1
|
Flora P, Li MY, Zhou Y, Mercédes M, Zheng XY, Galbo PM, Zheng D, Ezhkova E. H2AK119ub dynamics controls hair follicle stem cell quiescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617646. [PMID: 39416158 PMCID: PMC11482967 DOI: 10.1101/2024.10.10.617646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The transition of stem cells from a quiescent state to an active state is a finely tuned process that requires the dismantling of the quiescence program and the establishment of a cell cycle-promoting transcriptional landscape. Whether epigenetic processes control stem cell states to promote the regeneration of adult tissues remains elusive. In this study, we show that a repressive histone modification, H2AK119ub, is dynamic between quiescent and active hair follicle stem cells (HFSCs) in the adult murine skin. Ablation of H2AK119ub in HFSCs leads to impaired quiescence leading to premature activation and an eventual exhaustion of HFSC pool. Transcriptional and chromatin studies revealed that H2AK119ub directly represses a proliferation promoting transcriptional program in the HFSCs to preserve quiescence. Lastly, we identify that the inhibitory FGF signaling produced by the hair follicle niche keratinocytes maintains H2AK119ub in quiescent HFSCs. Together, these findings reveal that a repressive histone mark, H2AK119ub, is under the dynamic regulation of inhibitory niche signaling to prevent the untimely establishment of an activated state to preserve SC function and longevity.
Collapse
|
2
|
Flora P, Ezhkova E. Cleavage Under Targets & Release Using Nuclease (CUT&RUN) of Histone Modifications in Epidermal Stem Cells of Adult Murine Skin. Methods Mol Biol 2024; 2736:9-21. [PMID: 37615890 PMCID: PMC10841116 DOI: 10.1007/7651_2023_499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Cleavage Under Targets & Release Using Nuclease (CUT&RUN) has swiftly become the preferred procedure over the past few years for genomic mapping and detecting interactions between chromatin and its bound proteins. CUT&RUN is now being widely used for characterizing the epigenetic landscape in many cell types as it utilizes far less cell numbers when compared to Chromatin Immunoprecipitation-sequencing (ChIP-seq), thereby making it a powerful tool for researchers working with limited material. This protocol has been specifically optimized for detecting histone modifications in fluorescence-activated cell sorting (FACS)-isolated epidermal stem cells from adult mice.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Yin H, Hu M, Li D. Regulation of epidermal stratification and development by basal keratinocytes. J Cell Physiol 2023; 238:742-748. [PMID: 36815398 DOI: 10.1002/jcp.30978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
The epidermis is a stratified squamous epithelium distributed in the outermost layer of the skin and is intimately involved in the formation of a physical barrier to pathogens. Basal keratinocytes possess the properties of stem cells and play an essential role in epidermal development and skin damage recovery. Therefore, understanding the molecular mechanism of how basal keratinocytes participate in epidermal development and stratification is vital for preventing and treating skin lesions. During epidermal morphogenesis, the symmetric division of basal keratinocytes contributes to the extension of skin tissues, while their asymmetric division and migration facilitate epidermal stratification. In this review, we summarize the process of epidermal stratification and illustrate the molecular mechanisms underlying epidermal morphogenesis. Furthermore, we discuss the coordination of multiple signaling pathways and transcription factors in epidermal stratification, together with the roles of cell polarity and cell dynamics during the process.
