1
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and Cellular Basis of Impaired Phagocytosis and Photoreceptor Degeneration in CLN3 Disease. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39535788 PMCID: PMC11563035 DOI: 10.1167/iovs.65.13.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose CLN3 Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease induced pluripotent stem cell-RPE cells show defective phagocytosis of photoreceptor outer segment (POS). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3Δ7-8/Δ7-8 (CLN3) Yucatan miniswine was also used to study the impact of CLN3Δ7-8/Δ7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3Δ7-8/Δ7-8 and wild-type miniswine eyes were carried out at 6, 36, or 48 months of age. Results CLN3Δ7-8/Δ7-8 RPE (CLN3 RPE) displayed decreased POS binding and consequently decreased uptake of POS compared with isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3Δ7-8/Δ7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months of age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3Δ7-8/Δ7-8 mutation (which affects ≤85% of patients) affects both RPE and POS and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
Affiliation(s)
- Jimin Han
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Vicki Swier
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Clarissa Booth
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Cheyenne Reuben-Thomas
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jill M. Weimer
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
- Department of Pediatrics; Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| |
Collapse
|
2
|
Adegboro CO, Luo W, Kabra M, McAdams RM, York NW, Wijenayake RI, Suchla KM, Pillers DAM, Pattnaik BR. Transplacental Transfer of Oxytocin and Its Impact on Neonatal Cord Blood and In Vitro Retinal Cell Activity. Cells 2024; 13:1735. [PMID: 39451253 PMCID: PMC11506339 DOI: 10.3390/cells13201735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
The development of fetal organs can be impacted by systemic changes in maternal circulation, with the placenta playing a pivotal role in maintaining pregnancy homeostasis and nutrient exchange. In clinical obstetrics, oxytocin (OXT) is commonly used to induce labor. To explore the potential role of OXT in the placental homeostasis of OXT, we compared OXT levels in neonatal cord blood among neonates (23-42 weeks gestation) whose mothers either received prenatal OXT or experienced spontaneous labor. Our previous research revealed that the oxytocin receptor (OXTR), essential in forming the blood-retina barrier, is expressed in the retinal pigment epithelium (RPE). We hypothesized that perinatal OXT administration might influence the development of the neural retina and its vasculature, offering therapeutic potential for retinal diseases such as retinopathy of prematurity (ROP). Plasma OXT levels were measured using a commercial OXT ELISA kit. Human fetal RPE (hfRPE) cells treated with OXT (10 µM) were assessed for gene expression via RNA sequencing, revealing 14 downregulated and 32 upregulated genes. To validate these differentially expressed genes (DEGs), hfRPE cells were exposed to OXT (0.01, 0.1, 1, or 10 µM) for 12 h, followed by RNA analysis via real-time PCR. Functional, enrichment, and network analyses (Gene Ontology term, FunRich, Cytoscape) were performed to predict the affected pathways. This translational study suggests that OXT likely crosses the placenta, altering fetal OXT concentrations. RNA sequencing identified 46 DEGs involved in vital metabolic and signaling pathways and critical cellular components. Our results indicate that the perinatal administration of OXT may affect neural retina and retinal vessel development, making OXT a potential therapeutic option for developmental eye diseases, including ROP.
Collapse
Affiliation(s)
- Claudette O. Adegboro
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Wenxiang Luo
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
| | - Meha Kabra
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ryan M. McAdams
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Nathaniel W. York
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ruwandi I. Wijenayake
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Kiana M. Suchla
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - De-Ann M. Pillers
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
- Children’s Hospital University of Illinois, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Bikash R. Pattnaik
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| |
Collapse
|
3
|
Walch P, Broz P. Viral-bacterial co-infections screen in vitro reveals molecular processes affecting pathogen proliferation and host cell viability. Nat Commun 2024; 15:8595. [PMID: 39366977 PMCID: PMC11452664 DOI: 10.1038/s41467-024-52905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The broadening of accessible methodologies has enabled mechanistic insights into single-pathogen infections, yet the molecular mechanisms underlying co-infections remain largely elusive, despite their clinical frequency and relevance, generally exacerbating symptom severity and fatality. Here, we describe an unbiased in vitro screening of pairwise co-infections in a murine macrophage model, quantifying pathogen proliferation and host cell death in parallel over time. The screen revealed that the majority of interactions are antagonistic for both metrics, highlighting general patterns depending on the pathogen virulence strategy. We subsequently decipher two distinct molecular interaction points: Firstly, murine Adenovirus 3 modifies ASC-dependent inflammasome responses in murine macrophages, altering host cell death and cytokine production, thereby impacting secondary Salmonella infection. Secondly, murine Adenovirus 2 infection triggers upregulation of Mprip, a crucial mediator of phagocytosis, which in turn causes increased Yersinia uptake, specifically in virus pre-infected bone-marrow-derived macrophages. This work therefore encompasses both a first-of-its-kind systematic assessment of host-pathogen-pathogen interactions, and mechanistic insight into molecular mediators during co-infection.
Collapse
Affiliation(s)
- Philipp Walch
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Petr Broz
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
4
|
Miyatani T, Tanaka H, Numa K, Uehara A, Otsuki Y, Hamuro J, Kinoshita S, Sotozono C. Clustered ARPE-19 cells distinct in mitochondrial membrane potential may play a pivotal role in cell differentiation. Sci Rep 2024; 14:22391. [PMID: 39333742 PMCID: PMC11436949 DOI: 10.1038/s41598-024-73145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Age-related macular degeneration (AMD) is associated with the dysfunction and degeneration of retinal pigment epithelium (RPE) cells. Here, we examined how the formation and expansions of cell clusters are regulated by the differentiation of the RPE cells. In this study, ARPE-19 cells were cultivated in standard or differentiation media, i.e., without or with nicotinamide, to evaluate the spreading of cell clusters specified with differentiated cell phenotypes. Mitochondria membrane potential (MMP) and the distribution of the RPE cell clusters was also monitored with or without rotenone, a mitochondrial electron transport chain (ETC) complex I inhibitor. Cultured ARPE-19 cells generated scattered cell clusters composed mostly of smaller size cells expressing the differentiation markers mouse anti-cellular retinaldehyde-binding protein (CRALBP) and Bestrophin only in differentiation medium. After the increase of the number of clusters, the clusters appeared to paracellularly merge, resulting in expansion of the area occupied by the clusters. Of note, the cells within the clusters selectively had high MMP and were in accordance with the expression of RPE differentiation markers. Rotenone repressed the formation of the clusters and decreased intracellular MMP. The above results suggest that clustering of RPE cells with functional mitochondria plays a pivotal role in RPE cell differentiation process and the ETC complex I inhibition greatly influences the composition of RPE cells that are degenerated or differentiation disposed.
