation(s)
- Zhe Yang
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Ruochen Dong
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Xinjian Mao
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
8
|
Ibneeva L, Singh SP, Sinha A, Eski SE, Wehner R, Rupp L, Kovtun I, Pérez-Valencia JA, Gerbaulet A, Reinhardt S, Wobus M, von Bonin M, Sancho J, Lund F, Dahl A, Schmitz M, Bornhäuser M, Chavakis T, Wielockx B, Grinenko T. CD38 promotes hematopoietic stem cell dormancy. PLoS Biol 2024; 22:e3002517. [PMID: 38422172 DOI: 10.1371/journal.pbio.3002517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/12/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
A subpopulation of deeply quiescent, so-called dormant hematopoietic stem cells (dHSCs) resides at the top of the hematopoietic hierarchy and serves as a reserve pool for HSCs. The state of dormancy protects the HSC pool from exhaustion throughout life; however, excessive dormancy may prevent an efficient response to hematological stresses. Despite the significance of dHSCs, the mechanisms maintaining their dormancy remain elusive. Here, we identify CD38 as a novel and broadly applicable surface marker for the enrichment of murine dHSCs. We demonstrate that cyclic adenosine diphosphate ribose (cADPR), the product of CD38 cyclase activity, regulates the expression of the transcription factor c-Fos by increasing the release of Ca2+ from the endoplasmic reticulum (ER). Subsequently, we uncover that c-Fos induces the expression of the cell cycle inhibitor p57Kip2 to drive HSC dormancy. Moreover, we found that CD38 ecto-enzymatic activity at the neighboring CD38-positive cells can promote human HSC quiescence. Together, CD38/cADPR/Ca2+/c-Fos/p57Kip2 axis maintains HSC dormancy. Pharmacological manipulations of this pathway can provide new strategies to improve the success of stem cell transplantation and blood regeneration after injury or disease.
Collapse
Affiliation(s)
- Liliia Ibneeva
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | | | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sema Elif Eski
- IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rebekka Wehner
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luise Rupp
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Iryna Kovtun
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Juan Alberto Pérez-Valencia
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Manja Wobus
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jaime Sancho
- Instituto de Parasitología y Biomedicina "López-Neyra" CSIC, Granada, Spain
| | - Frances Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bornhäuser
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Experimental Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tatyana Grinenko
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Filippi MD. The multifaceted role of mitochondria in HSC fate decisions: energy and beyond. Exp Hematol 2023; 128:19-29. [PMID: 37832715 PMCID: PMC11487575 DOI: 10.1016/j.exphem.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into all-mature blood cell lineages. The fate decisions to generate progeny that retain stemness properties or that commit to differentiation is a fundamental process to maintain tissue homeostasis and must be tightly regulated to prevent HSC overgrowth or exhaustion. HSC fate decisions are inherently coupled to cell division. The transition from quiescence to activation is accompanied by major metabolic and mitochondrial changes that are important for cell cycle entry and for balanced decisions between self-renewal and differentiation. In this review, we discuss the current understanding of the role of mitochondrial metabolism in HSC transition from quiescence to activation and fate decisions.
Collapse
Affiliation(s)
- Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
10
|
Treichel S, Filippi MD. Linking cell cycle to hematopoietic stem cell fate decisions. Front Cell Dev Biol 2023; 11:1231735. [PMID: 37645247 PMCID: PMC10461445 DOI: 10.3389/fcell.2023.1231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into any blood cell lineages. In order to balance the maintenance of the stem cell pool with supporting mature blood cell production, the fate decisions to self-renew or to commit to differentiation must be tightly controlled, as dysregulation of this process can lead to bone marrow failure or leukemogenesis. The contribution of the cell cycle to cell fate decisions has been well established in numerous types of stem cells, including pluripotent stem cells. Cell cycle length is an integral component of hematopoietic stem cell fate. Hematopoietic stem cells must remain quiescent to prevent premature replicative exhaustion. Yet, hematopoietic stem cells must be activated into cycle in order to produce daughter cells that will either retain stem cell properties or commit to differentiation. How the cell cycle contributes to hematopoietic stem cell fate decisions is emerging from recent studies. Hematopoietic stem cell functions can be stratified based on cell cycle kinetics and divisional history, suggesting a link between Hematopoietic stem cells activity and cell cycle length. Hematopoietic stem cell fate decisions are also regulated by asymmetric cell divisions and recent studies have implicated metabolic and organelle activity in regulating hematopoietic stem cell fate. In this review, we discuss the current understanding of the mechanisms underlying hematopoietic stem cell fate decisions and how they are linked to the cell cycle.
Collapse
Affiliation(s)
- Sydney Treichel
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Molecular and Development Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
11
|
Yang F, Nourse C, Helgason GV, Kirschner K. Unraveling Heterogeneity in the Aging Hematopoietic Stem Cell Compartment: An Insight From Single-cell Approaches. Hemasphere 2023; 7:e895. [PMID: 37304939 PMCID: PMC10256339 DOI: 10.1097/hs9.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Specific cell types and, therefore, organs respond differently during aging. This is also true for the hematopoietic system, where it has been demonstrated that hematopoietic stem cells alter a variety of features, such as their metabolism, and accumulate DNA damage, which can lead to clonal outgrowth over time. In addition, profound changes in the bone marrow microenvironment upon aging lead to senescence in certain cell types such as mesenchymal stem cells and result in increased inflammation. This heterogeneity makes it difficult to pinpoint the molecular drivers of organismal aging gained from bulk approaches, such as RNA sequencing. A better understanding of the heterogeneity underlying the aging process in the hematopoietic compartment is, therefore, needed. With the advances of single-cell technologies in recent years, it is now possible to address fundamental questions of aging. In this review, we discuss how single-cell approaches can and indeed are already being used to understand changes observed during aging in the hematopoietic compartment. We will touch on established and novel methods for flow cytometric detection, single-cell culture approaches, and single-cell omics.