Collapse
Affiliation(s)
- Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingzheng Hu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Lao M, Hurtado A, de Castro AC, Burgos M, Jiménez R, Barrionuevo FJ. Sox9 is required for nail bed differentiation and digit tip regeneration. J Invest Dermatol 2022; 142:2613-2622.e6. [DOI: 10.1016/j.jid.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
|
5
|
Polycomb repressive complex 2 in adult hair follicle stem cells is dispensable for hair regeneration. PLoS Genet 2021; 17:e1009948. [PMID: 34905545 PMCID: PMC8670713 DOI: 10.1371/journal.pgen.1009948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are multipotent cells that cycle through quiescence and activation to continuously fuel the production of hair follicles. Prior genome mapping studies had shown that tri-methylation of histone H3 at lysine 27 (H3K27me3), the chromatin mark mediated by Polycomb Repressive Complex 2 (PRC2), is dynamic between quiescent and activated HFSCs, suggesting that transcriptional changes associated with H3K27me3 might be critical for proper HFSC function. However, functional in vivo studies elucidating the role of PRC2 in adult HFSCs are lacking. In this study, by using in vivo loss-of-function studies we show that, surprisingly, PRC2 plays a non-instructive role in adult HFSCs and loss of PRC2 in HFSCs does not lead to loss of HFSC quiescence or changes in cell identity. Interestingly, RNA-seq and immunofluorescence analyses of PRC2-null quiescent HFSCs revealed upregulation of genes associated with activated state of HFSCs. Altogether, our findings show that transcriptional program under PRC2 regulation is dispensable for maintaining HFSC quiescence and hair regeneration.
Collapse
|
6
|
Flora P, Dalal G, Cohen I, Ezhkova E. Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes (Basel) 2021; 12:1485. [PMID: 34680880 PMCID: PMC8535826 DOI: 10.3390/genes12101485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Gil Dalal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| |
Collapse
|
7
|
Wu P, Jiang TX, Lei M, Chen CK, Hsieh Li SM, Widelitz RB, Chuong CM. Cyclic growth of dermal papilla and regeneration of follicular mesenchymal components during feather cycling. Development 2021; 148:dev198671. [PMID: 34344024 PMCID: PMC10656464 DOI: 10.1242/dev.198671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/08/2021] [Indexed: 01/23/2023]
Abstract
How dermis maintains tissue homeostasis in cyclic growth and wounding is a fundamental unsolved question. Here, we study how dermal components of feather follicles undergo physiological (molting) and plucking injury-induced regeneration in chickens. Proliferation analyses reveal quiescent, transient-amplifying (TA) and long-term label-retaining dermal cell (LRDC) states. During the growth phase, LRDCs are activated to make new dermal components with distinct cellular flows. Dermal TA cells, enriched in the proximal follicle, generate both peripheral pulp, which extends distally to expand the epithelial-mesenchymal interactive interface for barb patterning, and central pulp, which provides nutrition. Entering the resting phase, LRDCs, accompanying collar bulge epidermal label-retaining cells, descend to the apical dermal papilla. In the next cycle, these apical dermal papilla LRDCs are re-activated to become new pulp progenitor TA cells. In the growth phase, lower dermal sheath can generate dermal papilla and pulp. Transcriptome analyses identify marker genes and highlight molecular signaling associated with dermal specification. We compare the cyclic topological changes with those of the hair follicle, a convergently evolved follicle configuration. This work presents a model for analyzing homeostasis and tissue remodeling of mesenchymal progenitors.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Man Hsieh Li
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng 2021; 5:1008-1018. [PMID: 33941895 DOI: 10.1038/s41551-021-00720-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/26/2021] [Indexed: 02/01/2023]
Abstract
Cell therapies for the treatment of skin disorders could benefit from simple, safe and efficient technology for the transdermal delivery of therapeutic cells. Conventional cell delivery by hypodermic-needle injection is associated with poor patient compliance, requires trained personnel, generates waste and has non-negligible risks of injury and infection. Here, we report the design and proof-of-concept application of cryogenic microneedle patches for the transdermal delivery of living cells. The microneedles are fabricated by stepwise cryogenic micromoulding of cryogenic medium with pre-suspended cells, and can be easily inserted into porcine skin and dissolve after deployment of the cells. In mice, cells delivered by the cryomicroneedles retained their viability and proliferative capability. In mice with subcutaneous melanoma tumours, the delivery of ovalbumin-pulsed dendritic cells via the cryomicroneedles elicited higher antigen-specific immune responses and led to slower tumour growth than intravenous and subcutaneous injections of the cells. Biocompatible cryomicroneedles may facilitate minimally invasive cell delivery for a range of cell therapies.