Collapse
Affiliation(s)
- Takafumi Miyatani
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Hiroshi Tanaka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan.
| | - Kosaku Numa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Asako Uehara
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Yohei Otsuki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Hirokoji-agaru, Kawaramachi-dori, Kamigyo-ku, Kyoto, 602-0841, Japan
| |
Collapse
|
5
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and cellular basis of impaired phagocytosis and photoreceptor degeneration in CLN3 disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.597388. [PMID: 38895469 PMCID: PMC11185776 DOI: 10.1101/2024.06.09.597388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose CLN3 Batten disease (also known as Juvenile Neuronal Ceroid Lipofuscinosis; JNCL) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease iPSC-RPE cells show defective phagocytosis of photoreceptor outer segments (POSs). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3 Δ 7-8/ Δ 7-8 ( CLN3 ) Yucatan miniswine was also used to study the impact of CLN3 Δ 7-8/ Δ 7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3 Δ 7/8 and wild-type miniswine eyes were carried out at 6-, 36-, or 48-month age. Results CLN3 Δ 7-8/ Δ 7-8 RPE ( CLN3 RPE) displayed reduced POS binding and consequently decreased uptake of POS compared to isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3 Δ 7-8/ Δ 7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months-of-age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3 Δ 7-8/ Δ 7-8 mutation (that affects up to 85% patients) affects both RPE and POSs and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
|
6
|
Lieffrig SA, Gyimesi G, Mao Y, Finnemann SC. Clearance phagocytosis by the retinal pigment epithelial during photoreceptor outer segment renewal: Molecular mechanisms and relation to retinal inflammation. Immunol Rev 2023; 319:81-99. [PMID: 37555340 PMCID: PMC10615845 DOI: 10.1111/imr.13264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Mammalian photoreceptor outer segment renewal is a highly coordinated process that hinges on timed cell signaling between photoreceptor neurons and the adjacent retinal pigment epithelial (RPE). It is a strictly rhythmic, synchronized process that underlies in part circadian regulation. We highlight findings from recently developed methods that quantify distinct phases of outer segment renewal in retinal tissue. At light onset, outer segments expose the conserved "eat-me" signal phosphatidylserine exclusively at their distal, most aged tip. A coordinated two-receptor efferocytosis process follows, in which ligands bridge outer segment phosphatidylserine with the RPE receptors αvβ5 integrin, inducing cytosolic signaling toward Rac1 and focal adhesion kinase/MERTK, and with MERTK directly, additionally inhibiting RhoA/ROCK and thus enabling F-actin dynamics favoring outer segment fragment engulfment. Photoreceptors and RPE persist for life with each RPE cell in the eye servicing dozens of overlying photoreceptors. Thus, RPE cells phagocytose more often and process more material than any other cell type. Mutant mice with impaired outer segment renewal largely retain functional photoreceptors and retinal integrity. However, when anti-inflammatory signaling in the RPE via MERTK or the related TYRO3 is lacking, catastrophic inflammation leads to immune cell infiltration that swiftly destroys the retina causing blindness.
Collapse
Affiliation(s)
- Stephanie A. Lieffrig
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | - Gavin Gyimesi
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| | | | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
7
|
Bhattacharya S, Yin J, Huo W, Chaum E. Loss of Prom1 impairs autophagy and promotes epithelial-mesenchymal transition in mouse retinal pigment epithelial cells. J Cell Physiol 2023; 238:2373-2389. [PMID: 37610047 DOI: 10.1002/jcp.31094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
Mutations in the Prominin-1 (Prom1) gene disrupt photoreceptor disk morphogenesis, leading to macular dystrophies. We have shown that human retinal pigment epithelial (RPE) homeostasis is under the control of Prom1-dependent autophagy, demonstrating that Prom1 plays different roles in the photoreceptors and RPE. It is unclear if retinal and macular degeneration caused by the loss of Prom1 function is a cell-autonomous feature of the RPE or a generalized disease of photoreceptor degeneration. In this study, we investigated whether Prom1 is required for mouse RPE (mRPE) autophagy and phagocytosis, which are cellular processes essential for photoreceptor survival. We found that Prom1-KO decreases autophagy flux, activates mTORC1, and concomitantly decreases transcription factor EB (TFEB) and Cathepsin-D activities in mRPE cells. In addition, Prom1-KO reduces the clearance of bovine photoreceptor outer segments in mRPE cells due to increased mTORC1 and reduced TFEB activities. Dysfunction of Prom1-dependent autophagy correlates with both a decrease in ZO-1 and E-cadherin and a concomitant increase in Vimentin, SNAI1, and ZEB1 levels, consistent with induction of epithelial-mesenchymal transition (EMT) in Prom1-KO mRPE cells. Our results demonstrate that Prom1-mTORC1-TFEB signaling is a central driver of cell-autonomous mRPE homeostasis. We show that Prom1-KO in mRPE leads to RPE defects similar to that seen in atrophic age-related macular degeneration and opens new avenues of investigation targeting Prom1 in retinal degenerative diseases.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Weihong Huo
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward Chaum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Jang HY, Cho CS, Shin YM, Kwak J, Sung YH, Kang BC, Kim JH. Isolation and Characterization of the Primary Marmoset ( Callithrix jacchus) Retinal Pigment Epithelial Cells. Cells 2023; 12:1644. [PMID: 37371114 DOI: 10.3390/cells12121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Marmosets have emerged as a valuable primate model in ophthalmic research due to their similarity to the human visual system and their potential for generating transgenic models to advance the development of therapies. In this study, we isolated and cultured primary retinal pigment epithelium (RPE) cells from marmosets to investigate the mechanisms underlying RPE dysfunction in aging and age-related macular degeneration (AMD). We confirmed that our culture conditions and materials supported the formation of RPE monolayers with functional tight junctions that closely resembled the in vivo RPE. Since serum has been shown to induce epithelial-mesenchymal transition (EMT) in RPE cells, we compared the effects of fetal bovine serum (FBS) with serum-free supplements B27 on transepithelial electrical resistance (TER), cell proliferation, and morphological characteristics. Additionally, we assessed the age-related morphological changes of in vivo and primary RPE cells. Our results indicate that primary marmoset RPE cells exhibit in vivo-like characteristics, while cells obtained from an older donor show evidence of aging, including a failure to form a polarized monolayer, low TER, and delayed cell cycle. In conclusion, our primary marmoset RPE cells provide a reliable in vitro model for developing novel therapeutics for visual-threatening disorders such as AMD, which can be used before animal experiments using marmosets.
Collapse
Affiliation(s)
- Ha Young Jang
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Young Mi Shin
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Jina Kwak
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Jang HY, Kim SJ, Park KS, Kim JH. Klotho prevents transforming growth factor-β2-induced senescent-like morphological changes in the retinal pigment epithelium. Cell Death Dis 2023; 14:334. [PMID: 37210384 DOI: 10.1038/s41419-023-05851-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Degenerative changes of the retinal pigment epithelium (RPE) triggered by transforming growth factor-β2 (TGF-β2) and oxidative stress play a critical role in the progression of age-related macular degeneration (AMD). The expression of α-klotho, an antiaging protein, declines with age, increasing the risk factors for age-related diseases. Here, we investigated the protective effects of soluble α-klotho on TGF-β2-induced RPE degeneration. The morphological changes induced by TGF-β2, including epithelial-mesenchymal transition (EMT), were attenuated in the mouse RPE by the intravitreal injection (IVT) of α-klotho. In ARPE19 cells, EMT and morphological alterations by TGF-β2 were attenuated by co-incubation with α-klotho. TGF-β2 decreased miR-200a accompanied by zinc finger e-box binding homeobox1 (ZEB1) upregulation and EMT, all of which were prevented by α-klotho co-treatment. Inhibitor of miR-200a mimicked TGF-β2-induced morphological changes, which were recovered by ZEP1 silencing, but not by α-klotho, implying the upstream regulation of α-klotho on miR-200a-ZEP1-EMT axis. α-Klotho inhibited receptor binding of TGF-β2, Smad2/3 phosphorylation, extracellular signal-regulated protein kinase 1/2 (ERK1/2)-a mechanistic target of rapamycin (mTOR) activation and oxidative stress via NADPH oxidase 4 (NOX4) upregulation. Furthermore, α-klotho recovered the TGF-β2-induced mitochondrial activation and superoxide generation. Interestingly, TGF-β2 upregulated α-klotho expression in the RPE cells, and genetic suppression of endogenous α-klotho aggravated TGF-β2-induced oxidative stress and EMT. Lastly, α-klotho abrogated senescence-associated signaling molecules and phenotypes induced by long-term incubation with TGF-β2. Hence, our findings indicate that the antiaging α-klotho plays a protective role against EMT and degeneration of the RPE, demonstrating the therapeutic potential for age-related retinal diseases, including the dry type of AMD.