Collapse
Affiliation(s)
- Fei Yang
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Craig Nourse
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - G. Vignir Helgason
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kristina Kirschner
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
12
|
Nasiri K, Mohammadzadehsaliani S, Kheradjoo H, Shabestari AM, Eshaghizadeh P, Pakmehr A, Alsaffar MF, Al-Naqeeb BZT, Yasamineh S, Gholizadeh O. Spotlight on the impact of viral infections on Hematopoietic Stem Cells (HSCs) with a focus on COVID-19 effects. Cell Commun Signal 2023; 21:103. [PMID: 37158893 PMCID: PMC10165295 DOI: 10.1186/s12964-023-01122-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their significant capability to reconstitute and preserve a functional hematopoietic system in long-term periods after transplantation into conditioned hosts. HSCs are thus crucial cellular targets for the continual repair of inherited hematologic, metabolic, and immunologic disorders. In addition, HSCs can undergo various fates, such as apoptosis, quiescence, migration, differentiation, and self-renewal. Viruses continuously pose a remarkable health risk and request an appropriate, balanced reaction from our immune system, which as well as affects the bone marrow (BM). Therefore, disruption of the hematopoietic system due to viral infection is essential. In addition, patients for whom the risk-to-benefit ratio of HSC transplantation (HSCT) is acceptable have seen an increase in the use of HSCT in recent years. Hematopoietic suppression, BM failure, and HSC exhaustion are all linked to chronic viral infections. Virus infections continue to be a leading cause of morbidity and mortality in HSCT recipients, despite recent advancements in the field. Furthermore, whereas COVID-19 manifests initially as an infection of the respiratory tract, it is now understood to be a systemic illness that significantly impacts the hematological system. Patients with advanced COVID-19 often have thrombocytopenia and blood hypercoagulability. In the era of COVID-19, Hematological manifestations of COVID-19 (i.e., thrombocytopenia and lymphopenia), the immune response, and HSCT may all be affected by the SARS-CoV-2 virus in various ways. Therefore, it is important to determine whether exposure to viral infections may affect HSCs used for HSCT, as this, in turn, may affect engraftment efficiency. In this article, we reviewed the features of HSCs, and the effects of viral infections on HSCs and HSCT, such as SARS-CoV-2, HIV, cytomegalovirus, Epstein-Barr virus, HIV, etc. Video Abstract.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | | | | | | | - Parisa Eshaghizadeh
- Department of Dental Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azin Pakmehr
- Medical Doctor, Tehran University of Medical Science, Tehran, Iran
| | - Marwa Fadhil Alsaffar
- Medical Laboratories Techniques Department / AL-Mustaqbal University College, 51001, Hillah, Babil, Iraq
| | | | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
14
|
Herrejon Chavez F, Luo H, Cifani P, Pine A, Chu EL, Joshi S, Barin E, Schurer A, Chan M, Chang K, Han GYQ, Pierson AJ, Xiao M, Yang X, Kuehm LM, Hong Y, Nguyen DTT, Chiosis G, Kentsis A, Leslie C, Vu LP, Kharas MG. RNA binding protein SYNCRIP maintains proteostasis and self-renewal of hematopoietic stem and progenitor cells. Nat Commun 2023; 14:2290. [PMID: 37085479 PMCID: PMC10121618 DOI: 10.1038/s41467-023-38001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Tissue homeostasis is maintained after stress by engaging and activating the hematopoietic stem and progenitor compartments in the blood. Hematopoietic stem cells (HSCs) are essential for long-term repopulation after secondary transplantation. Here, using a conditional knockout mouse model, we revealed that the RNA-binding protein SYNCRIP is required for maintenance of blood homeostasis especially after regenerative stress due to defects in HSCs and progenitors. Mechanistically, we find that SYNCRIP loss results in a failure to maintain proteome homeostasis that is essential for HSC maintenance. SYNCRIP depletion results in increased protein synthesis, a dysregulated epichaperome, an accumulation of misfolded proteins and induces endoplasmic reticulum stress. Additionally, we find that SYNCRIP is required for translation of CDC42 RHO-GTPase, and loss of SYNCRIP results in defects in polarity, asymmetric segregation, and dilution of unfolded proteins. Forced expression of CDC42 recovers polarity and in vitro replating activities of HSCs. Taken together, we uncovered a post-transcriptional regulatory program that safeguards HSC self-renewal capacity and blood homeostasis.
Collapse
Affiliation(s)
- Florisela Herrejon Chavez
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Alli Pine
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eren L Chu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell School of Medical Sciences, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ersilia Barin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program of the Weill Cornell Graduate School of Medicine Sciences, New York, NY, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mandy Chan
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Chang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Grace Y Q Han
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aspen J Pierson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Xiao
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Diu T T Nguyen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| | - Christina Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ly P Vu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Rydström A, Mansell E, Sigurdsson V, Sjöberg J, Soneji S, Miharada K, Larsson J. MAC-1 marks a quiescent and functionally superior HSC subset during regeneration. Stem Cell Reports 2023; 18:736-748. [PMID: 36868231 PMCID: PMC10031298 DOI: 10.1016/j.stemcr.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 03/05/2023] Open
Abstract
Mouse hematopoietic stem cells (HSCs) have been extensively defined both molecularly and functionally at steady state, while regenerative stress induces immunophenotypical changes that limit high purity isolation and analysis. It is therefore important to identify markers that specifically label activated HSCs to gain further knowledge about their molecular and functional properties. Here, we assessed the expression of macrophage-1 antigen (MAC-1) on HSCs during regeneration following transplantation and observed a transient increase in MAC-1 expression during the early reconstitution phase. Serial transplantation experiments demonstrated that reconstitution potential was highly enriched in the MAC-1+ portion of the HSC pool. Moreover, in contrast to previous reports, we found that MAC-1 expression inversely correlates with cell cycling, and global transcriptome analysis showed that regenerating MAC-1+ HSCs share molecular features with stem cells with low mitotic history. Taken together, our results suggest that MAC-1 expression marks predominantly quiescent and functionally superior HSCs during early regeneration.
Collapse
Affiliation(s)
- Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Els Mansell
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden; Stem Cell Group, Cancer Institute, University College London, London, UK
| | - Valgardur Sigurdsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Julia Sjöberg
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden.
| |
Collapse
|
16
|
Ghaffari S. Haematopoietic stem cell quiescence exposed using mitochondrial membrane potential. Curr Opin Hematol 2023; 30:1-3. [PMID: 36473018 PMCID: PMC9960947 DOI: 10.1097/moh.0000000000000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Quiescence is a fundamental property of haematopoietic stem cells (HSCs). Despite the importance of quiescence in predicting the potency of HSCs, tools that measure routinely the degree of quiescence or select for quiescent HSCs have been lacking. This Commentary discusses recent findings that address this fundamental gap in the HSC toolbox. RECENT FINDINGS Highly purified, phenotypically-defined HSCs are heterogeneous in their mitochondrial membrane potential (MMP). The lowest MMP subsets are enriched in greatly quiescent HSCs with the highest potency within the purified HSC population. MMP provides an intrinsic probe to select HSC subsets with unique cell cycle properties and distinct stem cell potential. Using this approach, new and unanticipated metabolic properties of quiescent HSCs' exit have been discovered. This methodology may improve the mechanistic understanding, of HSCs' exit from and entry to, quiescence. SUMMARY Selecting HSCs using MMP is likely to lead to discoveries of new HSC properties, may improve the ex vivo maintenance of HSCs and has implications for the clinic, including for improving HSC transplantations.
Collapse
Affiliation(s)
- Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Developmental and Stem Cell Biology, Multidisciplinary Training Area, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Mazzarini M, Arciprete F, Picconi O, Valeri M, Verachi P, Martelli F, Migliaccio AR, Falchi M, Zingariello M. Single cell analysis of the localization of the hematopoietic stem cells within the bone marrow architecture identifies niche-specific proliferation dynamics. Front Med (Lausanne) 2023; 10:1166758. [PMID: 37188088 PMCID: PMC10175646 DOI: 10.3389/fmed.2023.1166758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Hematopoietic stem cells (HSC) reside in the bone marrow (BM) in specialized niches which provide support for their self-replication and differentiation into the blood cells. Recently, numerous studies using sophisticated molecular and microscopic technology have provided snap-shots information on the identity of the BM niches in mice. In adults, HSC are localized around arterioles and sinusoids/venules whereas in juvenile mice they are in close to the osteoblasts. However, although it is well recognized that in mice the nature of the hematopoietic niche change with age or after exposure to inflammatory insults, much work remains to be done to identify changes occurring under these conditions. The dynamic changes occurring in niche/HSC interactions as HSC enter into cycle are also poorly defined. Methods We exploit mice harboring the hCD34tTA/Tet-O-H2BGFP transgene to establish the feasibility to assess interactions of the HSC with their niche as they cycle. In this model, H2BGFP expression is driven by the TET trans-activator under the control of the human CD34 promoter which in mice is active only in the HSC. Since Doxycycline inhibits TET, HSC exposed to this drug no longer express H2BGFP and loose half of their label every division allowing establishing the dynamics of their first 1-3 divisions. To this aim, we first validated user-friendly confocal microscopy methods to determine HSC divisions by hemi-decrement changes in levels of GFP expression. We then tracked the interaction occurring in old mice between the HSC and their niche during the first HSC divisions. Results We determined that in old mice, most of the HSC are located around vessels, both arterioles which sustain quiescence and self-replication, and venules/sinusoids, which sustain differentiation. After just 1 week of exposure to Doxycycline, great numbers of the HSC around the venules lost most of their GFP label, indicating that they had cycled. By contrast, the few HSC surrounding the arterioles retained maximal levels of GFP expression, indicating that they are either dormant or cycle at very low rates. Conclusion These results reveal that in old mice, HSC cycle very dynamically and are biased toward interactions with the niche that instructs them to differentiate.