Collapse
|
9
|
Yu Y, Zhang X, Liu F, Zhu P, Zhang L, Peng Y, Yan X, Li Y, Hua P, Liu C, Li Q, Zhang L. A stress-induced miR-31-CLOCK-ERK pathway is a key driver and therapeutic target for skin aging. NATURE AGING 2021; 1:795-809. [PMID: 37117623 DOI: 10.1038/s43587-021-00094-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/30/2021] [Indexed: 04/30/2023]
Abstract
Regressive changes in epithelial stem cells underlie mammalian skin aging, but the driving mechanisms are not well understood. Here, we report that mouse skin hair follicle stem cell (HFSC) aging is initiated by their intrinsic upregulation of miR-31, a microRNA that can be induced by physical injury or genotoxic stress and is also strongly upregulated in aged human skin epithelium. Using transgenic and conditional knockout mouse models plus a lineage-tracing technique, we show that miR-31 acts as a key driver of HFSC aging by directly targeting Clock, a core circadian clock gene whose deregulation activates a MAPK/ERK cascade to induce HFSC depletion via transepidermal elimination. Notably, blocking this pathway by either conditional miR-31 ablation or clinically approved MAPK/ERK inhibitors provides safe and effective protection against skin aging, enlightening a promising therapeutic avenue for treating skin aging and other genotoxic stress-induced skin conditions such as radiodermatitis.
Collapse
Affiliation(s)
- Yao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengzhen Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiying Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liping Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - You Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Hua
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Caiyue Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Mannino G, Russo C, Maugeri G, Musumeci G, Vicario N, Tibullo D, Giuffrida R, Parenti R, Lo Furno D. Adult stem cell niches for tissue homeostasis. J Cell Physiol 2021; 237:239-257. [PMID: 34435361 PMCID: PMC9291197 DOI: 10.1002/jcp.30562] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
Adult stem cells are fundamental to maintain tissue homeostasis, growth, and regeneration. They reside in specialized environments called niches. Following activating signals, they proliferate and differentiate into functional cells that are able to preserve tissue physiology, either to guarantee normal turnover or to counteract tissue damage caused by injury or disease. Multiple interactions occur within the niche between stem cell‐intrinsic factors, supporting cells, the extracellular matrix, and signaling pathways. Altogether, these interactions govern cell fate, preserving the stem cell pool, and regulating stem cell proliferation and differentiation. Based on their response to body needs, tissues can be largely classified into three main categories: tissues that even in normal conditions are characterized by an impressive turnover to replace rapidly exhausting cells (blood, epidermis, or intestinal epithelium); tissues that normally require only a basal cell replacement, though able to efficiently respond to increased tissue needs, injury, or disease (skeletal muscle); tissues that are equipped with less powerful stem cell niches, whose repairing ability is not able to overcome severe damage (heart or nervous tissue). The purpose of this review is to describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity. Although much has been done, more work is needed to further increase our knowledge of niche interactions. This would be important not only to shed light on this fundamental chapter of human physiology but also to help the development of cell‐based strategies for clinical therapeutic applications, especially when other approaches fail.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Liu F, Zhang X, Peng Y, Zhang L, Yu Y, Hua P, Zhu P, Yan X, Li Y, Zhang L. miR-24 controls the regenerative competence of hair follicle progenitors by targeting Plk3. Cell Rep 2021; 35:109225. [PMID: 34107258 DOI: 10.1016/j.celrep.2021.109225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/17/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023] Open
Abstract
Maintaining a suitable level of sensitivity to environmental cues is crucial for proper function of adult stem cells. Here, we explore how the intrinsic sensitivity of skin hair follicle (HF) progenitors to growth stimuli is dynamically regulated. We discover miR-24 is an miRNA whose expression in HF progenitors inversely correlates with their growth potency in vivo. We show that its upregulation in adult skin epithelium leads to blunted responses of HF progenitors to growth cues and retards hair regeneration, while its conditional ablation leads to hyper-sensitized growth responsiveness of HF progenitors and precocious hair regeneration. Mechanistically, we find that miR-24 limits the intrinsic growth competence of HF progenitor by directly targeting Plk3, whose downregulation leads to reduced expression of CCNE1, a key cyclin for cell-cycle entry. These findings reveal an miRNA-mediated dynamic and cell-intrinsic mechanism used by HF progenitors to adapt their regenerative competence for different physiological conditions.
