1
|
Chow ST, Fan J, Zhang X, Wang Y, Li Y, Ng CF, Pei X, Zheng Q, Wang F, Wu D, Chan FL. Nuclear receptor TLX functions to promote cancer stemness and EMT in prostate cancer via its direct transactivation of CD44 and stem cell-regulatory transcription factors. Br J Cancer 2024; 131:1450-1462. [PMID: 39322688 PMCID: PMC11519473 DOI: 10.1038/s41416-024-02843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Prostate cancer stem cells (PCSCs) play crucial roles in therapy-resistance and metastasis in castration-resistant prostate cancer (CRPC). Certain functional link between cancer stemness and epithelial-mesenchymal transition (EMT) is involved in CRPC. However, up-stream regulators controlling these two processes in PCSCs are still poorly understood. Recently, we have shown that orphan nuclear receptor TLX can promote tumour initiation and progression in CRPC by repressing androgen receptor and oncogene-induced senescence. METHODS PCSCs were isolated from various prostate cancer cell lines and clinical tumour tissues using multiple methods for various in vitro and in vivo oncogenic growth analyses. Direct targets of TLX involved in stemness and EMT regulation were determined by specific reporter gene assays and ligand-driven modulation of TLX activity. RESULTS PCSCs isolated from various sources exhibited increased expression of TLX. Functional and molecular characterisation showed that TLX could function to promote cancer stemness and EMT in prostate cancer cells via its direct transactivation of CD44, SOX2, POU5F1 and NANOG, which share certain functional crosstalk in these two cellular processes. CONCLUSIONS TLX could act as a key up-stream regulator in transcriptional control of stemness and EMT in PCSCs, which contribute to their tumorigenicity, castration-resistance and metastasis potentials in advanced prostate cancer.
Collapse
Affiliation(s)
- Sin Ting Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Jiaqi Fan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Xingxing Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Youjia Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Xiaojuan Pei
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guandong, China
| | - Qingyou Zheng
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Fei Wang
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Dinglan Wu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China.
- Department of Urology and The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Franky Leung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Liang S, Zhou J, Yu X, Lu S, Liu R. Neuronal conversion from glia to replenish the lost neurons. Neural Regen Res 2024; 19:1446-1453. [PMID: 38051886 PMCID: PMC10883502 DOI: 10.4103/1673-5374.386400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/16/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Neuronal injury, aging, and cerebrovascular and neurodegenerative diseases such as cerebral infarction, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Huntington's disease are characterized by significant neuronal loss. Unfortunately, the neurons of most mammals including humans do not possess the ability to self-regenerate. Replenishment of lost neurons becomes an appealing therapeutic strategy to reverse the disease phenotype. Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain, but it carries the risk of causing gene mutation, tumorigenesis, severe inflammation, and obstructive hydrocephalus induced by brain edema. Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss, which may overcome the above-mentioned disadvantages of neural stem cell therapy. Thus far, many strategies to transform astrocytes, fibroblasts, microglia, Müller glia, NG2 cells, and other glial cells to mature and functional neurons, or for the conversion between neuronal subtypes have been developed through the regulation of transcription factors, polypyrimidine tract binding protein 1 (PTBP1), and small chemical molecules or are based on a combination of several factors and the location in the central nervous system. However, some recent papers did not obtain expected results, and discrepancies exist. Therefore, in this review, we discuss the history of neuronal transdifferentiation, summarize the strategies for neuronal replenishment and conversion from glia, especially astrocytes, and point out that biosafety, new strategies, and the accurate origin of the truly converted neurons in vivo should be focused upon in future studies. It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transcription factors or down-regulation of PTBP1 or drug interference therapies.
Collapse
Affiliation(s)
- Shiyu Liang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhou
- Department of Geriatric Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shuai Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ruitian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Cho HE, Lee S, Seo JH, Kang SW, Choi WA, Cho SR. In Vivo Reprogramming Using Yamanaka Factors in the CNS: A Scoping Review. Cells 2024; 13:343. [PMID: 38391956 PMCID: PMC10886652 DOI: 10.3390/cells13040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Central nervous system diseases, particularly neurodegenerative disorders, pose significant challenges in medicine. These conditions, characterized by progressive neuronal loss, have remained largely incurable, exacting a heavy toll on individuals and society. In recent years, in vivo reprogramming using Yamanaka factors has emerged as a promising approach for central nervous system regeneration. This technique involves introducing transcription factors, such as Oct4, Sox2, Klf4, and c-Myc, into adult cells to induce their conversion into neurons. This review summarizes the current state of in vivo reprogramming research in the central nervous system, focusing on the use of Yamanaka factors. In vivo reprogramming using Yamanaka factors has shown promising results in several animal models of central nervous system diseases. Studies have demonstrated that this approach can promote the generation of new neurons, improve functional outcomes, and reduce scar formation. However, there are still several challenges that need to be addressed before this approach can be translated into clinical practice. These challenges include optimizing the efficiency of reprogramming, understanding the cell of origin for each transcription factor, and developing methods for reprogramming in non-subventricular zone areas. Further research is needed to overcome the remaining challenges, but this approach has the potential to revolutionize the way we treat central nervous system disorders.