Collapse
Affiliation(s)
- Ha Young Jang
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo-Jin Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Sun R, Zhu H, Wang Y, Wang J, Jiang C, Cao Q, Zhang Y, Zhang Y, Yuan S, Liu Q. Circular RNA expression and the competitive endogenous RNA network in pathological, age-related macular degeneration events: A cross-platform normalization study. J Biomed Res 2023; 37:367-381. [PMID: 37366063 PMCID: PMC10541779 DOI: 10.7555/jbr.37.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/28/2023] Open
Abstract
Age-related macular degeneration (AMD) causes irreversible blindness in people aged over 50 worldwide. The dysfunction of the retinal pigment epithelium is the primary cause of atrophic AMD. In the current study, we used the ComBat and Training Distribution Matching method to integrate data obtained from the Gene Expression Omnibus database. We analyzed the integrated sequencing data by the Gene Set Enrichment Analysis. Peroxisome and tumor necrosis factor-α (TNF-α) signaling and nuclear factor kappa B (NF-κB) were among the top 10 pathways, and thus we selected them to construct AMD cell models to identify differentially expressed circular RNAs (circRNAs). We then constructed a competing endogenous RNA network, which is related to differentially expressed circRNAs. This network included seven circRNAs, 15 microRNAs, and 82 mRNAs. The Kyoto Encyclopedia of Genes and Genomes analysis of mRNAs in this network showed that the hypoxia-inducible factor-1 (HIF-1) signaling pathway was a common downstream event. The results of the current study may provide insights into the pathological processes of atrophic AMD.
Collapse
Affiliation(s)
- Ruxu Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongjing Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Wang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jianan Wang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chao Jiang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qiuchen Cao
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yeran Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yichen Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Songtao Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qinghuai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
11
|
Piskova T, Kozyrina AN, Di Russo J. Mechanobiological implications of age-related remodelling in the outer retina. BIOMATERIALS ADVANCES 2023; 147:213343. [PMID: 36801797 DOI: 10.1016/j.bioadv.2023.213343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The outer retina consists of the light-sensitive photoreceptors, the pigmented epithelium, and the choroid, which interact in a complex manner to sustain homeostasis. The organisation and function of these cellular layers are mediated by the extracellular matrix compartment named Bruch's membrane, situated between the retinal epithelium and the choroid. Like many tissues, the retina experiences age-related structural and metabolic changes, which are relevant for understanding major blinding diseases of the elderly, such as age-related macular degeneration. Compared with other tissues, the retina mainly comprises postmitotic cells, making it less able to maintain its mechanical homeostasis over the years functionally. Aspects of retinal ageing, like the structural and morphometric changes of the pigment epithelium and the heterogenous remodelling of the Bruch's membrane, imply changes in tissue mechanics and may affect functional integrity. In recent years, findings in the field of mechanobiology and bioengineering highlighted the importance of mechanical changes in tissues for understanding physiological and pathological processes. Here, we review the current knowledge of age-related changes in the outer retina from a mechanobiological perspective, aiming to generate food for thought for future mechanobiology studies in the outer retina.
Collapse
Affiliation(s)
- Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Aleksandra N Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany.
| |
Collapse
|
12
|
O-GlcNAcylation regulates phagocytosis by promoting Ezrin localization at the cell cortex. J Genet Genomics 2023:S1673-8527(23)00042-5. [PMID: 36796536 DOI: 10.1016/j.jgg.2023.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
O-GlcNAcylation is a post-translational modification that serves as a cellular nutrient sensor and participates in multiple physiological and pathological processes. However, it remains uncertain whether O-GlcNAcylation is involved in the regulation of phagocytosis. Here, we demonstrate a rapid increase in protein O-GlcNAcylation in response to phagocytotic stimuli. Knockout of O-GlcNAc transferase or pharmacological inhibition of O-GlcNAcylation dramatically blocks phagocytosis, resulting in the disruption of retinal structure and function. Mechanistic studies reveal that O-GlcNAc transferase interacts with Ezrin, a membrane-cytoskeleton linker protein, to catalyze its O-GlcNAcylation. Our data further show that Ezrin O-GlcNAcylation promotes its localization to the cell cortex, thereby stimulating the membrane-cytoskeleton interaction needed for efficient phagocytosis. These findings identify a previously unrecognized role for protein O-GlcNAcylation in phagocytosis with important implications in both health and diseases.
Collapse
|
13
|
Farkas MH, Skelton LA, Ramachandra-Rao S, Au E, Fliesler SJ. Morphological, biochemical, and transcriptomic characterization of iPSC-derived human RPE cells from normal and Smith-Lemli-Opitz syndrome patients. Mol Vis 2022; 28:394-411. [PMID: 36540063 PMCID: PMC9744241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/11/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Michael H. Farkas
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
- Department of Biochemistry and the Neuroscience Graduate Program, The State University of New York- University at Buffalo, Buffalo, NY
- Research Service, VA Western New York Healthcare System, Buffalo, NY
| | - Lara A. Skelton
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
- Department of Biochemistry and the Neuroscience Graduate Program, The State University of New York- University at Buffalo, Buffalo, NY
- Research Service, VA Western New York Healthcare System, Buffalo, NY
| | - Sriganesh Ramachandra-Rao
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
- Department of Biochemistry and the Neuroscience Graduate Program, The State University of New York- University at Buffalo, Buffalo, NY
- Research Service, VA Western New York Healthcare System, Buffalo, NY
| | - Elizabeth Au
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
| | - Steven J. Fliesler
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
- Department of Biochemistry and the Neuroscience Graduate Program, The State University of New York- University at Buffalo, Buffalo, NY
- Research Service, VA Western New York Healthcare System, Buffalo, NY
| |
Collapse
|
14
|
Segurado A, Rodríguez-Carrillo A, Castellanos B, Hernández-Galilea E, Velasco A, Lillo C. Scribble basal polarity acquisition in RPE cells and its mislocalization in a pathological AMD-like model. Front Neuroanat 2022; 16:983151. [PMID: 36213611 PMCID: PMC9539273 DOI: 10.3389/fnana.2022.983151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Apicobasal polarity is a hallmark of retinal pigment epithelium cells and is required to perform their functions; however, the precise roles of the different proteins that execute polarity are still poorly understood. Here, we have studied the expression and location of Scribble, the core member of the polarity basal protein complex in epithelial-derived cells, in human and mouse RPE cells in both control and pathological conditions. We found that Scribble specifically localizes at the basolateral membrane of mouse and human RPE cells. In addition, we observed an increase in the expression of Scribble during human RPE development in culture, while it acquires a well-defined basolateral pattern as this process is completed. Finally, the expression and location of Scribble were analyzed in human RPE cells in experimental conditions that mimic the toxic environment suffered by these cells during AMD development and found an increase in Scribble expression in cells that develop a pathological phenotype, suggesting that the protein could be altered in cells under stress conditions, as occurs in AMD. Together, our results demonstrate, for the first time, that Scribble is expressed in both human and mouse RPE and is localized at the basolateral membrane in mature cells. Furthermore, Scribble shows impaired expression and location in RPE cells in pathological conditions, suggesting a possible role for this protein in the development of pathologies, such as AMD.