Collapse
Affiliation(s)
- Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Orietta Picconi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Valeri
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
- *Correspondence: Anna Rita Migliaccio ;
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Zingariello
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| |
Collapse
|
18
|
Hérault L, Poplineau M, Remy E, Duprez E. Single Cell Transcriptomics to Understand HSC Heterogeneity and Its Evolution upon Aging. Cells 2022; 11:3125. [PMID: 36231086 PMCID: PMC9563410 DOI: 10.3390/cells11193125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Single-cell transcriptomic technologies enable the uncovering and characterization of cellular heterogeneity and pave the way for studies aiming at understanding the origin and consequences of it. The hematopoietic system is in essence a very well adapted model system to benefit from this technological advance because it is characterized by different cellular states. Each cellular state, and its interconnection, may be defined by a specific location in the global transcriptional landscape sustained by a complex regulatory network. This transcriptomic signature is not fixed and evolved over time to give rise to less efficient hematopoietic stem cells (HSC), leading to a well-documented hematopoietic aging. Here, we review the advance of single-cell transcriptomic approaches for the understanding of HSC heterogeneity to grasp HSC deregulations upon aging. We also discuss the new bioinformatics tools developed for the analysis of the resulting large and complex datasets. Finally, since hematopoiesis is driven by fine-tuned and complex networks that must be interconnected to each other, we highlight how mathematical modeling is beneficial for doing such interconnection between multilayered information and to predict how HSC behave while aging.
Collapse
Affiliation(s)
- Léonard Hérault
- I2M, CNRS, Aix Marseille University, 13009 Marseille, France
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Elisabeth Remy
- I2M, CNRS, Aix Marseille University, 13009 Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| |
Collapse
|
19
|
Qiu J, Ghaffari S. Mitochondrial Deep Dive into Hematopoietic Stem Cell Dormancy: Not Much Glycolysis but Plenty of Sluggish Lysosomes. Exp Hematol 2022; 114:1-8. [PMID: 35908627 PMCID: PMC9949493 DOI: 10.1016/j.exphem.2022.07.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/16/2023]
Abstract
The discovery of hematopoietic stem cells (HSCs) heterogeneity has had major implications for investigations of hematopoietic stem cell disorders, clonal hematopoiesis, and HSC aging. More recent studies of the heterogeneity of HSCs' organelles have begun to provide additional insights into HSCs' behavior with far-reaching ramifications for the mechanistic understanding of aging of HSCs and stem cell-derived diseases. Mitochondrial heterogeneity has been explored to expose HSC subsets with distinct properties and functions. Here we review some of the recent advances in these lines of studies that challenged the classic view of glycolysis in HSCs and led to the identification of lysosomes as dynamic pivotal switches in controlling HSC quiescence versus activation beyond their function in autophagy.
Collapse
Affiliation(s)
- Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
20
|
Sun Z, Yao B, Xie H, Su X. Clinical Progress and Preclinical Insights Into Umbilical Cord Blood Transplantation Improvement. Stem Cells Transl Med 2022; 11:912-926. [PMID: 35972332 PMCID: PMC9492243 DOI: 10.1093/stcltm/szac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/07/2022] [Indexed: 11/14/2022] Open
Abstract
The application of umbilical cord blood (UCB) as an important source of hematopoietic stem and progenitor cells (HSPCs) for hematopoietic reconstitution in the clinical context has steadily grown worldwide in the past 30 years. UCB has advantages that include rapid availability of donors, less strict HLA-matching demands, and low rates of graft-versus-host disease (GVHD) versus bone marrow (BM) and mobilized peripheral blood (PB). However, the limited number of HSPCs within a single UCB unit often leads to delayed hematopoietic engraftment, increased risk of transplant-related infection and mortality, and proneness to graft failure, thus hindering wide clinical application. Many strategies have been developed to improve UCB engraftment, most of which are based on 2 approaches: increasing the HSPC number ex vivo before transplantation and enhancing HSPC homing to the recipient BM niche after transplantation. Recently, several methods have shown promising progress in UCB engraftment improvement. Here, we review the current situations of UCB manipulation in preclinical and clinical settings and discuss challenges and future directions.
Collapse
Affiliation(s)
- Zhongjie Sun
- State Key Laboratory of Elemento-organic chemistry, College of Chemistry, Nankai University, Tianjin, People's Republic of China.,Newish Technology (Beijing) Co., Ltd., Beijing, People's Republic of China
| | - Bing Yao
- Zhejiang Hisoar Pharmaceutical Co., Ltd., Taizhou, Zhejiang Province, People's Republic of China
| | - Huangfan Xie
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, People's Republic of China.,Newish Technology (Beijing) Co., Ltd., Beijing, People's Republic of China
| | - XunCheng Su
- State Key Laboratory of Elemento-organic chemistry, College of Chemistry, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
21
|
Singh S, Sarkar T, Jakubison B, Gadomski S, Spradlin A, Gudmundsson KO, Keller JR. Inhibitor of DNA binding proteins revealed as orchestrators of steady state, stress and malignant hematopoiesis. Front Immunol 2022; 13:934624. [PMID: 35990659 PMCID: PMC9389078 DOI: 10.3389/fimmu.2022.934624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adult mammalian hematopoiesis is a dynamic cellular process that provides a continuous supply of myeloid, lymphoid, erythroid/megakaryocyte cells for host survival. This process is sustained by regulating hematopoietic stem cells (HSCs) quiescence, proliferation and activation under homeostasis and stress, and regulating the proliferation and differentiation of downstream multipotent progenitor (MPP) and more committed progenitor cells. Inhibitor of DNA binding (ID) proteins are small helix-loop-helix (HLH) proteins that lack a basic (b) DNA binding domain present in other family members, and function as dominant-negative regulators of other bHLH proteins (E proteins) by inhibiting their transcriptional activity. ID proteins are required for normal T cell, B cell, NK and innate lymphoid cells, dendritic cell, and myeloid cell differentiation and development. However, recent evidence suggests that ID proteins are important regulators of normal and leukemic hematopoietic stem and progenitor cells (HSPCs). This chapter will review our current understanding of the function of ID proteins in HSPC development and highlight future areas of scientific investigation.
Collapse
Affiliation(s)
- Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Brad Jakubison
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen Gadomski
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Andrew Spradlin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
| | - Kristbjorn O. Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI)- Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- *Correspondence: Jonathan R. Keller,
| |
Collapse
|
22
|
Takihara Y, Higaki T, Yokomizo T, Umemoto T, Ariyoshi K, Hashimoto M, Sezaki M, Takizawa H, Inoue T, Suda T, Mizuno H. Bone marrow imaging reveals the migration dynamics of neonatal hematopoietic stem cells. Commun Biol 2022; 5:776. [PMID: 35918480 PMCID: PMC9346000 DOI: 10.1038/s42003-022-03733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are produced from the blood vessel walls and circulate in the blood during the perinatal period. However, the migration dynamics of how HSCs enter the bone marrow remain elusive. To observe the dynamics of HSCs over time, the present study develops an intravital imaging method to visualize bone marrow in neonatal long bones formed by endochondral ossification which is essential for HSC niche formation. Endogenous HSCs are labeled with tdTomato under the control of an HSC marker gene Hlf, and a customized imaging system with a bone penetrating laser is developed for intravital imaging of tdTomato-labeled neonatal HSCs in undrilled tibia, which is essential to avoid bleeding from fragile neonatal tibia by bone drilling. The migration speed of neonatal HSCs is higher than that of adult HSCs. Neonatal HSCs migrate from outside to inside the tibia via the blood vessels that penetrate the bone, which is a transient structure during the neonatal period, and settle on the blood vessel wall in the bone marrow. The results obtained from direct observations in vivo reveal the motile dynamics and colonization process of neonatal HSCs during bone marrow formation. An intravital imaging method reveals the in vivo motile dynamics and colonization process of neonatal hematopoietic stem cells during bone marrow formation.