Collapse
Affiliation(s)
- Han Eol Cho
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Siwoo Lee
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jung Hwa Seo
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong-Woong Kang
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Won Ah Choi
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - Sung-Rae Cho
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (H.E.C.); (S.-W.K.)
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Wang LL, Zhang CL. Therapeutic Potential of PTBP1 Inhibition, If Any, Is Not Attributed to Glia-to-Neuron Conversion. Annu Rev Neurosci 2023; 46:1-15. [PMID: 36750409 PMCID: PMC10404630 DOI: 10.1146/annurev-neuro-092822-083410] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A holy grail of regenerative medicine is to replenish the cells that are lost due to disease. The adult mammalian central nervous system (CNS) has, however, largely lost such a regenerative ability. An emerging strategy for the generation of new neurons is through glia-to-neuron (GtN) conversion in vivo, mainly accomplished by the regulation of fate-determining factors. When inhibited, PTBP1, a factor involved in RNA biology, was reported to induce rapid and efficient GtN conversion in multiple regions of the adult CNS. Remarkably, PTBP1 inhibition was also claimed to greatly improve behaviors of mice with neurological diseases or aging. These phenomenal claims, if confirmed, would constitute a significant advancement in regenerative medicine. Unfortunately, neither GtN conversion nor therapeutic potential via PTBP1 inhibition was validated by the results of multiple subsequent replication studies with stringent methods. Here we review these controversial studies and conclude with recommendations for examining GtN conversion in vivo and future investigations of PTBP1.
Collapse
Affiliation(s)
- Lei-Lei Wang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
5
|
Wang LL, Zhang CL. In vivo glia-to-neuron conversion: pitfalls and solutions. Dev Neurobiol 2022; 82:367-374. [PMID: 35535734 PMCID: PMC9337910 DOI: 10.1002/dneu.22880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
Neuron loss and disruption of neural circuits are associated with many neurological conditions. A key question is how to rebuild neural circuits for functional improvements. In vivo glia-to-neuron (GtN) conversion emerges as a potential solution for regeneration-based therapeutics. This approach takes advantage of the regenerative ability of resident glial cells to produce new neurons through cell fate reprogramming. Significant progress has been made over the years in this emerging field. However, inappropriate analysis often leads to misleading conclusions that create confusion and hype. In this perspective, we point out the most salient pitfalls associated with some recent studies and provide solutions to prevent them in the future. The goal is to foster healthy development of this promising field and lay a solid cellular foundation for future regeneration-based medicine.
Collapse
Affiliation(s)
- Lei-Lei Wang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum. Proc Natl Acad Sci U S A 2022; 119:e2107339119. [PMID: 35254903 PMCID: PMC8931246 DOI: 10.1073/pnas.2107339119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Outside the neurogenic niches, the adult brain lacks multipotent progenitor cells. In this study, we performed a series of in vivo screens and reveal that a single factor can induce resident brain astrocytes to become induced neural progenitor cells (iNPCs), which then generate neurons, astrocytes, and oligodendrocytes. Such a conclusion is supported by single-cell RNA sequencing and multiple lineage-tracing experiments. Our discovery of iNPCs is fundamentally important for regenerative medicine since neural injuries or degeneration often lead to loss/dysfunction of all three neural lineages. Our findings also provide insights into cell plasticity in the adult mammalian brain, which has largely lost the regenerative capacity. Astrocytes in the adult brain show cellular plasticity; however, whether they have the potential to generate multiple lineages remains unclear. Here, we perform in vivo screens and identify DLX2 as a transcription factor that can unleash the multipotentiality of adult resident astrocytes. Genetic lineage tracing and time-course analyses reveal that DLX2 enables astrocytes to rapidly become ASCL1+ neural progenitor cells, which give rise to neurons, astrocytes, and oligodendrocytes in the adult mouse striatum. Single-cell transcriptomics and pseudotime trajectories further confirm a neural stem cell-like behavior of reprogrammed astrocytes, transitioning from quiescence to activation, proliferation, and neurogenesis. Gene regulatory networks and mouse genetics identify and confirm key nodes mediating DLX2-dependent fate reprogramming. These include activation of endogenous DLX family transcription factors and suppression of Notch signaling. Such reprogramming-induced multipotency of resident glial cells may be exploited for neural regeneration.