Collapse
Affiliation(s)
- Alicia Segurado
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Plasticity, Degeneration, and Regeneration of the Visual System Group, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Alba Rodríguez-Carrillo
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
| | - Bárbara Castellanos
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
| | - Emiliano Hernández-Galilea
- Plasticity, Degeneration, and Regeneration of the Visual System Group, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Surgery, Ophthalmology Service, University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Almudena Velasco
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Plasticity, Degeneration, and Regeneration of the Visual System Group, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Concepción Lillo
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Plasticity, Degeneration, and Regeneration of the Visual System Group, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Concepción Lillo
| |
Collapse
|
15
|
Customized strategies for high-yield purification of retinal pigment epithelial cells differentiated from different stem cell sources. Sci Rep 2022; 12:15563. [PMID: 36114268 PMCID: PMC9481580 DOI: 10.1038/s41598-022-19777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractRetinal pigment epithelial (RPE) cell dysfunction and death are characteristics of age-related macular degeneration. A promising therapeutic option is RPE cell transplantation. Development of clinical grade stem-cell derived RPE requires efficient in vitro differentiation and purification methods. Enzymatic purification of RPE relies on the relative adherence of RPE and non-RPE cells to the culture plate. However, morphology and adherence of non-RPE cells differ for different stem cell sources. In cases whereby the non-RPE adhered as strongly as RPE cells to the culture plate, enzymatic method of purification is unsuitable. Thus, we hypothesized the need to customize purification strategies for RPE derived from different stem cell sources. We systematically compared five different RPE purification methods, including manual, enzymatic, flow cytometry-based sorting or combinations thereof for parameters including cell throughput, yield, purity and functionality. Flow cytometry-based approach was suitable for RPE isolation from heterogeneous cultures with highly adherent non-RPE cells, albeit with lower yield. Although all five purification methods generated pure and functional RPE, there were significant differences in yield and processing times. Based on the high purity of the resulting RPE and relatively short processing time, we conclude that a combination of enzymatic and manual purification is ideal for clinical applications.
Collapse
|
16
|
Bharti K, den Hollander AI, Lakkaraju A, Sinha D, Williams DS, Finnemann SC, Bowes-Rickman C, Malek G, D'Amore PA. Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Exp Eye Res 2022; 222:109170. [PMID: 35835183 PMCID: PMC9444976 DOI: 10.1016/j.exer.2022.109170] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.
Collapse
Affiliation(s)
- Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA.
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, USA.
| | - Debasish Sinha
- Department of Ophthalmology, Cell Biology and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - David S Williams
- Stein Eye Institute, Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Silvia C Finnemann
- Center of Cancer, Genetic Diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Catherine Bowes-Rickman
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Patricia A D'Amore
- Mass Eye and Ear, Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Faynus MA, Bailey JK, Pennington BO, Katsura M, Proctor DA, Yeh AK, Menon S, Choi DG, Lebkowski JS, Johnson LV, Clegg DO. Microcarrier-Based Culture of Human Pluripotent Stem-Cell-Derived Retinal Pigmented Epithelium. Bioengineering (Basel) 2022; 9:bioengineering9070297. [PMID: 35877348 PMCID: PMC9311890 DOI: 10.3390/bioengineering9070297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Dry age-related macular degeneration (AMD) is estimated to impact nearly 300 million individuals globally by 2040. While no treatment options are currently available, multiple clinical trials investigating retinal pigmented epithelial cells derived from human pluripotent stem cells (hPSC-RPE) as a cellular replacement therapeutic are currently underway. It has been estimated that a production capacity of >109 RPE cells annually would be required to treat the afflicted population, but current manufacturing protocols are limited, being labor-intensive and time-consuming. Microcarrier technology has enabled high-density propagation of many adherent mammalian cell types via monolayer culture on surfaces of uM-diameter matrix spheres; however, few studies have explored microcarrier-based culture of RPE cells. Here, we provide an approach to the growth, maturation, and differentiation of hPSC-RPE cells on Cytodex 1 (C1) and Cytodex 3 (C3) microcarriers. We demonstrate that hPSC-RPE cells adhere to microcarriers coated with Matrigel, vitronectin or collagen, and mature in vitro to exhibit characteristic epithelial cell morphology and pigmentation. Microcarrier-grown hPSC-RPE cells (mcRPE) are viable; metabolically active; express RPE signature genes including BEST1, RPE65, TYRP1, and PMEL17; secrete the trophic factors PEDF and VEGF; and demonstrate phagocytosis of photoreceptor outer segments. Furthermore, we show that undifferentiated hESCs also adhere to Matrigel-coated microcarriers and are amenable to directed RPE differentiation. The capacity to support hPSC-RPE cell cultures using microcarriers enables efficient large-scale production of therapeutic RPE cells sufficient to meet the treatment demands of a large AMD patient population.
Collapse
Affiliation(s)
- Mohamed A. Faynus
- Program for Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.K.B.); (B.O.P.); (M.K.); (D.A.P.); (A.K.Y.); (S.M.); (D.G.C.); (D.O.C.)
- Correspondence:
| | - Jeffrey K. Bailey
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.K.B.); (B.O.P.); (M.K.); (D.A.P.); (A.K.Y.); (S.M.); (D.G.C.); (D.O.C.)
| | - Britney O. Pennington
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.K.B.); (B.O.P.); (M.K.); (D.A.P.); (A.K.Y.); (S.M.); (D.G.C.); (D.O.C.)
| | - Mika Katsura
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.K.B.); (B.O.P.); (M.K.); (D.A.P.); (A.K.Y.); (S.M.); (D.G.C.); (D.O.C.)
| | - Duncan A. Proctor
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.K.B.); (B.O.P.); (M.K.); (D.A.P.); (A.K.Y.); (S.M.); (D.G.C.); (D.O.C.)
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Ashley K. Yeh
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.K.B.); (B.O.P.); (M.K.); (D.A.P.); (A.K.Y.); (S.M.); (D.G.C.); (D.O.C.)
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Sneha Menon
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.K.B.); (B.O.P.); (M.K.); (D.A.P.); (A.K.Y.); (S.M.); (D.G.C.); (D.O.C.)
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Dylan G. Choi
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.K.B.); (B.O.P.); (M.K.); (D.A.P.); (A.K.Y.); (S.M.); (D.G.C.); (D.O.C.)