Collapse
Affiliation(s)
- Fengzhen Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - You Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liping Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Hua
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peiying Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyu Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
12
|
Kaplan N, Gonzalez E, Peng H, Batlle D, Lavker RM. Emerging importance of ACE2 in external stratified epithelial tissues. Mol Cell Endocrinol 2021; 529:111260. [PMID: 33781838 PMCID: PMC7997854 DOI: 10.1016/j.mce.2021.111260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 03/20/2021] [Indexed: 02/09/2023]
Abstract
Angiotensin converting enzyme 2 (ACE2), a component of the renin-angiotensin system (RAS), has been identified as the receptor for the SARS-CoV-2. Several RAS components including ACE2 and its substrate Ang II are present in both eye and skin, two stratified squamous epithelial tissues that isolate organisms from external environment. Our recent findings in cornea and others in both skin and eye suggest contribution of this system, and specifically of ACE2 in variety of physiological and pathological responses of these organ systems. This review will focus on the role RAS system plays in both skin and cornea, and will specifically discuss our recent findings on ACE2 in corneal epithelial inflammation, as well as potential implications of ACE2 in patients with COVID-19.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Elena Gonzalez
- Department of Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL, USA.
| | - Daniel Batlle
- Department of Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
13
|
Rahim AB, Lim HK, Tan CYR, Jia L, Leo VI, Uemura T, Hardman-Smart J, Common JEA, Lim TC, Bellanger S, Paus R, Igarashi K, Yang H, Vardy LA. The Polyamine Regulator AMD1 Upregulates Spermine Levels to Drive Epidermal Differentiation. J Invest Dermatol 2021; 141:2178-2188.e6. [PMID: 33984347 DOI: 10.1016/j.jid.2021.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/29/2022]
Abstract
Maintaining tissue homeostasis depends on a balance between cell proliferation, differentiation, and apoptosis. Within the epidermis, the levels of the polyamines putrescine, spermidine, and spermine are altered in many different skin conditions, yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, Adenosylmethionine decarboxylase 1 (AMD1), as a crucial regulator of keratinocyte (KC) differentiation. AMD1 protein is upregulated on differentiation and is highly expressed in the suprabasal layers of the human epidermis. During KC differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown or inhibition of AMD1 results in reduced spermine levels and inhibition of KC differentiation. Supplementing AMD1-knockdown KCs with exogenous spermidine or spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signaling proteins that drive KC differentiation, including KLF4 and ZNF750. These findings show that human KCs use controlled changes in polyamine levels to modulate gene expression to drive cellular behavior changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or can be used in the treatment of hyperproliferative skin disorders.
Collapse
Affiliation(s)
- Anisa B Rahim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Hui Kheng Lim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Christina Yan Ru Tan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Li Jia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vonny Ivon Leo
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Takeshi Uemura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Jonathan Hardman-Smart
- Centre for Dermatology Research, School of Biology, University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - John E A Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Thiam Chye Lim
- Division of Plastic, Reconstructive & Aesthetic Surgery, Department of Surgery, National University Hospital, National University of Singapore, Singapore, Singapore
| | - Sophie Bellanger
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Ralf Paus
- Centre for Dermatology Research, School of Biology, University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Leah A Vardy
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
| |
Collapse
|
14
|
Hintze M, Griesing S, Michels M, Blanck B, Wischhof L, Hartmann D, Bano D, Franz T. Alopecia in Harlequin mutant mice is associated with reduced AIF protein levels and expression of retroviral elements. Mamm Genome 2021; 32:12-29. [PMID: 33367954 PMCID: PMC7878237 DOI: 10.1007/s00335-020-09854-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022]
Abstract
We investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.