Collapse
|
7
|
Affiliation(s)
- Lei-Lei Wang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Nelson AT, Wang Y, Nelson ER. TLX, an Orphan Nuclear Receptor With Emerging Roles in Physiology and Disease. Endocrinology 2021; 162:6360449. [PMID: 34463725 PMCID: PMC8462384 DOI: 10.1210/endocr/bqab184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 12/14/2022]
Abstract
TLX (NR2E1), an orphan member of the nuclear receptor superfamily, is a transcription factor that has been described to be generally repressive in nature. It has been implicated in several aspects of physiology and disease. TLX is best known for its ability to regulate the proliferation of neural stem cells and retinal progenitor cells. Dysregulation, overexpression, or loss of TLX expression has been characterized in numerous studies focused on a diverse range of pathological conditions, including abnormal brain development, psychiatric disorders, retinopathies, metabolic disease, and malignant neoplasm. Despite the lack of an identified endogenous ligand, several studies have described putative synthetic and natural TLX ligands, suggesting that this receptor may serve as a therapeutic target. Therefore, this article aims to briefly review what is known about TLX structure and function in normal physiology, and provide an overview of TLX in regard to pathological conditions. Particular emphasis is placed on TLX and cancer, and the potential utility of this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Correspondence: Erik R. Nelson, PhD, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S Goodwin Ave (MC-114), Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Mol Biol 2021. [DOI: 10.1134/s0026893321040087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Wang LL, Serrano C, Zhong X, Ma S, Zou Y, Zhang CL. Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 2021; 184:5465-5481.e16. [PMID: 34582787 PMCID: PMC8526404 DOI: 10.1016/j.cell.2021.09.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 01/06/2023]
Abstract
In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.
Collapse
Affiliation(s)
- Lei-Lei Wang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Carolina Serrano
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoling Zhong
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuaipeng Ma
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Yu Y, Shen T, Zhong X, Wang LL, Tai W, Zou Y, Qin J, Zhang Z, Zhang CL. NEK6 is an injury-responsive kinase cooperating with STAT3 in regulation of reactive astrogliosis. Glia 2021; 70:273-286. [PMID: 34643969 DOI: 10.1002/glia.24104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/08/2022]
Abstract
In response to brain injury, resident astrocytes become reactive and play dynamic roles in neural repair and regeneration. The signaling pathways underlying such reactive astrogliosis remain largely unclear. We here show that NEK6, a NIMA-related serine/threonine protein kinase, is rapidly induced following pathological stimulations and plays critical roles in reactive astrogliosis. Enhanced NEK6 expression promotes reactive astrogliosis and exacerbates brain lesions; and conversely, NEK6 downregulation dampens injury-induced astrocyte reactivity and reduces lesion size. Mechanistically, NEK6 associates with and phosphorylates STAT3. Kinase activity of NEK6 is required for induction of GFAP and PCNA, markers of reactive astrogliosis. Interestingly, NEK6 is also localized in the nucleus and binds to STAT3-responsive genomic elements in astrocytes. These results indicate that NEK6 constitutes a molecular target for the regulation of reactive astrogliosis.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tianjin Shen
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenjiao Tai
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuhua Zou
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Qin
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Wang Y, Zhang X, Chen F, Song N, Xie J. In vivo Direct Conversion of Astrocytes to Neurons Maybe a Potential Alternative Strategy for Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:689276. [PMID: 34408642 PMCID: PMC8366583 DOI: 10.3389/fnagi.2021.689276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 01/06/2023] Open
Abstract
Partly because of extensions in lifespan, the incidence of neurodegenerative diseases is increasing, while there is no effective approach to slow or prevent neuronal degeneration. As we all know, neurons cannot self-regenerate and may not be replaced once being damaged or degenerated in human brain. Astrocytes are widely distributed in the central nervous system (CNS) and proliferate once CNS injury or neurodegeneration occur. Actually, direct reprogramming astrocytes into functional neurons has been attracting more and more attention in recent years. Human astrocytes can be successfully converted into neurons in vitro. Notably, in vivo direct reprogramming of astrocytes into functional neurons were achieved in the adult mouse and non-human primate brains. In this review, we briefly summarized in vivo direct reprogramming of astrocytes into functional neurons as regenerative strategies for CNS diseases, mainly focusing on neurodegenerative diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease (HD). We highlight and outline the advantages and challenges of direct neuronal reprogramming from astrocytes in vivo for future neuroregenerative medicine.
Collapse
Affiliation(s)
- Youcui Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqin Zhang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Fenghua Chen
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Wang Y, Li B, Dong L, Duan W, Neuerburg A, Zhang H, Jiang X, Shao R, Zhu Y, Bock D, Liu E, Wang H, Zhang Y, Dai Y, Yang H, Wang Y. Impaired generation of mature neurons due to extended expression of Tlx by repressing Sox2 transcriptional activity. STEM CELLS (DAYTON, OHIO) 2021; 39:1520-1531. [PMID: 34269496 DOI: 10.1002/stem.3435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
As a master regulator of the dynamic process of adult neurogenesis, timely expression and regulation of the orphan nuclear receptor Tailless (Tlx) is essential. However, there is no study yet to directly investigate the essential role of precise spatiotemporal expressed Tlx. Here, we generated a conditional gain of Tlx expression transgenic mouse model, which allowed the extended Tlx expression in neural stem cells (NSCs) and their progeny by mating with a TlxCreERT2 mouse line. We demonstrate that extended expression of Tlx induced the impaired generation of mature neurons in adult subventricular zone and subgranular zone. Furthermore, we elucidated for the first time that this mutation decreased the endogenous expression of Sox2 by directly binding to its promoter. Restoration experiments further confirmed that Sox2 partially rescued these neuron maturation defects. Together, these findings not only highlight the importance of shutting-off Tlx on time in controlling NSC behavior, but also provide insights for further understanding adult neurogenesis and developing treatment strategies for neurological disorders.