- College of Creative Studies, Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Jane S. Lebkowski
- Program in Biological Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Lincoln V. Johnson
- Program in Biological Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Dennis O. Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.K.B.); (B.O.P.); (M.K.); (D.A.P.); (A.K.Y.); (S.M.); (D.G.C.); (D.O.C.)
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
- Regenerative Patch Technologies LLC, Portola Valley, CA 94028, USA; (J.S.L.); (L.V.J.)
- Program in Biological Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
18
|
Feng L, Li H, Du Y, Zhang T, Zhu Y, Li Z, Zhao L, Wang X, Wang G, Zhou L, Jiang Z, Liu Z, Ou Z, Wen Y, Zhuo Y. Chaperonin-Containing TCP1 Subunit 5 Protects Against the Effect of Mer Receptor Tyrosine Kinase Knockdown in Retinal Pigment Epithelial Cells by Interacting With Filamentous Actin and Activating the LIM-Kinase 1/Cofilin Pathway. Front Med (Lausanne) 2022; 9:861371. [PMID: 35492354 PMCID: PMC9043132 DOI: 10.3389/fmed.2022.861371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Retinitis pigmentosa (RP), characterized by the gradual loss of rod and cone photoreceptors that eventually leads to blindness, is the most common inherited retinal disorder, affecting more than 2.5 million people worldwide. However, the underlying pathogenesis of RP remains unclear and there is no effective cure for RP. Mutations in the Mer receptor tyrosine kinase (MERTK) gene induce the phagocytic dysfunction of retinal pigment epithelium (RPE) cells, leading to RP. Studies have indicated that filamentous actin (F-actin)—which is regulated by chaperonin-containing TCP1 subunit 5 (CCT5)—plays a vital role in phagocytosis in RPE cells. However, whether CCT5/F-actin signaling is involved in MERTK-associated RP remains largely unknown. In the present study, we specifically knocked down MERTK and CCT5 through siRNA transfection and examined the expression of CCT5 and F-actin in human primary RPE (HsRPE) cells. We found that MERTK downregulation inhibited cell proliferation, migration, and phagocytic function; significantly decreased the expression of F-actin; and disrupted the regular arrangement of F-actin. Importantly, our findings firstly indicate that CCT5 interacts with F-actin and is inhibited by MERTK siRNA in HsRPE cells. Upregulating CCT5 using CCT5-specific lentiviral vectors (CCT5-Le) rescued the cell proliferation, migration, and phagocytic function of HsRPE cells under the MERTK knockdown condition by increasing the expression of F-actin and restoring its regular arrangement via the LIMK1/cofilin, but not the SSH1/cofilin, pathway. In conclusion, CCT5 protects against the effect of MERTK knockdown in HsRPE cells and demonstrates the potential for effective treatment of MERTK-associated RP.
Collapse
Affiliation(s)
- Lujia Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Haichun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yong Du
- Guizhou Provincial People's Hospital, Guizhou University, Guiyang, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xing Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Gongpei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Linbin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Zhaorong Jiang
- Ophthalmology Department of Zhuhai Integrated Traditional Chinese and Western Medicine Hospital, Zhuhai, China
| | - Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Zhancong Ou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yuwen Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Alfonsetti M, Castelli V, d’Angelo M, Benedetti E, Allegretti M, Barboni B, Cimini A. Looking for In Vitro Models for Retinal Diseases. Int J Mol Sci 2021; 22:10334. [PMID: 34638674 PMCID: PMC8508697 DOI: 10.3390/ijms221910334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Retina is a layered structure of the eye, composed of different cellular components working together to produce a complex visual output. Because of its important role in visual function, retinal pathologies commonly represent the main causes of visual injury and blindness in the industrialized world. It is important to develop in vitro models of retinal diseases to use them in first screenings before translating in in vivo experiments and clinics. For this reason, it is important to develop bidimensional (2D) models that are more suitable for drug screening and toxicological studies and tridimensional (3D) models, which can replicate physiological conditions, for investigating pathological mechanisms leading to visual loss. This review provides an overview of the most common retinal diseases, relating to in vivo models, with a specific focus on alternative 2D and 3D in vitro models that can replicate the different cellular and matrix components of retinal layers, as well as injury insults that induce retinal disease and loss of the visual function.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | | | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
20
|
Zhu XY, Chen YH, Zhang T, Liu SJ, Bai XY, Huang XY, Jiang M, Sun XD. Improvement of human embryonic stem cell-derived retinal pigment epithelium cell adhesion, maturation, and function through coating with truncated recombinant human vitronectin. Int J Ophthalmol 2021; 14:1160-1167. [PMID: 34414078 DOI: 10.18240/ijo.2021.08.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To explore an xeno-free and defined coating substrate suitable for the culture of H9 human embryonic stem cell-derived retinal pigment epithelial (hES-RPE) cells in vitro, and compare the behaviors and functions of hES-RPE cells on two culture substrates, laminin521 (LN-521) and truncated recombinant human vitronectin (VTN-N). METHODS hES-RPE cells were used in the experiment. The abilities of LN-521 and VTN-N at different concentrations to adhere to hES-RPE cells were compared with a high-content imaging system. Quantitative real-time polymerase chain reaction was used to evaluate RPE-specific gene expression levels midway (day 10) and at the end (day 20) of the time course. Cell polarity was observed by immunofluorescent staining for apical and basal markers of the RPE. The phagocytic ability of hES-RPE cells was identified by flow cytometry and immunofluorescence. RESULTS The cell adhesion assay showed that the ability of LN-521 to adhere to hES-RPE cells was dose-dependent. With increasing coating concentration, an increasing number of cells attached to the surface of LN-521-coated wells. In contrast, VTN-N presented a strong adhesive ability even at a low concentration. The optimal concentration of LN-521 and VTN-N required to coat and adhesion to hES-RPE cells were 2 and 0.25 µg/cm2, respectively. Furthermore, both LN-521 and VTN-N could facilitate adoption of the desired cobblestone cellular morphology with tight junction and showed polarity by the hES-RPE cells. However, hES-RPE cells cultivated in VTN-N had a greater phagocytic ability, and it took less time for these hES-RPE cells to mature. CONCLUSION VTN-N is a more suitable coating substrate for cultivating hES-RPE cells.
Collapse
Affiliation(s)
- Xin-Yue Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Yu-Hong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Su-Jun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xin-Yue Bai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xian-Yu Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| |
Collapse
|
21
|
Lee SJ, Kim SJ, Jo DH, Park KS, Kim JH. Blockade of mTORC1-NOX signaling pathway inhibits TGF-β1-mediated senescence-like structural alterations of the retinal pigment epithelium. FASEB J 2021; 35:e21403. [PMID: 33559185 DOI: 10.1096/fj.202001939rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 11/11/2022]
Abstract
The retinal pigment epithelium (RPE) undergoes characteristic structural changes and epithelial-mesenchymal transition (EMT) during normal aging, which are exacerbated in age-related macular degeneration (AMD). Although the pathogenic mechanisms of aging and AMD remain unclear, transforming growth factor-β1 (TGF-β1) is known to induce oxidative stress, morphometric changes, and EMT as a senescence-promoting factor. In this study, we examined whether intravitreal injection of TGF-β1 into the mouse eye elicits senescence-like morphological alterations in the RPE and if this can be prevented by suppressing mammalian target of rapamycin complex 1 (mTORC1) or NADPH oxidase (NOX) signaling. We verified that intravitreal TGF-β1-induced stress fiber formation and EMT in RPE cells, along with age-associated morphometric changes, including increased variation in cell size and reduced cell density. In RPE cells, exogenous TGF-β1 increased endogenous expression of TGF-β1 and upregulated Smad3-ERK1/2-mTORC1 signaling, increasing reactive oxygen species (ROS) production and EMT. We demonstrated that inhibition of the mTORC1-NOX4 pathway by pretreatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-dependent protein kinase, or GKT137831, a NOX1/4 inhibitor, decreased ROS generation, prevented stress fiber formation, attenuated EMT, and improved the regularity of the RPE structure in vitro and in vivo. These results suggest that intravitreal TGF-β1 injection could be used as a screening model to investigate the aging-related structural and functional changes to the RPE. Furthermore, the regulation of TGF-β-mTORC1-NOX signaling could be a potential therapeutic target for reducing pathogenic alterations in aged RPE and AMD.