Collapse
Affiliation(s)
- Maik Hintze
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany.
- Medical Department, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Griesing
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
- Dept. of Oncology, National Taiwan University Hospital, Taipei City, 100, Taiwan, ROC
| | - Marion Michels
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Birgit Blanck
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dieter Hartmann
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Franz
- Institute of Anatomy, Neuroanatomy, Medical Faculty, UKB, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Haslam IS, Paus R. The Hair Follicle as an Interdisciplinary Model for Biomedical Research: An Eclectic Literature Synthesis. Bioessays 2020; 42:e2000053. [DOI: 10.1002/bies.202000053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/20/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Iain S. Haslam
- Department of Biological Sciences, School of Applied Sciences University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research, School of Biological Sciences University of Manchester and NIHR Biomedical Research Centre Manchester M13 9PT UK
- Monasterium Laboratory Mendelstraße 17 Muenster Germany
| |
Collapse
|
16
|
Lavker RM, Kaplan N, Wang J, Peng H. Corneal epithelial biology: Lessons stemming from old to new. Exp Eye Res 2020; 198:108094. [PMID: 32697979 DOI: 10.1016/j.exer.2020.108094] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
The anterior surface of the eye functions as a barrier to the external environment and protects the delicate underlying tissues from injury. Central to this protection are the corneal, limbal and conjunctival epithelia. The corneal epithelium is a self-renewing stratified squamous epithelium that protects the underlying delicate structures of the eye, supports a tear film and maintains transparency so that light can be transmitted to the interior of the eye (Basu et al., 2014; Cotsarelis et al., 1989; Funderburgh et al., 2016; Lehrer et al., 1998; Pajoohesh-Ganji and Stepp, 2005; Parfitt et al., 2015; Peng et al., 2012b; Stepp and Zieske, 2005). In this review, dedicated to James Funderburgh and his contributions to visual science, in particular the limbal niche, corneal stroma and corneal stromal stem cells, we will focus on recent data on the identification of novel regulators in corneal epithelial cell biology, their roles in stem cell homeostasis, wound healing, limbal/corneal boundary maintenance and the utility of single cell RNA sequencing (scRNA-seq) in vision biology studies.
Collapse
Affiliation(s)
- Robert M Lavker
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Nihal Kaplan
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junyi Wang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Ophthalmology, The First Center of the PLA General Hospital, Haidian District, Beijing, China
| | - Han Peng
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
18
|
Horsley V. Skin in the Game: Stem Cells in Repair, Cancer, and Homeostasis. Cell 2020; 181:492-494. [PMID: 32234524 DOI: 10.1016/j.cell.2020.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 2020 Canada Gairdner International Award has been awarded to Elaine Fuchs for her discovery of the role of adult skin stem cells in homeostasis, wound repair, inflammation, and cancer. These insights have established a foundation for basic knowledge on how adult stem cells form, maintain, and repair tissues and have provided the groundwork for additional exploration and discovery of pathways in other stem cell systems.