Collapse
Affiliation(s)
- Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Bin Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lianwei Dong
- Department of Cardiovascular Medicine, The People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China
| | - Weibing Duan
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, People's Republic of China.,Jian Central People's Hospital, Jian, Jiangxi, People's Republic of China
| | - Anna Neuerburg
- Division of Molecular Biology of the Cell I, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Han Zhang
- Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Rui Shao
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, People's Republic of China
| | - Yan Zhu
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, People's Republic of China
| | - Dagmar Bock
- Division of Molecular Biology of the Cell I, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Erwei Liu
- Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Hong Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Xiang Z, Xu L, Liu M, Wang Q, Li W, Lei W, Chen G. Lineage tracing of direct astrocyte-to-neuron conversion in the mouse cortex. Neural Regen Res 2021; 16:750-756. [PMID: 33063738 PMCID: PMC8067918 DOI: 10.4103/1673-5374.295925] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regenerating functional new neurons in the adult mammalian central nervous system has been proven to be very challenging due to the inability of neurons to divide and repopulate themselves after neuronal loss. Glial cells, on the other hand, can divide and repopulate themselves under injury or diseased conditions. We have previously reported that ectopic expression of NeuroD1 in dividing glial cells can directly convert them into neurons. Here, using astrocytic lineage-tracing reporter mice (Aldh1l1-CreERT2 mice crossing with Ai14 mice), we demonstrate that lineage-traced astrocytes can be successfully converted into NeuN-positive neurons after expressing NeuroD1 through adeno-associated viruses. Retroviral expression of NeuroD1 further confirms that dividing glial cells can be converted into neurons. Importantly, we demonstrate that for in vivo cell conversion study, using a safe level of adeno-associated virus dosage (1010–1012 gc/mL, 1 µL) in the rodent brain is critical to avoid artifacts caused by toxic dosage, such as that used in a recent bioRxiv study (2 × 1013 gc/mL, 1 µL, mouse cortex). For therapeutic purpose under injury or diseased conditions, or for non-human primate studies, adeno-associated virus dosage needs to be optimized through a series of dose-finding experiments. Moreover, for future in vivo glia-to-neuron conversion studies, we recommend that the adeno-associated virus results are further verified with retroviruses that mainly express transgenes in dividing glial cells in order to draw solid conclusions. The study was approved by the Laboratory Animal Ethics Committee of Jinan University, China (approval No. IACUC-20180330-06) on March 30, 2018.
Collapse
Affiliation(s)
- Zongqin Xiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration; Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Liang Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Minhui Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Qingsong Wang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Wen Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
15
|
Wang LJ, Li XX, Hou J, Song XH, Xie WH, Shen L. Integrated Analyses of Mouse Stem Cell Transcriptomes Provide Clues for Stem Cell Maintenance and Transdifferentiation. Front Genet 2020; 11:563798. [PMID: 33101382 PMCID: PMC7500244 DOI: 10.3389/fgene.2020.563798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023] Open
Abstract
In vivo cell fate reprogramming has emerged as a new method for understanding cell plasticity and as potential treatment for tissue regeneration. Highly efficient and precise reprogramming requires fully understanding of the transcriptomes which function within different cell types. Here, we adopt weighted gene co-expression network analysis (WGCNA) to explore the molecular mechanisms of self-renewal in several well-known stem cell types, including embryonic stem cells (ESC), primordial germ cells (PGC), spermatogonia stem cells (SSC), neural stem cells (NSC), mesenchymal stem cells (MSC), and hematopoietic stem cells (HSC). We identified 37 core genes that were up-regulated in all of the stem cell types examined, as well as stem cell correlated gene co-expression networks. The validation of the co-expression genes revealed a continued protein-protein interaction network that included 823 nodes and 3113 edges. Based on the topology, we identified six densely connected regions within the continued protein-protein interaction network. The SSC specific genes Itgam, Cxcr6, and Agtr2 bridged four densely connected regions that consisted primarily of HSC-, NSC-, and MSC-correlated genes. The expression levels of identified stem cell related transcription factors were confirmed consistent with bioinformatics prediction in ESCs and NSCs by qPCR. Exploring the mechanisms underlying adult stem cell self-renewal will aid in the understanding of stem cell pool maintenance and will promote more accurate and efficient strategies for tissue regeneration and repair.