Collapse
Affiliation(s)
- Seok Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Jin Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Abstract
Background Ocular adverse events are common dose-limiting toxicities in cancer patients treated with HSP90 inhibitors, such as AUY922; however, the pathology and molecular mechanisms that mediate AUY922-induced retinal toxicity remain undescribed. Methods The impact of AUY922 on mouse retinas and cell lines was comprehensively investigated using isobaric tags for relative and absolute quantitation (iTRAQ)‑based proteomic profiling and pathway enrichment analysis, immunohistochemistry and immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, MTT assay, colony formation assay, and western blot analysis. The effect of AUY922 on the Transient Receptor Potential cation channel subfamily M member 1 (TRPM1)-HSP90 chaperone complex was characterized by coimmunoprecipitation. TRPM1-regulated gene expression was analyzed by RNAseq analysis and gene set enrichment analysis (GSEA). The role of TRPM1 was assessed using both loss-of-function and gain-of-function approaches. Results Here, we show that the treatment with AUY922 induced retinal damage and cell apoptosis, dysregulated the photoreceptor and retinal pigment epithelium (RPE) layers, and reduced TRPM1 expression. Proteomic profiling and functional annotation of differentially expressed proteins reveals that those related to stress responses, protein folding processes, regulation of apoptosis, cell cycle and growth, reactive oxygen species (ROS) response, cell junction assembly and adhesion regulation, and proton transmembrane transport were significantly enriched in AUY922-treated cells. We found that AUY922 triggered caspase-3-dependent cell apoptosis, increased ROS production and inhibited cell growth. We determined that TRPM1 is a bona fide HSP90 client and characterized that AUY922 may reduce TRPM1 expression by disrupting the CDC37-HSP90 chaperone complex. Additionally, GSEA revealed that TRPM1-regulated genes were associated with retinal morphogenesis in camera-type eyes and the JAK-STAT cascade. Finally, gain-of-function and loss-of-function analyses validated the finding that TRPM1 mediated the cell apoptosis, ROS production and growth inhibition induced by AUY922. Conclusions Our study demonstrates the pathology of AUY922-induced retinal toxicity in vivo. TRPM1 is an HSP90 client, regulates photoreceptor morphology and function, and mediates AUY922-induced cytotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00751-5.
Collapse
|
23
|
Li H, Yu H, Kim YK, Wang F, Teodoro G, Jiang Y, Nickerson JM, Kong J. Computational Model-Based Estimation of Mouse Eyeball Structure From Two-Dimensional Flatmount Microscopy Images. Transl Vis Sci Technol 2021; 10:25. [PMID: 34004004 PMCID: PMC8088229 DOI: 10.1167/tvst.10.4.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Retinal pigment epithelial (RPE) cells serve as a supporter for the metabolism and visual function of photoreceptors and a barrier for photoreceptor protection. Morphology dynamics, spatial organization, distribution density, and growth patterns of RPE cells are important for further research on these RPE main functions. To enable such investigations within the authentic eyeball structure, a new method for estimating the three-dimensional (3D) eyeball sphere from two-dimensional tissue flatmount microscopy images was investigated. Methods An error-correction term was formulated to compensate for the reconstruction error as a result of tissue distortions. The effect of the tissue-distortion error was evaluated by excluding partial data points from the low- and high-latitude zones. The error-correction parameter was learned automatically using a set of samples with the ground truth eyeball diameters measured with noncontact light-emitting diode micrometry at submicron accuracy and precision. Results The analysis showed that the error-correction term in the reconstruction model is a valid method for modeling tissue distortions in the tissue flatmount preparation steps. With the error-correction model, the average relative error of the estimated eyeball diameter was reduced from 14% to 5%, and the absolute error was reduced from 0.22 to 0.03 mm. Conclusions A new method for enabling RPE morphometry analysis with respect to locations on an eyeball sphere was created, an important step in increasing RPE research and eye disease diagnosis. Translational Relevance This method enables one to derive RPE cell information from the 3D eyeball surface and helps characterize eyeball volume growth patterns under diseased conditions.
Collapse
Affiliation(s)
- Hongxiao Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hanyi Yu
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Yong-Kyu Kim
- Department of Ophthalmology, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Fusheng Wang
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - George Teodoro
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | | | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
- Department of Computer Science, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor-RPE interface. Commun Biol 2021; 4:161. [PMID: 33547385 PMCID: PMC7864947 DOI: 10.1038/s42003-021-01682-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in CLN3 lead to photoreceptor cell loss in CLN3 disease, a lysosomal storage disorder characterized by childhood-onset vision loss, neurological impairment, and premature death. However, how CLN3 mutations cause photoreceptor cell death is not known. Here, we show that CLN3 is required for phagocytosis of photoreceptor outer segment (POS) by retinal pigment epithelium (RPE) cells, a cellular process essential for photoreceptor survival. Specifically, a proportion of CLN3 in human, mouse, and iPSC-RPE cells localized to RPE microvilli, the site of POS phagocytosis. Furthermore, patient-derived CLN3 disease iPSC-RPE cells showed decreased RPE microvilli density and reduced POS binding and ingestion. Notably, POS phagocytosis defect in CLN3 disease iPSC-RPE cells could be rescued by wild-type CLN3 gene supplementation. Altogether, these results illustrate a novel role of CLN3 in regulating POS phagocytosis and suggest a contribution of primary RPE dysfunction for photoreceptor cell loss in CLN3 disease that can be targeted by gene therapy.
Collapse
|
25
|
Xue Y, Wang J, Ren K, Ji J. Deep Mining of Subtle Differences in Cell Morphology via Deep Learning. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yunfan Xue
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 PR China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 PR China
| | - Kefeng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 PR China
| |
Collapse
|
26
|
A Human Retinal Pigment Epithelium-Based Screening Platform Reveals Inducers of Photoreceptor Outer Segments Phagocytosis. Stem Cell Reports 2020; 15:1347-1361. [PMID: 33242397 PMCID: PMC7724476 DOI: 10.1016/j.stemcr.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis is a key function in various cells throughout the body. A deficiency in photoreceptor outer segment (POS) phagocytosis by the retinal pigment epithelium (RPE) causes vision loss in inherited retinal diseases and possibly age-related macular degeneration. To date, there are no effective therapies available aiming at recovering the lost phagocytosis function. Here, we developed a high-throughput screening assay based on RPE derived from human embryonic stem cells (hRPE) to reveal enhancers of POS phagocytosis. One of the hits, ramoplanin (RM), reproducibly enhanced POS phagocytosis and ensheathment in hRPE, and enhanced the expression of proteins known to regulate membrane dynamics and ensheathment in other cell systems. Additionally, RM rescued POS internalization defect in Mer receptor tyrosine kinase (MERTK) mutant hRPE, derived from retinitis pigmentosa patient induced pluripotent stem cells. Our platform, including a primary phenotypic screening phagocytosis assay together with orthogonal assays, establishes a basis for RPE-based therapy discovery aiming at a broad patient spectrum.