Collapse
Affiliation(s)
- Valerie Horsley
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Dermatology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
19
|
He N, Su R, Wang Z, Zhang Y, Li J. Exploring differentially expressed genes between anagen and telogen secondary hair follicle stem cells from the Cashmere goat (Capra hircus) by RNA-Seq. PLoS One 2020; 15:e0231376. [PMID: 32298297 PMCID: PMC7162518 DOI: 10.1371/journal.pone.0231376] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Hair follicle stem cells (HFSCs) have been shown to be essential in the development and regeneration of hair follicles (HFs). The Inner Mongolia Cashmere goat (Capra hircus) has two types of HFs, primary and secondary, with cashmere being produced from the secondary hair follicle. To identify the genes associated with cashmere growth, transcriptome profiling of anagen and telogen secondary HFSCs was performed by RNA-Seq. The RNA-Seq analysis generated over 58 million clean reads from each group, with 2717 differentially expressed genes (DEGs) detected between anagen and telogen, including 1500 upregulated and 1217 downregulated DEGs. A large number of DEGs were predominantly associated with cell part, cellular process, binding, biological regulation and organelle. In addition, the PI3K-Akt, MAPK, Ras and Rap1 signaling pathways may be involved in the growth of HFSCs cultured in vitro. The RNA-Seq results showed that the well-defined HFSC signature genes and cell cycle-associated genes showed no significant differences between anagen and telogen HFSCs, indicating a relatively quiescent cellular state of the HFSCs cultured in vitro. These results are useful for future studies of complex molecular mechanisms of hair follicle cycling in cashmere goats.
Collapse
Affiliation(s)
- Nimantana He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Agriculture Research Center, Chifeng University, Chifeng, Inner Mongolia, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
- * E-mail:
| |
Collapse
|
20
|
Todorova K, Mandinova A. Novel approaches for managing aged skin and nonmelanoma skin cancer. Adv Drug Deliv Rev 2020; 153:18-27. [PMID: 32526451 DOI: 10.1016/j.addr.2020.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
The process of aging influences every bodily organ and tissue, and those with rapid epithelial cell turnover, are particularly affected. The most visible of these, however, is the skin (including the epidermis), the largest human organ that provides a barrier to external insults, structure to the body and its movements, facilitates thermoregulation, harbors immune cells, and incorporates sensory neurons (including mechanoreceptors, nociceptors, and thermoreceptors). Skin aging has traditionally been categorized into intrinsic and extrinsic, with the latter nearly exclusively restricted to "photoaging," (i.e., aging due to exposure to solar or artificial ultraviolet radiation). However, both intrinsic and extrinsic aging share similar causes, including oxidative damage, telomere shortening, and mitochondrial senescence. Also, like other malignancies, the risk of malignant and nonmalignant lesions increases with age. Herein, we review the most recent findings in skin aging and nonmelanoma skin cancer, including addition to traditional and developing therapies.
Collapse
|
21
|
27 TH Fondation René Touraine Annual SCIENTIFIC MEETING 2019: Skin Appendages - Developmental and Pathophysiological Aspects. Exp Dermatol 2019; 28:1353-1367. [PMID: 31854035 DOI: 10.1111/exd.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Wu P, Cao Y, Zhao R, Wang Y. Netrin-1 plays a critical role in regulating capacities of epidermal stem cells upon ultraviolet-B (UV-B) irradiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1416-1422. [PMID: 31012327 DOI: 10.1080/21691401.2019.1593849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss of the capacities of epidermal stem cells (ESCs) induced by ultraviolet-B (UV-B) irradiation has been widely associated with various skin diseases. Netrin-1, a member of the axonal guidance protein family, has displayed diverse biological functions in different types of cells and tissues, mediated by its specific receptor UNC-5 homolog B (UNC5b). In this study, we examined the physiological functions of netrin-1 and UNC5b in ESCs upon UV-B exposure. Our results indicate that UNC5b is expressed in ESCs, and its expression is upregulated in response to UV-B radiation. We found that treatment with netrin-1 prevented UV-B radiation-induced oxidative stress by reducing the generation of reactive oxygen species (ROS) and expression of NADPH oxidase 4 (NOX-4). Additionally, treatment with netrin-1 improved UV-B radiation-induced mitochondrial dysfunction by increasing mitochondrial membrane potential (MMP) levels and adenosine triphosphate (ATP) production. The presence of netrin-1 attenuated UV-B radiation-induced lactic dehydrogenase (LDH) release. UV-B exposure resulted in the loss of the capacities of ESCs by reducing the expressions of integrin β1 and Krt19, the two major ESC markers. Importantly, this process was prevented by netrin-1. Silencing of UNC5b abolished the effects of netrin-1 on the expression of integrin β1 and Krt19, suggesting that the effects of netrin-1 in maintaining the capacities of ESCs are dependent on UNC5b. Mechanistically, we found that the Wnt/β-catenin signalling may be involved. Our findings suggest that netrin-1 may serve as a therapeutic agent for the treatment of skin diseases.