Collapse
Affiliation(s)
- Li-Juan Wang
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatics Engineering and Technique, Institute of Biomedical Research, Shandong University of Technology, Zibo, China.,School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Xiao-Xiao Li
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatics Engineering and Technique, Institute of Biomedical Research, Shandong University of Technology, Zibo, China.,School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Jie Hou
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Xin-Hua Song
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Wen-Hai Xie
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatics Engineering and Technique, Institute of Biomedical Research, Shandong University of Technology, Zibo, China.,School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Liang Shen
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatics Engineering and Technique, Institute of Biomedical Research, Shandong University of Technology, Zibo, China.,School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
16
|
Tai W, Xu XM, Zhang CL. Regeneration Through in vivo Cell Fate Reprogramming for Neural Repair. Front Cell Neurosci 2020; 14:107. [PMID: 32390804 PMCID: PMC7193690 DOI: 10.3389/fncel.2020.00107] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
The adult mammalian central nervous system (CNS) has very limited regenerative capacity upon neural injuries or under degenerative conditions. In recent years, however, significant progress has been made on in vivo cell fate reprogramming for neural regeneration. Resident glial cells can be reprogrammed into neuronal progenitors and mature neurons in the CNS of adult mammals. In this review article, we briefly summarize the current knowledge on innate adult neurogenesis under pathological conditions and then focus on induced neurogenesis through cell fate reprogramming. We discuss how the reprogramming process can be regulated and raise critical issues requiring careful considerations to move the field forward. With emerging evidence, we envision that fate reprogramming-based regenerative medicine will have a great potential for treating neurological conditions such as brain injury, spinal cord injury (SCI), Alzheimer’s disease (AD), Parkinson’s disease (PD), and retinopathy.
Collapse
Affiliation(s)
- Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indianapolis, IN, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
17
|
Chen C, Zhong X, Smith DK, Tai W, Yang J, Zou Y, Wang LL, Sun J, Qin S, Zhang CL. Astrocyte-Specific Deletion of Sox2 Promotes Functional Recovery After Traumatic Brain Injury. Cereb Cortex 2020; 29:54-69. [PMID: 29161339 DOI: 10.1093/cercor/bhx303] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022] Open
Abstract
Injury to the adult brain induces activation of local astrocytes, which serves as a compensatory response that modulates tissue damage and recovery. However, the mechanism governing astrocyte activation during brain injury remains largely unknown. Here we provide in vivo evidence that SOX2, a transcription factor critical for stem cells and brain development, is also required for injury-induced activation of adult cortical astrocytes. Genome-wide chromatin immunoprecipitation-seq analysis of mouse cortical tissues reveals that SOX2 binds to regulatory regions of genes associated with signaling pathways that control glial cell activation, such as Nr2e1, Mmd2, Wnt7a, and Akt2. Astrocyte-specific deletion of Sox2 in adult mice greatly diminishes glial response to controlled cortical impact injury and, most unexpectedly, dampens injury-induced cortical loss and benefits behavioral recovery of mice after injury. Together, these results uncover an essential role of SOX2 in somatic cells under pathological conditions and indicate that SOX2-dependent astrocyte activation could be targeted for functional recovery after traumatic brain injury.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jianjing Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Jiahong Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| | - Song Qin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Center of Neural Injury and Repair, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, USA
| |
Collapse
|
18
|
Niu S, Ni Y, Niu T, Gao J. Knockdown PEG10 deteriorates H2O2-injury of PC-12 cells by targeting miR-34a-5p/TLX. Mol Immunol 2020; 118:1-8. [DOI: 10.1016/j.molimm.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/16/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
|
19
|
Wu K, Huang D, Zhu C, Kasanga EA, Zhang Y, Yu E, Zhang H, Ni Z, Ye S, Zhang C, Hu J, Zhuge Q, Yang J. NT3 P75-2 gene-modified bone mesenchymal stem cells improve neurological function recovery in mouse TBI model. Stem Cell Res Ther 2019; 10:311. [PMID: 31651375 PMCID: PMC6814101 DOI: 10.1186/s13287-019-1428-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The attainment of extensive neurological function recovery remains the key challenge for the treatment of traumatic brain injury (TBI). Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has been shown to improve neurological function recovery after TBI. However, the survival of BMSCs after transplantation in early-stage TBI is limited, and much is unknown about the mechanisms mediating this neurological function recovery. Secretion of neurotrophic factors, including neurotrophin 3 (NT3), is one of the critical factors mediating BMSC neurological function recovery. Gene mutation of NT3 (NT3P75-2) has been shown to enhance the biological function of NT3 via the reduction of the activation of the P75 signal pathway. Thus, we investigated whether NT3P75-2 gene-modified BMSCs could enhance the survival of BMSCs and further improve neurological function recovery after TBI. METHODS The ability of NT3P75-2 induction to improve cell growth rate of NSC-34 and PC12 cells in vitro was first determined. BMSCs were then infected with three different lentiviruses (green fluorescent protein (GFP), GFP-NT3, or GFP-NT3P75-2), which stably express GFP, GFP-NT3, or GFP-NT3P75-2. At 24 h post-TBI induction in mice, GFP-labeled BMSCs were locally transplanted into the lesion site. Immunofluorescence and histopathology were performed at 1, 3, and/or 7 days after transplantation to evaluate the survival of BMSCs as well as the lesion volume. A modified neurological severity scoring system and the rotarod test were chosen to evaluate the functional recovery of the mice. Cell growth rate, glial activation, and signaling pathway analyses were performed to determine the potential mechanisms of NT3P75-2 in functional recovery after TBI. RESULTS Overall, NT3P75-2 improved cell growth rate of NSC-34 and PC12 cells in vitro. In addition, NT3P75-2 significantly improved the survival of transplanted BMSCs and neurological function recovery after TBI. Overexpression of NT3P75-2 led to a significant reduction in the activation of glial cells, brain water content, and brain lesion volume after TBI. This was associated with a reduced activation of the p75 neurotrophin receptor (P75NTR) and the c-Jun N-terminal kinase (JNK) signal pathway due to the low affinity of NT3P75-2 for the receptor. CONCLUSIONS Taken together, our results demonstrate that administration of NT3P75-2 gene-modified BMSCs dramatically improves neurological function recovery after TBI by increasing the survival of BMSCs and ameliorating the inflammatory environment, providing a new promising treatment strategy for TBI.