Collapse
|
27
|
Kwon W, Freeman SA. Phagocytosis by the Retinal Pigment Epithelium: Recognition, Resolution, Recycling. Front Immunol 2020; 11:604205. [PMID: 33281830 PMCID: PMC7691529 DOI: 10.3389/fimmu.2020.604205] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident phagocytes are responsible for the routine binding, engulfment, and resolution of their meals. Such populations of cells express appropriate surface receptors that are tailored to recognize the phagocytic targets of their niche and initiate the actin polymerization that drives internalization. Tissue-resident phagocytes also harbor enzymes and transporters along the endocytic pathway that orchestrate the resolution of ingested macromolecules from the phagolysosome. Solutes fluxed from the endocytic pathway and into the cytosol can then be reutilized by the phagocyte or exported for their use by neighboring cells. Such a fundamental metabolic coupling between resident phagocytes and the tissue in which they reside is well-emphasized in the case of retinal pigment epithelial (RPE) cells; specialized phagocytes that are responsible for the turnover of photoreceptor outer segments (POS). Photoreceptors are prone to photo-oxidative damage and their long-term health depends enormously on the disposal of aged portions of the outer segment. The phagocytosis of the POS by the RPE is the sole means of this turnover and clearance. RPE are themselves mitotically quiescent and therefore must resolve the ingested material to prevent their toxic accumulation in the lysosome that otherwise leads to retinal disorders. Here we describe the sequence of events underlying the healthy turnover of photoreceptors by the RPE with an emphasis on the signaling that ensures the phagocytosis of the distal POS and on the transport of solutes from the phagosome that supersedes its resolution. While other systems may utilize different receptors and transporters, the biophysical and metabolic manifestations of such events are expected to apply to all tissue-resident phagocytes that perform regular phagocytic programs.
Collapse
Affiliation(s)
- Whijin Kwon
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Brücker L, Kretschmer V, May-Simera HL. The entangled relationship between cilia and actin. Int J Biochem Cell Biol 2020; 129:105877. [PMID: 33166678 DOI: 10.1016/j.biocel.2020.105877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory cell organelles that are vital for tissue and organ development. They act as an antenna, receiving and transducing signals, enabling communication between cells. Defects in ciliogenesis result in severe genetic disorders collectively termed ciliopathies. In recent years, the importance of the direct and indirect involvement of actin regulators in ciliogenesis came into focus as it was shown that F-actin polymerisation impacts ciliation. The ciliary basal body was further identified as both a microtubule and actin organising centre. In the current review, we summarize recent studies on F-actin in and around primary cilia, focusing on different actin regulators and their effect on ciliogenesis, from the initial steps of basal body positioning and regulation of ciliary assembly and disassembly. Since primary cilia are also involved in several intracellular signalling pathways such as planar cell polarity (PCP), subsequently affecting actin rearrangements, the multiple effectors of this pathway are highlighted in more detail with a focus on the feedback loops connecting actin networks and cilia proteins. Finally, we elucidate the role of actin regulators in the development of ciliopathy symptoms and cancer.
Collapse
Affiliation(s)
- Lena Brücker
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Viola Kretschmer
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Helen Louise May-Simera
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
29
|
Effects of Netarsudil on Actin-Driven Cellular Functions in Normal and Glaucomatous Trabecular Meshwork Cells: A Live Imaging Study. J Clin Med 2020; 9:jcm9113524. [PMID: 33142742 PMCID: PMC7693753 DOI: 10.3390/jcm9113524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
The actin cytoskeleton of trabecular meshwork (TM) cells is a therapeutic target for lowering intraocular pressure (IOP) in glaucoma patients. Netarsudil (the active ingredient in RhopressaTM) is a Rho-associated protein kinase inhibitor that induces disassembly of actin stress fibers. Here, we used live cell imaging of SiR-actin-labeled normal (NTM) and glaucomatous TM (GTM) cells to investigate actin dynamics during actin-driven biological processes with and without netarsudil treatment. Actin stress fibers were thicker in GTM than NTM cells and took longer (>120 min) to disassemble following addition of 1 µM netarsudil. Actin-rich extracellular vesicles (EVs) were derived by two mechanisms: exocytosis of intracellular-derived vesicles, and cleavage of filopodial tips, which detached the filopodia from the substratum, allowing them to retract to the cell body. While some phagocytosis was noted in untreated TM cells, netarsudil potently stimulated phagocytic uptake of EVs. Netarsudil treatment induced lateral fusion of tunneling nanotubes (TNTs) that connected adjacent TM cells; TNTs are important for TM cellular communication. Together, our results suggest that netarsudil may clear outflow channels in TM tissue by inducing phagocytosis and/or by modulating TM communication via EVs and TNTs. These cellular functions likely work together to regulate IOP in normal and glaucomatous TM.
Collapse
|
30
|
The Effect of Antioxidants on Photoreactivity and Phototoxic Potential of RPE Melanolipofuscin Granules from Human Donors of Different Age. Antioxidants (Basel) 2020; 9:antiox9111044. [PMID: 33114498 PMCID: PMC7693403 DOI: 10.3390/antiox9111044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
One of the most prominent age-related changes of retinal pigment epithelium (RPE) is the accumulation of melanolipofuscin granules, which could contribute to oxidative stress in the retina. The purpose of this study was to determine the ability of melanolipofuscin granules from younger and older donors to photogenerate reactive oxygen species, and to examine if natural antioxidants could modify the phototoxic potential of this age pigment. Electron paramagnetic resonance (EPR) oximetry, EPR-spin trapping, and time-resolved detection of near-infrared phosphorescence were employed for measuring photogeneration of superoxide anion and singlet oxygen by melanolipofuscin isolated from younger and older human donors. Phototoxicity mediated by internalized melanolipofuscin granules with and without supplementation with zeaxanthin and α-tocopherol was analyzed in ARPE-19 cells by determining cell survival, oxidation of cellular proteins, organization of the cell cytoskeleton, and the cell specific phagocytic activity. Supplementation with antioxidants reduced aerobic photoreactivity and phototoxicity of melanolipofuscin granules. The effect was particularly noticeable for melanolipofuscin mediated inhibition of the cell phagocytic activity. Antioxidants decreased the extent of melanolipofuscin-dependent oxidation of cellular proteins and disruption of the cell cytoskeleton. Although melanolipofuscin might be involved in chronic phototoxicity of the aging RPE, natural antioxidants could partially ameliorate these harmful effects.