Collapse
Affiliation(s)
- Yuji Takihara
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, 117599, Singapore, Singapore
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan.,International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kazunori Ariyoshi
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Michihiro Hashimoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Maiko Sezaki
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Hitoshi Takizawa
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Toshihiro Inoue
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, 117599, Singapore, Singapore. .,International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan.
| | - Hidenobu Mizuno
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan. .,International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
23
|
Jakubison BL, Sarkar T, Gudmundsson KO, Singh S, Sun L, Morris HM, Klarmann KD, Keller JR. ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J Clin Invest 2022; 132:152599. [PMID: 35775482 PMCID: PMC9246389 DOI: 10.1172/jci152599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Defining mechanism(s) that maintain tissue stem quiescence is important for improving tissue regeneration, cell therapies, aging, and cancer. We report here that genetic ablation of Id2 in adult hematopoietic stem cells (HSCs) promotes increased HSC activation and differentiation, which results in HSC exhaustion and bone marrow failure over time. Id2Δ/Δ HSCs showed increased cycling, ROS production, mitochondrial activation, ATP production, and DNA damage compared with Id2+/+ HSCs, supporting the conclusion that Id2Δ/Δ HSCs are less quiescent. Mechanistically, HIF-1α expression was decreased in Id2Δ/Δ HSCs, and stabilization of HIF-1α in Id2Δ/Δ HSCs restored HSC quiescence and rescued HSC exhaustion. Inhibitor of DNA binding 2 (ID2) promoted HIF-1α expression by binding to the von Hippel-Lindau (VHL) protein and interfering with proteasomal degradation of HIF-1α. HIF-1α promoted Id2 expression and enforced a positive feedback loop between ID2 and HIF-1α to maintain HSC quiescence. Thus, sustained ID2 expression could protect HSCs during stress and improve HSC expansion for gene editing and cell therapies.
Collapse
Affiliation(s)
- Brad L Jakubison
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kristbjorn O Gudmundsson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Lei Sun
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Holly M Morris
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kimberly D Klarmann
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan R Keller
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| |
Collapse
|
24
|
Gudmundsson KO, Du Y. Quiescence regulation by normal haematopoietic stem cells and leukaemia stem cells. FEBS J 2022. [PMID: 35514133 DOI: 10.1111/febs.16472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The haematopoietic system is maintained by rare haematopoietic stem cells (HSCs), which are quiescent most of the time and only divide occasionally to self-renew and/or to undergo commitment to clonal expansion via the generation of highly proliferative progenitor cells. The latter is responsible for the generation of all mature cells of the system through subsequent lineage commitment and terminal differentiation. Cells with similar properties also exist in leukaemias and are known as leukaemia stem cells (LSCs). Quiescence provides essential protection for both HSC and LSC from cytotoxic stress and DNA damage and, in the case of LSCs, likely causes therapy resistance and disease relapse in leukaemia patients. Specific inhibition of LSC quiescence has been considered a promising strategy for eliminating LSCs and curing leukaemias. Although the understanding of mechanisms responsible for quiescence maintenance in these cells remains limited, particularly for LSCs, recent studies have suggested potential differences in their dependency on certain pathways and their levels of stress and DNA damage caused by increased cycling. Such differences likely stem from oncogenic mutations in LSCs and could be specifically exploited for the elimination of LSCs while sparing normal HSCs in the future.
Collapse
Affiliation(s)
- Kristbjorn Orri Gudmundsson
- Basic Science Program Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program Center for Cancer Research NCI Frederick MD USA
| | - Yang Du
- Department of Pediatrics Uniformed Services University of the Health Sciences Bethesda MD USA
| |
Collapse
|
25
|
Zingariello M, Verachi P, Gobbo F, Martelli F, Falchi M, Mazzarini M, Valeri M, Sarli G, Marinaccio C, Melo-Cardenas J, Crispino JD, Migliaccio AR. Resident Self-Tissue of Proinflammatory Cytokines Rather than Their Systemic Levels Correlates with Development of Myelofibrosis in Gata1low Mice. Biomolecules 2022; 12:biom12020234. [PMID: 35204735 PMCID: PMC8961549 DOI: 10.3390/biom12020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Serum levels of inflammatory cytokines are currently investigated as prognosis markers in myelofibrosis, the most severe Philadelphia-negative myeloproliferative neoplasm. We tested this hypothesis in the Gata1low model of myelofibrosis. Gata1low mice, and age-matched wild-type littermates, were analyzed before and after disease onset. We assessed cytokine serum levels by Luminex-bead-assay and ELISA, frequency and cytokine content of stromal cells by flow cytometry, and immunohistochemistry and bone marrow (BM) localization of GFP-tagged hematopoietic stem cells (HSC) by confocal microscopy. Differences in serum levels of 32 inflammatory-cytokines between prefibrotic and fibrotic Gata1low mice and their wild-type littermates were modest. However, BM from fibrotic Gata1low mice contained higher levels of lipocalin-2, CXCL1, and TGF-β1 than wild-type BM. Although frequencies of endothelial cells, mesenchymal cells, osteoblasts, and megakaryocytes were higher than normal in Gata1low BM, the cells which expressed these cytokines the most were malignant megakaryocytes. This increased bioavailability of proinflammatory cytokines was associated with altered HSC localization: Gata1low HSC were localized in the femur diaphysis in areas surrounded by microvessels, neo-bones, and megakaryocytes, while wild-type HSC were localized in the femur epiphysis around adipocytes. In conclusion, bioavailability of inflammatory cytokines in BM, rather than blood levels, possibly by reshaping the HSC niche, correlates with myelofibrosis in Gata1low mice.
Collapse
Affiliation(s)
| | - Paola Verachi
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy; (P.V.); (F.G.); (M.M.)
| | - Francesca Gobbo
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy; (P.V.); (F.G.); (M.M.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Mario Falchi
- National Center HIV/AIDS Research, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy; (P.V.); (F.G.); (M.M.)
| | - Mauro Valeri
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy;
| | | | - Johanna Melo-Cardenas
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.-C.); (J.D.C.)
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.-C.); (J.D.C.)
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
- Center for Integrated Biomedical Research, Campus Bio-Medico, 00128 Rome, Italy
- Correspondence:
| |
Collapse
|
26
|
Fast EM, Sporrij A, Manning M, Rocha EL, Yang S, Zhou Y, Guo J, Baryawno N, Barkas N, Scadden D, Camargo F, Zon LI. External signals regulate continuous transcriptional states in hematopoietic stem cells. eLife 2021; 10:e66512. [PMID: 34939923 PMCID: PMC8700284 DOI: 10.7554/elife.66512] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs) must ensure adequate blood cell production following distinct external stressors. A comprehensive understanding of in vivo heterogeneity and specificity of HSC responses to external stimuli is currently lacking. We performed single-cell RNA sequencing (scRNA-Seq) on functionally validated mouse HSCs and LSK (Lin-, c-Kit+, Sca1+) progenitors after in vivo pharmacological perturbation of niche signals interferon, granulocyte colony-stimulating factor (G-CSF), and prostaglandin. We identified six HSC states that are characterized by enrichment but not exclusive expression of marker genes. External signals induced rapid transitions between HSC states but transcriptional response varied both between external stimulants and within the HSC population for a given perturbation. In contrast to LSK progenitors, HSCs were characterized by a greater link between molecular signatures at baseline and in response to external stressors. Chromatin analysis of unperturbed HSCs and LSKs by scATAC-Seq suggested some HSC-specific, cell intrinsic predispositions to niche signals. We compiled a comprehensive resource of HSC- and LSK progenitor-specific chromatin and transcriptional features that represent determinants of signal receptiveness and regenerative potential during stress hematopoiesis.