Collapse
Affiliation(s)
- Ke Wu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dongdong Huang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Can Zhu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Ying Zhang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Enxing Yu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hengli Zhang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhihui Ni
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Sheng Ye
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chunli Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiangnan Hu
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Qichuan Zhuge
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jianjing Yang
- Department of Neurosurgery, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
20
|
Lei W, Li W, Ge L, Chen G. Non-engineered and Engineered Adult Neurogenesis in Mammalian Brains. Front Neurosci 2019; 13:131. [PMID: 30872991 PMCID: PMC6401632 DOI: 10.3389/fnins.2019.00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
Adult neurogenesis has been extensively studied in rodent animals, with distinct niches found in the hippocampus and subventricular zone (SVZ). In non-human primates and human postmortem samples, there has been heated debate regarding adult neurogenesis, but it is largely agreed that the rate of adult neurogenesis is much reduced comparing to rodents. The limited adult neurogenesis may partly explain why human brains do not have self-repair capability after injury or disease. A new technology called “in vivo cell conversion” has been invented to convert brain internal glial cells in the injury areas directly into functional new neurons to replenish the lost neurons. Because glial cells are abundant throughout the brain and spinal cord, such engineered glia-to-neuron conversion technology can be applied throughout the central nervous system (CNS) to regenerate new neurons. Thus, compared to cell transplantation or the non-engineered adult neurogenesis, in vivo engineered neuroregeneration technology can provide a large number of functional new neurons in situ to repair damaged brain and spinal cord.
Collapse
Affiliation(s)
- Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wen Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Longjiao Ge
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
21
|
Grassi E, Santoro R, Umbach A, Grosso A, Oliviero S, Neri F, Conti L, Ala U, Provero P, DiCunto F, Merlo GR. Choice of Alternative Polyadenylation Sites, Mediated by the RNA-Binding Protein Elavl3, Plays a Role in Differentiation of Inhibitory Neuronal Progenitors. Front Cell Neurosci 2019; 12:518. [PMID: 30687010 PMCID: PMC6338052 DOI: 10.3389/fncel.2018.00518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Alternative polyadenylation (APA) is a widespread mechanism involving about half of the expressed genes, resulting in varying lengths of the 3′ untranslated region (3′UTR). Variations in length and sequence of the 3′UTR may underlie changes of post-transcriptional processing, localization, miRNA targeting and stability of mRNAs. During embryonic development a large array of mRNAs exhibit APA, with a prevalence of the longer 3′UTR versions in differentiating cells. Little is known about polyA+ site usage during differentiation of mammalian neural progenitors. Here we exploit a model of adherent neural stem (ANS) cells, which homogeneously and efficiently differentiate into GABAergic neurons. RNAseq data shows a global trend towards lengthening of the 3′UTRs during differentiation. Enriched expression of the longer 3′UTR variants of Pes1 and Gng2 was detected in the mouse brain in areas of cortical and subcortical neuronal differentiation, respectively, by two-probes fluorescent in situ hybridization (FISH). Among the coding genes upregulated during differentiation of ANS cells we found Elavl3, a neural-specific RNA-binding protein homologous to Drosophila Elav. In the insect, Elav regulates polyA+ site choice while interacting with paused Pol-II promoters. We tested the role of Elavl3 in ANS cells, by silencing Elavl3 and observed consistent changes in 3′UTR length and delayed neuronal differentiation. These results indicate that choice of the polyA+ site and lengthening of 3′UTRs is a possible additional mechanism of posttranscriptional RNA modification involved in neuronal differentiation.
