1
|
Dong J, Sathyan K, Scott T, Mukherjee R, Guertin M. ZNF143 binds DNA and stimulates transcription initiation to activate and repress direct target genes. Nucleic Acids Res 2025; 53:gkae1182. [PMID: 39676670 PMCID: PMC11754675 DOI: 10.1093/nar/gkae1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Transcription factors bind to sequence motifs and act as activators or repressors. Transcription factors interface with a constellation of accessory cofactors to regulate distinct mechanistic steps to regulate transcription. We rapidly degraded the essential and pervasively expressed transcription factor ZNF143 to determine its function in the transcription cycle. ZNF143 facilitates RNA polymerase initiation and activates gene expression. ZNF143 binds the promoter of nearly all its activated target genes. ZNF143 also binds near the site of genic transcription initiation to directly repress a subset of genes. Although ZNF143 stimulates initiation at ZNF143-repressed genes (i.e. those that increase transcription upon ZNF143 depletion), the molecular context of binding leads to cis repression. ZNF143 competes with other more efficient activators for promoter access, physically occludes transcription initiation sites and promoter-proximal sequence elements, and acts as a molecular roadblock to RNA polymerases during early elongation. The term context specific is often invoked to describe transcription factors that have both activation and repression functions. We define the context and molecular mechanisms of ZNF143-mediated cis activation and repression.
Collapse
Affiliation(s)
- Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| | - Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Rudradeep Mukherjee
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| |
Collapse
|
2
|
Ramirez Sierra MA, Sokolowski TR. AI-powered simulation-based inference of a genuinely spatial-stochastic gene regulation model of early mouse embryogenesis. PLoS Comput Biol 2024; 20:e1012473. [PMID: 39541410 PMCID: PMC11614244 DOI: 10.1371/journal.pcbi.1012473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/03/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding how multicellular organisms reliably orchestrate cell-fate decisions is a central challenge in developmental biology, particularly in early mammalian development, where tissue-level differentiation arises from seemingly cell-autonomous mechanisms. In this study, we present a multi-scale, spatial-stochastic simulation framework for mouse embryogenesis, focusing on inner cell mass (ICM) differentiation into epiblast (EPI) and primitive endoderm (PRE) at the blastocyst stage. Our framework models key regulatory and tissue-scale interactions in a biophysically realistic fashion, capturing the inherent stochasticity of intracellular gene expression and intercellular signaling, while efficiently simulating these processes by advancing event-driven simulation techniques. Leveraging the power of Simulation-Based Inference (SBI) through the AI-driven Sequential Neural Posterior Estimation (SNPE) algorithm, we conduct a large-scale Bayesian inferential analysis to identify parameter sets that faithfully reproduce experimentally observed features of ICM specification. Our results reveal mechanistic insights into how the combined action of autocrine and paracrine FGF4 signaling coordinates stochastic gene expression at the cellular scale to achieve robust and reproducible ICM patterning at the tissue scale. We further demonstrate that the ICM exhibits a specific time window of sensitivity to exogenous FGF4, enabling lineage proportions to be adjusted based on timing and dosage, thereby extending current experimental findings and providing quantitative predictions for both mutant and wild-type ICM systems. Notably, FGF4 signaling not only ensures correct EPI-PRE lineage proportions but also enhances ICM resilience to perturbations, reducing fate-proportioning errors by 10-20% compared to a purely cell-autonomous system. Additionally, we uncover a surprising role for variability in intracellular initial conditions, showing that high gene-expression heterogeneity can improve both the accuracy and precision of cell-fate proportioning, which remains robust when fewer than 25% of the ICM population experiences perturbed initial conditions. Our work offers a comprehensive, spatial-stochastic description of the biochemical processes driving ICM differentiation and identifies the necessary conditions for its robust unfolding. It also provides a framework for future exploration of similar spatial-stochastic systems in developmental biology.