Collapse
Affiliation(s)
- Eva M Fast
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
| | - Audrey Sporrij
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
| | - Margot Manning
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
| | - Edroaldo Lummertz Rocha
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa CatarinaFlorianópolisBrazil
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical SchoolBostonUnited States
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Howard Hughes Medical Institute, Boston's Children's Hospital and Dana Farber Cancer Institute, Harvard Medical SchoolBostonUnited States
| | - Jimin Guo
- Medical Devices Research Centre, National Research Council CanadaBouchervilleCanada
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska InstitutetStockholmSweden
| | | | | | | | - Leonard I Zon
- Stem Cell Program and Hematology/Oncology, Boston Children's HospitalBostonUnited States
| |
Collapse
|
27
|
Ravera S, Vigliarolo T, Bruno S, Morandi F, Marimpietri D, Sabatini F, Dagnino M, Petretto A, Bartolucci M, Muraca M, Biasin E, Haupt R, Zecca M, Fagioli F, Cilloni D, Podestà M, Frassoni F. Identification of Biochemical and Molecular Markers of Early Aging in Childhood Cancer Survivors. Cancers (Basel) 2021; 13:cancers13205214. [PMID: 34680366 PMCID: PMC8534026 DOI: 10.3390/cancers13205214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Childhood cancer survivors (CCS) display a higher risk of developing second malignant tumors and chronic diseases compared with aged-matched controls because of chemo/radiotherapy. This early frailty seems associated with accelerated cell aging, a process correlated with altered mitochondrial energy production. Therefore, this work aims to shed light on the mechanisms involved in chemo/radiotherapy-induced early aging, morbidities, and the risk of developing second tumors in CCS through a biochemical and molecular approach. The identification of crucial mechanisms involved in the CCS chemo/radiotherapy-related pathological conditions will allow identifying therapeutic targets to develop appropriate risk-based care and interventions, minimize morbidities, and maximize the quality of life in the cancer survivor population. Abstract Survival rates of childhood cancer patients have improved over the past four decades, although cancer treatments increase the risk of developing chronic diseases typical of aging. Thus, we aimed to identify molecular/metabolic cellular alterations responsible for early aging in childhood cancer survivors (CCS). Biochemical, proteomic, and molecular biology analyses were conducted on mononuclear cells (MNCs) isolated from peripheral blood of 196 CCS, the results being compared with those obtained on MNCs of 154 healthy subjects. CCS-MNCs showed inefficient oxidative phosphorylation associated with low energy status, and increased lipid peroxidation and lactate fermentation compared with age-matched normal controls. According to a mathematical model based on biochemical parameters, CCS-MNCs showed significantly higher metabolic ages than their real ages. The dysfunctional metabolism of CCS-MNCs is associated with lower expression levels of genes and proteins involved in mitochondrial biogenesis and metabolism regulation, such as CLUH, PGC1-alpha, and SIRT6 in CCS, not observed in the age-matched healthy or elderly subjects. In conclusion, our study identified some biochemical and molecular alterations possibly contributing to the pathophysiology of aging and metabolic deficiencies in CCS. These results identify new targets for pharmacological interventions to restore mitochondrial function, slowing down the aging-associated pathologies in CCS.
Collapse
Affiliation(s)
- Silvia Ravera
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (T.V.); (F.M.); (D.M.); (F.S.); (M.D.); (M.P.); (F.F.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- Correspondence: ; Tel.: +39-010-335-7871
| | - Tiziana Vigliarolo
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (T.V.); (F.M.); (D.M.); (F.S.); (M.D.); (M.P.); (F.F.)
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (T.V.); (F.M.); (D.M.); (F.S.); (M.D.); (M.P.); (F.F.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (T.V.); (F.M.); (D.M.); (F.S.); (M.D.); (M.P.); (F.F.)
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (T.V.); (F.M.); (D.M.); (F.S.); (M.D.); (M.P.); (F.F.)
| | - Monica Dagnino
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (T.V.); (F.M.); (D.M.); (F.S.); (M.D.); (M.P.); (F.F.)
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (A.P.); (M.B.)
| | - Martina Bartolucci
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (A.P.); (M.B.)
| | - Monica Muraca
- Epidemiology and Biostatistics Unit and DOPO Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (R.H.)
| | - Eleonora Biasin
- Department of Pediatric Onco-Haematology, Regina Margherita Children’s Hospital, University of Turin, 10126 Turin, Italy; (E.B.); (F.F.)
| | - Riccardo Haupt
- Epidemiology and Biostatistics Unit and DOPO Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (R.H.)
| | - Marco Zecca
- Pediatric Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Franca Fagioli
- Department of Pediatric Onco-Haematology, Regina Margherita Children’s Hospital, University of Turin, 10126 Turin, Italy; (E.B.); (F.F.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Marina Podestà
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (T.V.); (F.M.); (D.M.); (F.S.); (M.D.); (M.P.); (F.F.)
| | - Francesco Frassoni
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (T.V.); (F.M.); (D.M.); (F.S.); (M.D.); (M.P.); (F.F.)
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, 10124 Turin, Italy;
- Department of Mathematics (DIMA), University of Genoa, 16146 Genoa, Italy
| |
Collapse
|
28
|
Cytarabine and EIP co-administration synergistically reduces viability of acute lymphoblastic leukemia cells with high ERG expression. Leuk Res 2021; 109:106649. [PMID: 34271301 DOI: 10.1016/j.leukres.2021.106649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
The E26 transformation sequence-related gene ERG encodes a transcription factor involved in normal hematopoiesis, and its expression is abnormal in leukemia. Especially in a type of acute lymphoblastic leukemia (ALL) that is refractory and easy to relapse, the expression of ERG protein is abnormally increased. Chemotherapy can alleviate the condition of ALL, but the location and survival mechanism of the remaining ALL cells after chemotherapy are still not fully understood. It is becoming increasingly clear that the interaction between leukemia cells and their microenvironment plays an important role in the acquisition of drug resistance mutations and disease recurrence. We selected an acute lymphocytic leukemia cell line with high ERG expression, and studied the synergistic effect of chemotherapeutics and small molecule peptides through cell proliferation, apoptosis, and cell cycle experiments; At the same time, we inoculated acute lymphocytic leukemia cells with high ERG expression into mice with severe immunodeficiency to simulate human ALL and investigated (i) the effects of co-administration on the nesting and invasion of leukemia cells and (ii) the effects of the small molecule peptide drug EIP, which targets ERG, on the sensitivity of ALL chemotherapy and the underlying mechanisms.Ara-c and EIP synergistically reduces viability of ALL cells with high ERG expression may be achieved by promoting their apoptosis and inhibiting their nesting.
Collapse
|
29
|
Using mitochondrial activity to select for potent human hematopoietic stem cells. Blood Adv 2021; 5:1605-1616. [PMID: 33710339 DOI: 10.1182/bloodadvances.2020003658] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic cell transplantation is a critical curative approach for many blood disorders. However, obtaining grafts with sufficient numbers of hematopoietic stem cells (HSCs) that maintain long-term engraftment remains challenging; this is due partly to metabolic modulations that restrict the potency of HSCs outside of their native environment. To address this, we focused on mitochondria. We found that human HSCs are heterogeneous in their mitochondrial activity as measured by mitochondrial membrane potential (MMP) even within the highly purified CD34+CD38-CD45RA-CD90+CD49f+ HSC population. We further found that the most potent HSCs exhibit the lowest mitochondrial activity in the population. We showed that the frequency of long-term culture initiating cells in MMP-low is significantly greater than in MMP-high CD34+CD38-CD45RA-CD90+ (CD90+) HSCs. Notably, these 2 populations were distinct in their long-term repopulating capacity when transplanted into immunodeficient mice. The level of chimerism 7 months posttransplantation was >50-fold higher in the blood of MMP-low relative to MMP-high CD90+ HSC recipients. Although more than 90% of both HSC subsets were in G0, MMP-low CD90+ HSCs exhibited delayed cell-cycle priming profile relative to MMP-high HSCs. These functional differences were associated with distinct mitochondrial morphology; MMP-low in contrast to MMP-high HSCs contained fragmented mitochondria. Our findings suggest that the lowest MMP level selects for the most potent, likely dormant, stem cells within the highly purified HSC population. These results identify a new approach for isolating highly potent human HSCs for further clinical applications. They also implicate mitochondria in the intrinsic regulation of human HSC quiescence and potency.