Collapse
Affiliation(s)
- Elena Grassi
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Roberto Santoro
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Alessandro Umbach
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Anna Grosso
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Salvatore Oliviero
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Francesco Neri
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Luciano Conti
- Centre for Integrative Biology-CIBIO, University of Trento, Povo, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Ferdinando DiCunto
- Department of Molecular Biotechnology, University of Turin, Turin, Italy.,Department of Neurosciences, University of Turin, Turin, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| |
Collapse
|
22
|
Antonelli F, Casciati A, Tanori M, Tanno B, Linares-Vidal MV, Serra N, Bellés M, Pannicelli A, Saran A, Pazzaglia S. Alterations in Morphology and Adult Neurogenesis in the Dentate Gyrus of Patched1 Heterozygous Mice. Front Mol Neurosci 2018; 11:168. [PMID: 29875630 PMCID: PMC5974030 DOI: 10.3389/fnmol.2018.00168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
Many genes controlling neuronal development also regulate adult neurogenesis. We investigated in vivo the effect of Sonic hedgehog (Shh) signaling activation on patterning and neurogenesis of the hippocampus and behavior of Patched1 (Ptch1) heterozygous mice (Ptch1+/−). We demonstrated for the first time, that Ptch1+/− mice exhibit morphological, cellular and molecular alterations in the dentate gyrus (DG), including elongation and reduced width of the DG as well as deregulations at multiple steps during lineage progression from neural stem cells to neurons. By using stage-specific cellular markers, we detected reduction of quiescent stem cells, newborn neurons and astrocytes and accumulation of proliferating intermediate progenitors, indicative of defects in the dynamic transition among neural stages. Phenotypic alterations in Ptch1+/− mice were accompanied by expression changes in Notch pathway downstream components and TLX nuclear receptor, as well as perturbations in inflammatory and synaptic networks and mouse behavior, pointing to complex biological interactions and highlighting cooperation between Shh and Notch signaling in the regulation of neurogenesis.
Collapse
Affiliation(s)
- Francesca Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Arianna Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mirella Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Maria V Linares-Vidal
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Noemi Serra
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Monserrat Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira I Virgili University (URV), Reus, Spain.,Physiology Unit, School of Medicine, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Alessandro Pannicelli
- Technical Unit of Energetic Efficiency, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
23
|
Engineering new neurons: in vivo reprogramming in mammalian brain and spinal cord. Cell Tissue Res 2017; 371:201-212. [PMID: 29170823 DOI: 10.1007/s00441-017-2729-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Neurons are postmitotic. Once lost because of injury or degeneration, they do not regenerate in most regions of the mammalian central nervous system. Recent advancements nevertheless clearly reveal that new neurons can be reprogrammed from non-neuronal cells, especially glial cells, in the adult mammalian brain and spinal cord. Here, we give a brief overview concerning cell fate reprogramming in vivo and then focus on the underlying molecular and cellular mechanisms. Specifically, we critically review the cellular sources and the reprogramming factors for in vivo neuronal conversion. Influences of environmental cues and the challenges ahead are also discussed. The ability of inducing new neurons from an abundant and broadly distributed non-neuronal cell source brings new perspectives regarding regeneration-based therapies for traumatic brain and spinal cord injuries and degenerative diseases.
Collapse
|
24
|
The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord. Cell Rep 2017; 17:891-903. [PMID: 27732862 DOI: 10.1016/j.celrep.2016.09.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Although the adult mammalian spinal cord lacks intrinsic neurogenic capacity, glial cells can be reprogrammed in vivo to generate neurons after spinal cord injury (SCI). How this reprogramming process is molecularly regulated, however, is not clear. Through a series of in vivo screens, we show here that the p53-dependent pathway constitutes a critical checkpoint for SOX2-mediated reprogramming of resident glial cells in the adult mouse spinal cord. While it has no effect on the reprogramming efficiency, the p53 pathway promotes cell-cycle exit of SOX2-induced adult neuroblasts (iANBs). As such, silencing of either p53 or p21 markedly boosts the overall production of iANBs. A neurotrophic milieu supported by BDNF and NOG can robustly enhance maturation of these iANBs into diverse but predominantly glutamatergic neurons. Together, these findings have uncovered critical molecular and cellular checkpoints that may be manipulated to boost neuron regeneration after SCI.
Collapse
|
25
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
26
|
Hsieh J, Zhang CL. Neurogenesis in Cancun: where science meets the sea. Development 2017; 143:1649-54. [PMID: 27190035 DOI: 10.1242/dev.138412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022]
Abstract
In March 2016, meeting organizers Sebastian Jessberger and Hongjun Song brought together over 100 scientists from around the world to Cancun, Mexico to present the latest research on neurogenesis. The meeting covered diverse aspects of embryonic and adult neurogenesis with a focus on novel technologies, including chemogenetics and optogenetics, live cell two-photon imaging, cell fate reprogramming and human pluripotent stem cell models. This Meeting Review describes the exciting work that was presented and some of the emerging themes from the meeting.
Collapse
Affiliation(s)
- Jenny Hsieh
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA
| |
Collapse
|
27
|
Chen C, Ma Q, Deng P, Yang J, Yang L, Lin M, Yu Z, Zhou Z. Critical role of TRPC1 in thyroid hormone-dependent dopaminergic neuron development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1900-1912. [PMID: 28779972 DOI: 10.1016/j.bbamcr.2017.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 01/20/2023]
Abstract
Thyroid hormones play a crucial role in midbrain dopaminergic (DA) neuron development. However, the underlying molecular mechanisms remain largely unknown. In this study, we revealed that thyroid hormone treatment evokes significant calcium entry through canonical transient receptor potential (TRPC) channels in ventral midbrain neural stem cells and this calcium signaling is essential for thyroid hormone-dependent DA neuronal differentiation. We also found that TRPC1 is the dominant TRPC channel expressed in ventral midbrain neural stem cells which responds to thyroid hormone. In addition, thyroid hormone increases TRPC1 expression through its receptor alpha 1 during DA neuron differentiation, and, importantly, produces calcium signals by activating TRPC1 channels. In vivo and in vitro gene silencing experiments indicate that TRPC1-mediated calcium signaling is required for thyroid hormone-dependent DA neuronal differentiation. Finally, we confirmed that the activation of OTX2, a determinant of DA neuron development and the expression of which is induced by thyroid hormone, is dependent on TRPC1-mediated calcium signaling. These data revealed the molecular mechanisms of how thyroid hormone regulates DA neuron development from ventral midbrain neural stem cells, particularly endowing a novel physiological relevance to TRPC1 channels.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China.