Collapse
Affiliation(s)
- Peng Wu
- a Department of Burns and Plastic Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China.,b Department of Burns and Plastic Surgery , Linyi People's Hospital , Linyi , China
| | - Yongqian Cao
- a Department of Burns and Plastic Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Ran Zhao
- a Department of Burns and Plastic Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Yibing Wang
- a Department of Burns and Plastic Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| |
Collapse
|
23
|
Chang Y, Yu J. The protective effects of TGR5 against ultraviolet B irradiation in epidermal stem cells. J Cell Biochem 2019; 120:15038-15044. [PMID: 31168815 DOI: 10.1002/jcb.28765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
Repetitive exposure to ultraviolet radiation (UVR) results in continuous insults to the skin, including continuous loss of the capacities of epidermal stem cells (ESCs). Takeda G-protein-coupled receptor-5 (TGR5) participates in a variety of physiological activities, but its biological function in skin has not been reported. In this study, we report that TGR5 could be detected in ESCs and its expression was reduced after ultraviolet B (UV-B) irradiation. Treatment with the specific TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (GPBARA) prevented UV-B-induced oxidative stress by reducing 4-hydroxy-2-nonenal and increasing the level of glutathione. We also found that the presence of GPBARA improved UV-B irradiation-induced mitochondrial dysfunction by elevating mitochondrial membrane potential. Interestingly, our results indicate that GPBARA pretreatment suppressed UV-B irradiation-induced reduced cell viability, release of lactic dehydrogenase, and secretion of high mobility group box 1. Notably, GPBARA pretreatment inhibited UV-B irradiation-induced decrease in integrin β1 and Krt19, dependent on TGR5. Mechanistically, we found that the activation of TGR5 by GPBARA increased Wnt1, Wnt3a, Myc, and cyclin D1 in ESCs. Our data suggest a new function of TGR5 in regulating ESCs.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Dermatology & STD Department, Luoyang Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jianbin Yu
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Maguire G, Paler L, Green L, Mella R, Valcarcel M, Villace P. Rescue of degenerating neurons and cells by stem cell released molecules: using a physiological renormalization strategy. Physiol Rep 2019; 7:e14072. [PMID: 31050222 PMCID: PMC6497969 DOI: 10.14814/phy2.14072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that adult stem cell types and progenitor cells act collectively in a given tissue to maintain and heal organs, such as muscle, through a release of a multitude of molecules packaged into exosomes from the different cell types. Using this principle for the development of bioinspired therapeutics that induces homeostatic renormalization, here we show that the collection of molecules released from four cell types, including mesenchymal stem cells, fibroblast, neural stem cells, and astrocytes, rescues degenerating neurons and cells. Specifically, oxidative stress induced in a human recombinant TDP-43- or FUS-tGFP U2OS cell line by exposure to sodium arsenite was shown to be significantly reduced by our collection of molecules using in vitro imaging of FUS and TDP-43 stress granules. Furthermore, we also show that the collective secretome rescues cortical neurons from glutamate toxicity as evidenced by increased neurite outgrowth, reduced LDH release, and reduced caspase 3/7 activity. These data are the first in a series supporting the development of stem cell-based exosome systems therapeutics that uses a physiological renormalization strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Lee Paler
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Linda Green
- BioRegenerative Sciences, Inc.San DiegoCalifornia
| | | | | | | |
Collapse
|