Collapse
|
30
|
Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations. Blood 2021; 136:2296-2307. [PMID: 32766876 DOI: 10.1182/blood.2020006574] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
The exact localization of hematopoietic stem cells (HSCs) in their native bone marrow (BM) microenvironment remains controversial, because multiple cell types have been reported to physically associate with HSCs. In this study, we comprehensively quantified HSC localization with up to 4 simultaneous (9 total) BM components in 152 full-bone sections from different bone types and 3 HSC reporter lines. We found adult femoral α-catulin-GFP+ or Mds1GFP/+Flt3Cre HSCs proximal to sinusoids, Cxcl12 stroma, megakaryocytes, and different combinations of those populations, but not proximal to bone, adipocyte, periarteriolar, or Schwann cells. Despite microanatomical differences in femurs and sterna, their adult α-catulin-GFP+ HSCs had similar distributions. Importantly, their microenvironmental localizations were not different from those of random dots, reflecting the relative abundance of imaged BM populations rather than active enrichment. Despite their functional heterogeneity, dormant label-retaining (LR) and non-LR hematopoietic stem and progenitor cells both had indistinguishable localization from α-catulin-GFP+ HSCs. In contrast, cycling juvenile BM HSCs preferentially located close to Cxcl12 stroma and farther from sinusoids/megakaryocytes. We expect our study to help resolve existing confusion regarding the exact localization of different HSC types, their physical association with described BM populations, and their tissue-wide combinations.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are in an inactive quiescent state for most of their life. To replenish the blood system in homeostasis and after injury, they activate and divide. HSC daughter cells must then decide whether to return to quiescence and metabolic inactivity or to activate further to proliferate and differentiate and replenish lost blood cells. Although the regulation of HSC activation is not well understood, recent discoveries shed new light on involved mechanisms including asymmetric cell division (ACD). RECENT FINDINGS HSC metabolism has emerged as a regulator of cell fates. Recent evidence suggests that cellular organelles mediating anabolic and catabolic processes can be asymmetrically inherited during HSC divisions. These include autophagosomes, mitophagosomes, and lysosomes, which regulate HSC quiescence. Their asymmetric inheritance has been linked to future metabolic and translational activity in HSC daughters, showing that ACD can regulate the balance between HSC (in)activity. SUMMARY We discuss recent insights and remaining questions in how HSCs balance activation and quiescence, with a focus on ACD.
Collapse
|
32
|
Chen R, Okeyo-Owuor T, Patel RM, Casey EB, Cluster AS, Yang W, Magee JA. Kmt2c mutations enhance HSC self-renewal capacity and convey a selective advantage after chemotherapy. Cell Rep 2021; 34:108751. [PMID: 33596429 PMCID: PMC7951951 DOI: 10.1016/j.celrep.2021.108751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The myeloid tumor suppressor KMT2C is recurrently deleted in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), particularly therapy-related MDS/AML (t-MDS/t-AML), as part of larger chromosome 7 deletions. Here, we show that KMT2C deletions convey a selective advantage to hematopoietic stem cells (HSCs) after chemotherapy treatment that may precipitate t-MDS/t-AML. Kmt2c deletions markedly enhance murine HSC self-renewal capacity without altering proliferation rates. Haploid Kmt2c deletions convey a selective advantage only when HSCs are driven into cycle by a strong proliferative stimulus, such as chemotherapy. Cycling Kmt2c-deficient HSCs fail to differentiate appropriately, particularly in response to interleukin-1. Kmt2c deletions mitigate histone methylation/acetylation changes that accrue as HSCs cycle after chemotherapy, and they impair enhancer recruitment during HSC differentiation. These findings help explain why Kmt2c deletions are more common in t-MDS/t-AML than in de novo AML or clonal hematopoiesis: they selectively protect cycling HSCs from differentiation without inducing HSC proliferation themselves.
Collapse
Affiliation(s)
- Ran Chen
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Theresa Okeyo-Owuor
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Andrew S Cluster
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Morcos MNF, Zerjatke T, Glauche I, Munz CM, Ge Y, Petzold A, Reinhardt S, Dahl A, Anstee NS, Bogeska R, Milsom MD, Säwén P, Wan H, Bryder D, Roers A, Gerbaulet A. Continuous mitotic activity of primitive hematopoietic stem cells in adult mice. J Exp Med 2021; 217:151684. [PMID: 32302400 PMCID: PMC7971128 DOI: 10.1084/jem.20191284] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
The proliferative activity of aging hematopoietic stem cells (HSCs) is controversially discussed. Inducible fluorescent histone 2B fusion protein (H2B-FP) transgenic mice are important tools for tracking the mitotic history of murine HSCs in label dilution experiments. A recent study proposed that primitive HSCs symmetrically divide only four times to then enter permanent quiescence. We observed that background fluorescence due to leaky H2B-FP expression, occurring in all H2B-FP transgenes independent of label induction, accumulated with age in HSCs with high repopulation potential. We argue that this background had been misinterpreted as stable retention of induced label. We found cell division–independent half-lives of H2B-FPs to be short, which had led to overestimation of HSC divisional activity. Our data do not support abrupt entry of HSCs into permanent quiescence or sudden loss of regeneration potential after four divisions, but show that primitive HSCs of adult mice continue to cycle rarely.
Collapse
Affiliation(s)
- Mina N F Morcos
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Thomas Zerjatke
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Clara M Munz
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Yan Ge
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Natasha S Anstee
- Division of Experimental Hematology, Deutsches Krebsforschungszentrum and Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Ruzhica Bogeska
- Division of Experimental Hematology, Deutsches Krebsforschungszentrum and Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, Deutsches Krebsforschungszentrum and Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Petter Säwén
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Lund University, Lund, Sweden.,Sahlgrenska Cancer Centre, Gothenburg University, Gothenburg, Sweden
| | - Axel Roers
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | |
Collapse
|
34
|
"Empowering" Cardiac Cells via Stem Cell Derived Mitochondrial Transplantation- Does Age Matter? Int J Mol Sci 2021; 22:ijms22041824. [PMID: 33673127 PMCID: PMC7918132 DOI: 10.3390/ijms22041824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.
Collapse
|
35
|
Filippi MD. Hematopoietic stem cell (HSC) divisional memory: The journey of mitochondrial metabolism through HSC division. Exp Hematol 2021; 96:27-34. [PMID: 33515636 DOI: 10.1016/j.exphem.2021.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cells (HSCs) are characterized by their ability to produce all cells of the blood and immune system and have been used for transplantation for decades. Although the regenerative potential of HSCs is high, their self-renewal potential is limited. HSC functions are inversely correlated with their divisional history. Recent advances in our understanding of the regulation of HSCs through cell division suggest that HSCs may never replicate into identical self, but rather replicate into progeny that gradually lose functionality at each round of division. HSC division is accompanied by major transcriptional and metabolic changes. In this perspective, the possibility that mitochondrial metabolism confers HSC division memory and programs HSCs for extinction is discussed.