| | - Qinglong Ma
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Jianjing Yang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Min Lin
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China
| | - Zhou Zhou
- Department of Occupational Health, Third Military Medical University, No.30 Gaotanyan Street, Chongqing 400038, China.
| |
Collapse
|
28
|
Epigenetic regulation of neural stem cell differentiation towards spinal cord regeneration. Cell Tissue Res 2017; 371:189-199. [PMID: 28695279 DOI: 10.1007/s00441-017-2656-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022]
Abstract
Severe spinal cord injury (SCI) leads to almost complete neural cell loss at the injured site, causing the irreversible disruption of neuronal circuits. The transplantation of neural stem or precursor cells (NS/PCs) has been regarded as potentially effective for SCI treatment because NS/PCs can compensate for the injured sites by differentiating into neurons and glial cells (astrocytes and oligodendrocytes). An understanding of the molecular mechanisms that regulate the proliferation, fate specification and maturation of NS/PCs and their progeny would facilitate the establishment of better therapeutic strategies for regeneration after SCI. In recent years, several studies of SCI animal models have demonstrated that the modulation of specific epigenetic marks by histone modifiers and non-coding RNAs directs the setting of favorable cellular environments that promote the neuronal differentiation of NS/PCs and/or the elongation of the axons of the surviving neurons at the injured sites. In this review, we provide an overview of recent progress in the epigenetic regulation/manipulation of neural cells for the treatment of SCI.
Collapse
|
29
|
|
30
|
Jessberger S. Stem Cell-Mediated Regeneration of the Adult Brain. Transfus Med Hemother 2016; 43:321-326. [PMID: 27781019 DOI: 10.1159/000447646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022] Open
Abstract
Acute or chronic injury of the adult mammalian brain is often associated with persistent functional deficits as its potential for regeneration and capacity to rebuild lost neural structures is limited. However, the discovery that neural stem cells (NSCs) persist throughout life in discrete regions of the brain, novel approaches to induce the formation of neuronal and glial cells, and recently developed strategies to generate tissue for exogenous cell replacement strategies opened novel perspectives how to regenerate the adult brain. Here, we will review recently developed approaches for brain repair and discuss future perspectives that may eventually allow for developing novel treatment strategies in acute and chronic brain injury.
Collapse
Affiliation(s)
- Sebastian Jessberger
- Laboratory of Neural Plasticity, Brain Research Institute, Faculty of Medicine and Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Smith DK, Wang L, Zhang CL. Physiological, pathological, and engineered cell identity reprogramming in the central nervous system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:499-517. [PMID: 27258392 DOI: 10.1002/wdev.234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 01/20/2023]
Abstract
Multipotent neural stem cells persist in restricted regions of the adult mammalian central nervous system. These proliferative cells differentiate into diverse neuron subtypes to maintain neural homeostasis. This endogenous process can be reprogrammed as a compensatory response to physiological cues, traumatic injury, and neurodegeneration. In addition to innate neurogenesis, recent research has demonstrated that new neurons can be engineered via cell identity reprogramming in non-neurogenic regions of the adult central nervous system. A comprehensive understanding of these reprogramming mechanisms will be essential to the development of therapeutic neural regeneration strategies that aim to improve functional recovery after injury and neurodegeneration. WIREs Dev Biol 2016, 5:499-517. doi: 10.1002/wdev.234 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Derek K Smith
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, U.S.A.,.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, U.S.A.,
| | - Leilei Wang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, U.S.A.,.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, U.S.A.,
| | - Chun-Li Zhang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, U.S.A.,.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390, U.S.A.,
| |
Collapse
|
32
|
Abstract
Acute or chronic injury to the adult brain often results in substantial loss of neural tissue and subsequent permanent functional impairment. Over the last two decades, a number of approaches have been developed to harness the regenerative potential of neural stem cells and the existing fate plasticity of neural cells in the nervous system to prevent tissue loss or to enhance structural and functional regeneration upon injury. Here, we review recent advances of stem cell-associated neural repair in the adult brain, discuss current challenges and limitations, and suggest potential directions to foster the translation of experimental stem cell therapies into the clinic.
Collapse
Affiliation(s)
- Sebastian Jessberger
- Laboratory of Neural Plasticity, Brain Research Institute, Faculty of Medicine and Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|