Collapse
|
31
|
Olchawa MM, Szewczyk GM, Zadlo AC, Krzysztynska-Kuleta OI, Sarna TJ. The effect of aging and antioxidants on photoreactivity and phototoxicity of human melanosomes: An in vitro study. Pigment Cell Melanoma Res 2020; 34:670-682. [PMID: 32702137 DOI: 10.1111/pcmr.12914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023]
Abstract
Aging may significantly modify antioxidant and photoprotective properties of melanin in retinal pigment epithelium (RPE). Here, photoreactivity of melanosomes (MS), isolated from younger and older human donors with and without added zeaxanthin and α-tocopherol, was analyzed by electron paramagnetic resonance oximetry, time-resolved singlet oxygen phosphorescence, and protein oxidation assay. The phototoxic potential of ingested melanosomes was examined in ARPE-19 cells exposed to blue light. Phagocytosis of FITC-labeled photoreceptor outer segments (POS) isolated from bovine retinas was determined by flow cytometry. Irradiation of cells fed MS induced significant inhibition of the specific phagocytosis with the effect being stronger for melanosomes from older than from younger human cohorts, and enrichment of the melanosomes with antioxidants reduced the inhibitory effect. Cellular protein photooxidation was more pronounced in samples containing older melanosomes, and it was diminished by antioxidants. This study suggests that blue light irradiated RPE melanosomes could induce substantial inhibition of the key function of the cells-their specific phagocytosis. The data indicate that while photoreactivity of MS and their phototoxic potential increase with age, they could be reduced by selected natural antioxidants.
Collapse
Affiliation(s)
- Magdalena M Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grzegorz M Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej C Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga I Krzysztynska-Kuleta
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tadeusz J Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
32
|
Udry F, Decembrini S, Gamm DM, Déglon N, Kostic C, Arsenijevic Y. Lentiviral mediated RPE65 gene transfer in healthy hiPSCs-derived retinal pigment epithelial cells markedly increased RPE65 mRNA, but modestly protein level. Sci Rep 2020; 10:8890. [PMID: 32483256 PMCID: PMC7264209 DOI: 10.1038/s41598-020-65657-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of cobblestone-like epithelial cells that accomplishes critical functions for the retina. Several protocols have been published to differentiate pluripotent stem cells into RPE cells suitable for disease modelling and therapy development. In our study, the RPE identity of human induced pluripotent stem cell (hiPSC)-derived RPE (iRPE) was extensively characterized, and then used to test a lentiviral-mediated RPE65 gene augmentation therapy. A dose study of the lentiviral vector revealed a dose-dependent effect of the vector on RPE65 mRNA levels. A marked increase of the RPE65 mRNA was also observed in the iRPE (100-fold) as well as in an experimental set with RPE derived from another hiPSC source and from foetal human RPE. Although iRPE displayed features close to bona fide RPE, no or a modest increase of the RPE65 protein level was observed depending on the protein detection method. Similar results were observed with the two other cell lines. The mechanism of RPE65 protein regulation remains to be elucidated, but the current work suggests that high vector expression will not produce an excess of the normal RPE65 protein level.
Collapse
Affiliation(s)
- Florian Udry
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Sarah Decembrini
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr. 20, 4031, Basel, Switzerland
| | - David M Gamm
- McPherson Eye Research Institute, Waisman Center and Department of Ophthalmology and Visual Sciences, and University of Wisconsin-Madison, Madison, USA
| | - Nicole Déglon
- Neuroscience Research Center, Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corinne Kostic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland.
| |
Collapse
|
33
|
Zhang C, Miyagishima KJ, Dong L, Rising A, Nimmagadda M, Liang G, Sharma R, Dejene R, Wang Y, Abu-Asab M, Qian H, Li Y, Kopera M, Maminishkis A, Martinez J, Miller S. Regulation of phagolysosomal activity by miR-204 critically influences structure and function of retinal pigment epithelium/retina. Hum Mol Genet 2020; 28:3355-3368. [PMID: 31332443 DOI: 10.1093/hmg/ddz171] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNA-204 (miR-204) is expressed in pulmonary, renal, mammary and eye tissue, and its reduction can result in multiple diseases including cancer. We first generated miR-204-/- mice to study the impact of miR-204 loss on retinal and retinal pigment epithelium (RPE) structure and function. The RPE is fundamentally important for maintaining the health and integrity of the retinal photoreceptors. miR-204-/- eyes evidenced areas of hyper-autofluorescence and defective photoreceptor digestion, along with increased microglia migration to the RPE. Migratory Iba1+ microglial cells were localized to the RPE apical surface where they participated in the phagocytosis of photoreceptor outer segments (POSs) and contributed to a persistent build-up of rhodopsin. These structural, molecular and cellular outcomes were accompanied by decreased light-evoked electrical responses from the retina and RPE. In parallel experiments, we suppressed miR-204 expression in primary cultures of human RPE using anti-miR-204. In vitro suppression of miR-204 in human RPE similarly showed abnormal POS clearance and altered expression of autophagy-related proteins and Rab22a, a regulator of endosome maturation. Together, these in vitro and in vivo experiments suggest that the normally high levels of miR-204 in RPE can mitigate disease onset by preventing generation of oxidative stress and inflammation originating from intracellular accumulation of undigested photoreactive POS lipids. More generally, these results implicate RPE miR-204-mediated regulation of autophagy and endolysosomal interaction as a critical determinant of normal RPE/retina structure and function.
Collapse
Affiliation(s)
- Congxiao Zhang
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Kiyoharu J Miyagishima
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Rising
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malika Nimmagadda
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genqing Liang
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roba Dejene
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuan Wang
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Megan Kopera
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arvydas Maminishkis
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Jennifer Martinez
- Inflammation and Autoimmunity, National Institute of Environmental Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Sheldon Miller
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
34
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
35
|
The Cytoskeleton of the Retinal Pigment Epithelium: from Normal Aging to Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20143578. [PMID: 31336621 PMCID: PMC6678077 DOI: 10.3390/ijms20143578] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a unique epithelium, with major roles which are essential in the visual cycle and homeostasis of the outer retina. The RPE is a monolayer of polygonal and pigmented cells strategically placed between the neuroretina and Bruch membrane, adjacent to the fenestrated capillaries of the choriocapillaris. It shows strong apical (towards photoreceptors) to basal/basolateral (towards Bruch membrane) polarization. Multiple functions are bound to a complex structure of highly organized and polarized intracellular components: the cytoskeleton. A strong connection between the intracellular cytoskeleton and extracellular matrix is indispensable to maintaining the function of the RPE and thus, the photoreceptors. Impairments of these intracellular structures and the regular architecture they maintain often result in a disrupted cytoskeleton, which can be found in many retinal diseases, including age-related macular degeneration (AMD). This review article will give an overview of current knowledge on the molecules and proteins involved in cytoskeleton formation in cells, including RPE and how the cytoskeleton is affected under stress conditions—especially in AMD.
Collapse
|
36
|
Krishna L, Dhamodaran K, Subramani M, Ponnulagu M, Jeyabalan N, Krishna Meka SR, Jayadev C, Shetty R, Chatterjee K, Khora SS, Das D. Protective Role of Decellularized Human Amniotic Membrane from Oxidative Stress-Induced Damage on Retinal Pigment Epithelial Cells. ACS Biomater Sci Eng 2018; 5:357-372. [DOI: 10.1021/acsbiomaterials.8b00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
- School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murugeswari Ponnulagu
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Nallathambi Jeyabalan
- Grow Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Sai Rama Krishna Meka
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Vitreo-retinal Services, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Debashish Das
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| |
Collapse
|