Collapse
Affiliation(s)
- Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
36
|
Yang L, Hu M, Lu Y, Han S, Wang J. Inflammasomes and the Maintenance of Hematopoietic Homeostasis: New Perspectives and Opportunities. Molecules 2021; 26:molecules26020309. [PMID: 33435298 PMCID: PMC7827629 DOI: 10.3390/molecules26020309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) regularly produce various blood cells throughout life via their self-renewal, proliferation, and differentiation abilities. Most HSCs remain quiescent in the bone marrow (BM) and respond in a timely manner to either physiological or pathological cues, but the underlying mechanisms remain to be further elucidated. In the past few years, accumulating evidence has highlighted an intermediate role of inflammasome activation in hematopoietic maintenance, post-hematopoietic transplantation complications, and senescence. As a cytosolic protein complex, the inflammasome participates in immune responses by generating a caspase cascade and inducing cytokine secretion. This process is generally triggered by signals from purinergic receptors that integrate extracellular stimuli such as the metabolic factor ATP via P2 receptors. Furthermore, targeted modulation/inhibition of specific inflammasomes may help to maintain/restore adequate hematopoietic homeostasis. In this review, we will first summarize the possible relationships between inflammasome activation and homeostasis based on certain interesting phenomena. The cellular and molecular mechanism by which purinergic receptors integrate extracellular cues to activate inflammasomes inside HSCs will then be described. We will also discuss the therapeutic potential of targeting inflammasomes and their components in some diseases through pharmacological or genetic strategies.
Collapse
|
37
|
Arai F, Stumpf PS, Ikushima YM, Hosokawa K, Roch A, Lutolf MP, Suda T, MacArthur BD. Machine Learning of Hematopoietic Stem Cell Divisions from Paired Daughter Cell Expression Profiles Reveals Effects of Aging on Self-Renewal. Cell Syst 2020; 11:640-652.e5. [DOI: 10.1016/j.cels.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/22/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
|
38
|
Johnson C, Belluschi S, Laurenti E. Beyond “to divide or not to divide”: Kinetics matters in hematopoietic stem cells. Exp Hematol 2020; 92:1-10.e2. [DOI: 10.1016/j.exphem.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 01/03/2023]
|
39
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
40
|
Abstract
Modern single cell experiments have revealed unexpected heterogeneity in apparently functionally 'pure' cell populations. However, we are still lacking a conceptual framework to understand this heterogeneity. Here, we propose that cellular memories-changes in the molecular status of a cell in response to a stimulus, that modify the ability of the cell to respond to future stimuli-are an essential ingredient in any such theory. We illustrate this idea by considering a simple age-structured model of stem cell proliferation that takes account of mitotic memories. Using this model we argue that asynchronous mitosis generates heterogeneity that is central to stem cell population function. This model naturally explains why stem cell numbers increase through life, yet regenerative potency simultaneously declines.
Collapse
Affiliation(s)
- Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, 52074, Germany
| | | | | |
Collapse
|
41
|
Yanai H, Beerman I. Proliferation: Driver of HSC aging phenotypes? Mech Ageing Dev 2020; 191:111331. [PMID: 32798509 PMCID: PMC7541746 DOI: 10.1016/j.mad.2020.111331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
The decline of stem cell performance with age is a potential paramount mechanism of aging. Hematopoietic stem cells (HSCs) are perhaps the most studied and best characterized tissue-specific somatic stem cells. As such, HSCs offer an excellent research model of how aging affects stem cell performance, and vice versa. Studies from recent years have elucidated major aging phenotypes of HSCs including a decline in reconstitution potential, altered differentiation predisposition, an increase in number, accumulation of DNA damage/mutations and several others. However, what drives these changes, and exactly how they translate to pathology is poorly understood. Recent studies point to proliferative stress of HSCs as a potential driver of their aging and the resulting pathologies. Here we discuss the recent discoveries and suggest the context in which aging phenotypes could be driven, and the relevant mechanisms by which HSCs could be affected.
Collapse
Affiliation(s)
- Hagai Yanai
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
42
|
Shin JJ, Schröder MS, Caiado F, Wyman SK, Bray NL, Bordi M, Dewitt MA, Vu JT, Kim WT, Hockemeyer D, Manz MG, Corn JE. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells. Cell Rep 2020; 32:108093. [PMID: 32877675 PMCID: PMC7487781 DOI: 10.1016/j.celrep.2020.108093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing often takes the form of either error-prone sequence disruption by non-homologous end joining (NHEJ) or sequence replacement by homology-directed repair (HDR). Although NHEJ is generally effective, HDR is often difficult in primary cells. Here, we use a combination of immunophenotyping, next-generation sequencing, and single-cell RNA sequencing to investigate and reprogram genome editing outcomes in subpopulations of adult hematopoietic stem and progenitor cells. We find that although quiescent stem-enriched cells mostly use NHEJ, non-quiescent cells with the same immunophenotype use both NHEJ and HDR. Inducing quiescence before editing results in a loss of HDR in all cell subtypes. We develop a strategy of controlled cycling and quiescence that yields a 6-fold increase in the HDR/NHEJ ratio in quiescent stem cells ex vivo and in vivo. Our results highlight the tension between editing and cellular physiology and suggest strategies to manipulate quiescent cells for research and therapeutic genome editing.
Collapse
Affiliation(s)
- Jiyung J Shin
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas L Bray
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matteo Bordi
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Mark A Dewitt
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jonathan T Vu
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Won-Tae Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
43
|
Vizán P, Gutiérrez A, Espejo I, García-Montolio M, Lange M, Carretero A, Lafzi A, de Andrés-Aguayo L, Blanco E, Thambyrajah R, Graf T, Heyn H, Bigas A, Di Croce L. The Polycomb-associated factor PHF19 controls hematopoietic stem cell state and differentiation. SCIENCE ADVANCES 2020; 6:eabb2745. [PMID: 32821835 PMCID: PMC7406347 DOI: 10.1126/sciadv.abb2745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Adult hematopoietic stem cells (HSCs) are rare multipotent cells in bone marrow that are responsible for generating all blood cell types. HSCs are a heterogeneous group of cells with high plasticity, in part, conferred by epigenetic mechanisms. PHF19, a subunit of the Polycomb repressive complex 2 (PRC2), is preferentially expressed in mouse hematopoietic precursors. Here, we now show that, in stark contrast to results published for other PRC2 subunits, genetic depletion of Phf19 increases HSC identity and quiescence. While proliferation of HSCs is normally triggered by forced mobilization, defects in differentiation impede long-term correct blood production, eventually leading to aberrant hematopoiesis. At molecular level, PHF19 deletion triggers a redistribution of the histone repressive mark H3K27me3, which notably accumulates at blood lineage-specific genes. Our results provide novel insights into how epigenetic mechanisms determine HSC identity, control differentiation, and are key for proper hematopoiesis.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Arantxa Gutiérrez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Isabel Espejo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc García-Montolio
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Martin Lange
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ana Carretero
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Atefeh Lafzi
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Luisa de Andrés-Aguayo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Roshana Thambyrajah
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Anna Bigas
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
- CIBERONC, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08003, Spain
| |
Collapse
|
44
|
Carpenter RS, Marbourg JM, Brennan FH, Mifflin KA, Hall JCE, Jiang RR, Mo XM, Karunasiri M, Burke MH, Dorrance AM, Popovich PG. Spinal cord injury causes chronic bone marrow failure. Nat Commun 2020; 11:3702. [PMID: 32710081 PMCID: PMC7382469 DOI: 10.1038/s41467-020-17564-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.
Collapse
Affiliation(s)
- Randall S Carpenter
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jessica M Marbourg
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Katherine A Mifflin
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jodie C E Hall
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Roselyn R Jiang
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Xiaokui M Mo
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH, USA
| | - Malith Karunasiri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew H Burke
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Adrienne M Dorrance
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA.
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
45
|
Abstract
A central feature of atherosclerosis, the most prevalent chronic vascular disease and root cause of myocardial infarction and stroke, is leukocyte accumulation in the arterial wall. These crucial immune cells are produced in specialized niches in the bone marrow, where a complex cell network orchestrates their production and release. A growing body of clinical studies has documented a correlation between leukocyte numbers and cardiovascular disease risk. Understanding how leukocytes are produced and how they contribute to atherosclerosis and its complications is, therefore, critical to understanding and treating the disease. In this review, we focus on the key cells and products that regulate hematopoiesis under homeostatic conditions, during atherosclerosis and after myocardial infarction.
Collapse
Affiliation(s)
- Wolfram C Poller
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
46
|
Li X, Zeng X, Xu Y, Wang B, Zhao Y, Lai X, Qian P, Huang H. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol 2020; 13:31. [PMID: 32252797 PMCID: PMC7137344 DOI: 10.1186/s13045-020-00864-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cell (HSC) aging, which is accompanied by reduced self-renewal ability, impaired homing, myeloid-biased differentiation, and other defects in hematopoietic reconstitution function, is a hot topic in stem cell research. Although the number of HSCs increases with age in both mice and humans, the increase cannot compensate for the defects of aged HSCs. Many studies have been performed from various perspectives to illustrate the potential mechanisms of HSC aging; however, the detailed molecular mechanisms remain unclear, blocking further exploration of aged HSC rejuvenation. To determine how aged HSC defects occur, we provide an overview of differences in the hallmarks, signaling pathways, and epigenetics of young and aged HSCs as well as of the bone marrow niche wherein HSCs reside. Notably, we summarize the very recent studies which dissect HSC aging at the single-cell level. Furthermore, we review the promising strategies for rejuvenating aged HSC functions. Considering that the incidence of many hematological malignancies is strongly associated with age, our HSC aging review delineates the association between functional changes and molecular mechanisms and may have significant clinical relevance.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
47
|
Bernitz JM, Rapp K, Daniel MG, Shcherbinin D, Yuan Y, Gomes A, Waghray A, Brosh R, Lachmann A, Ma'ayan A, Papatsenko D, Moore KA. Memory of Divisional History Directs the Continuous Process of Primitive Hematopoietic Lineage Commitment. Stem Cell Reports 2020; 14:561-574. [PMID: 32243840 PMCID: PMC7160360 DOI: 10.1016/j.stemcr.2020.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) exist in a dormant state and progressively lose regenerative potency as they undergo successive divisions. Why this functional decline occurs and how this information is encoded is unclear. To better understand how this information is stored, we performed RNA sequencing on HSC populations differing only in their divisional history. Comparative analysis revealed that genes upregulated with divisions are enriched for lineage genes and regulated by cell-cycle-associated transcription factors, suggesting that proliferation itself drives lineage priming. Downregulated genes are, however, associated with an HSC signature and targeted by the Polycomb Repressive Complex 2 (PRC2). The PRC2 catalytic subunits Ezh1 and Ezh2 promote and suppress the HSC state, respectively, and successive divisions cause a switch from Ezh1 to Ezh2 dominance. We propose that cell divisions drive lineage priming and Ezh2 accumulation, which represses HSC signature genes to consolidate information on divisional history into memory. Divisional history is a major source of gene expression variation across HSCs Cell divisions themselves appear to drive lineage priming in HSCs Comparative analysis suggests that chromatin marks are dynamic with cell divisions An Ezh1-to-Ezh2 switch consolidates HSC divisional history information into memory
Collapse
Affiliation(s)
- Jeffrey M Bernitz
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; The Graduate School of Biomedical Sciences; Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; The Graduate School of Biomedical Sciences; Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Dmitrii Shcherbinin
- Skoltech Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Institute of Biomedical Chemistry (IBMC), Moscow 119121, Russia
| | - Ye Yuan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; The Graduate School of Biomedical Sciences; Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Andreia Gomes
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Avinash Waghray
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; The Graduate School of Biomedical Sciences; Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Ran Brosh
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dmitri Papatsenko
- Skoltech Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1496, New York, NY 10029, USA.
| |
Collapse
|
48
|
Restraining Lysosomal Activity Preserves Hematopoietic Stem Cell Quiescence and Potency. Cell Stem Cell 2020; 26:359-376.e7. [PMID: 32109377 DOI: 10.1016/j.stem.2020.01.013] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
Quiescence is a fundamental property that maintains hematopoietic stem cell (HSC) potency throughout life. Quiescent HSCs are thought to rely on glycolysis for their energy, but the overall metabolic properties of HSCs remain elusive. Using combined approaches, including single-cell RNA sequencing (RNA-seq), we show that mitochondrial membrane potential (MMP) distinguishes quiescent from cycling-primed HSCs. We found that primed, but not quiescent, HSCs relied readily on glycolysis. Notably, in vivo inhibition of glycolysis enhanced the competitive repopulation ability of primed HSCs. We further show that HSC quiescence is maintained by an abundance of large lysosomes. Repression of lysosomal activation in HSCs led to further enlargement of lysosomes while suppressing glucose uptake. This also induced increased lysosomal sequestration of mitochondria and enhanced the competitive repopulation ability of primed HSCs by over 90-fold in vivo. These findings show that restraining lysosomal activity preserves HSC quiescence and potency and may be therapeutically relevant.
Collapse
|
49
|
Hinge A, He J, Bartram J, Javier J, Xu J, Fjellman E, Sesaki H, Li T, Yu J, Wunderlich M, Mulloy J, Kofron M, Salomonis N, Grimes HL, Filippi MD. Asymmetrically Segregated Mitochondria Provide Cellular Memory of Hematopoietic Stem Cell Replicative History and Drive HSC Attrition. Cell Stem Cell 2020; 26:420-430.e6. [PMID: 32059807 DOI: 10.1016/j.stem.2020.01.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023]
Abstract
The metabolic requirements of hematopoietic stem cells (HSCs) change with their cell cycle activity. However, the underlying role of mitochondria remains ill-defined. Here we found that, after mitochondrial activation with replication, HSCs irreversibly remodel the mitochondrial network and that this network is not repaired after HSC re-entry into quiescence, contrary to hematopoietic progenitors. HSCs keep and accumulate dysfunctional mitochondria through asymmetric segregation during active division. Mechanistically, mitochondria aggregate and depolarize after stress because of loss of activity of the mitochondrial fission regulator Drp1 onto mitochondria. Genetic and pharmacological studies indicate that inactivation of Drp1 causes loss of HSC regenerative potential while maintaining HSC quiescence. Molecularly, HSCs carrying dysfunctional mitochondria can re-enter quiescence but fail to synchronize the transcriptional control of core cell cycle and metabolic components in subsequent division. Thus, loss of fidelity of mitochondrial morphology and segregation is one type of HSC divisional memory and drives HSC attrition.
Collapse
Affiliation(s)
- Ashwini Hinge
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jingyi He
- Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China
| | - James Bartram
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jose Javier
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juying Xu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ellen Fjellman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hiromi Sesaki
- Department of Cell Biology, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tingyu Li
- Child Nutrition Research Center in the Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R China
| | - Jie Yu
- Department of Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - H Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
50
|
Cyclosporine H Improves the Multi-Vector Lentiviral Transduction of Murine Haematopoietic Progenitors and Stem Cells. Sci Rep 2020; 10:1812. [PMID: 32020016 PMCID: PMC7000727 DOI: 10.1038/s41598-020-58724-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
Haematopoietic stem cells (HSCs) have the potential for lifetime production of blood and immune cells. The introduction of transgenes into HSCs is important for basic research, as well as for multiple clinical applications, because HSC transplantation is an already established procedure. Recently, a major advancement has been reported in the use of cyclosporine H (CsH), which can significantly enhance the lentivirus (LV) transduction of human haematopoietic stem and progenitor cells (HSPCs). In this study, we employed CsH for LV transduction of murine HSCs and defined haematopoietic progenitors, confirming previous findings in more specific subsets of primitive haematopoietic cells. Our data confirm increased efficiencies, in agreement with the published data. We further experimented with the transduction with the simultaneous use of several vectors. The use of CsH yielded an even more robust increase in rates of multi-vector infection than the increase for a single-vector. CsH was reported to reduce the innate resistance mechanism against LV infection. We indeed found that additional pretreatment could increase the efficiency of transduction, in agreement with the originally reported results. Our data also suggest that CsH does not reduce the efficiency of transplantation into immune-competent hosts or the differentiation of HSCs while enhancing stable long-term expression in vivo. This new additive will surely help many studies in animal models and might be very useful for the development of novel HSC gene therapy approaches.
Collapse
|