Collapse
Affiliation(s)
- Michael Alexander Ramirez Sierra
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
- Faculty of Computer Science and Mathematics, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | |
Collapse
|
3
|
Makino‐Itou H, Yamatani N, Okubo A, Kiso M, Ajima R, Kanemaki MT, Saga Y. Establishment and characterization of mouse lines useful for endogenous protein degradation via an improved auxin-inducible degron system (AID2). Dev Growth Differ 2024; 66:384-393. [PMID: 39305158 PMCID: PMC11482630 DOI: 10.1111/dgd.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
The development of new technologies opens new avenues in the research field. Gene knockout is a key method for analyzing gene function in mice. Currently, conditional gene knockout strategies are employed to examine temporal and spatial gene function. However, phenotypes are sometimes not observed because of the time required for depletion due to the long half-life of the target proteins. Protein knockdown using an improved auxin-inducible degron system, AID2, overcomes such difficulties owing to rapid and efficient target depletion. We observed depletion of AID-tagged proteins within a few to several hours by a simple intraperitoneal injection of the auxin analog, 5-Ph-IAA, which is much shorter than the time required for target depletion using conditional gene knockout. Importantly, the loss of protein is reversible, making protein knockdown useful to measure the effects of transient loss of protein function. Here, we also established several mouse lines useful for AID2-medicated protein knockdown, which include knock-in mouse lines in the ROSA26 locus; one expresses TIR1(F74G), and the other is the reporter expressing AID-mCherry. We also established a germ-cell-specific TIR1 line and confirmed the protein knockdown specificity. In addition, we introduced an AID tag to an endogenous protein, DCP2 via the CAS9-mediated gene editing method. We confirmed that the protein was effectively eliminated by TIR1(F74G), which resulted in the similar phenotype observed in knockout mouse within 20 h.
Collapse
Affiliation(s)
- Hatsune Makino‐Itou
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
| | - Noriko Yamatani
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
| | - Akemi Okubo
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
| | - Makoto Kiso
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
| | - Rieko Ajima
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
- Department of GeneticsGraduate Institute for Advanced StudiesMishimaJapan
| | - Masato T. Kanemaki
- Department of GeneticsGraduate Institute for Advanced StudiesMishimaJapan
- Department of Chromosome ScienceNational Institute of Genetics, ROISMishimaJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of GeneticsResearch Organization of Information and Systems (ROIS)MishimaJapan
- Division for Development of Genetic‐Engineered Mouse ResourceNational Institute of GeneticsMishimaJapan
- Department of GeneticsGraduate Institute for Advanced StudiesMishimaJapan
| |
Collapse
|
4
|
Dong J, Scott TG, Mukherjee R, Guertin MJ. ZNF143 binds DNA and stimulates transcripstion initiation to activate and repress direct target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594008. [PMID: 38798607 PMCID: PMC11118474 DOI: 10.1101/2024.05.13.594008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Transcription factors bind to sequence motifs and act as activators or repressors. Transcription factors interface with a constellation of accessory cofactors to regulate distinct mechanistic steps to regulate transcription. We rapidly degraded the essential and ubiquitously expressed transcription factor ZNF143 to determine its function in the transcription cycle. ZNF143 facilitates RNA Polymerase initiation and activates gene expression. ZNF143 binds the promoter of nearly all its activated target genes. ZNF143 also binds near the site of genic transcription initiation to directly repress a subset of genes. Although ZNF143 stimulates initiation at ZNF143-repressed genes (i.e. those that increase expression upon ZNF143 depletion), the molecular context of binding leads to cis repression. ZNF143 competes with other more efficient activators for promoter access, physically occludes transcription initiation sites and promoter-proximal sequence elements, and acts as a molecular roadblock to RNA Polymerases during early elongation. The term context specific is often invoked to describe transcription factors that have both activation and repression functions. We define the context and molecular mechanisms of ZNF143-mediated cis activation and repression.
Collapse
Affiliation(s)
- Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rudradeep Mukherjee
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
5
|
Li S, Wang Y, van der Stoel M, Zhou X, Madhusudan S, Kanerva K, Nguyen VD, Eskici N, Olkkonen VM, Zhou Y, Raivio T, Ikonen E. HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells. Genome Biol 2024; 25:58. [PMID: 38409044 PMCID: PMC10895734 DOI: 10.1186/s13059-024-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Recent developments in auxin-inducible degron (AID) technology have increased its popularity for chemogenetic control of proteolysis. However, generation of human AID cell lines is challenging, especially in human embryonic stem cells (hESCs). Here, we develop HiHo-AID2, a streamlined procedure for rapid, one-step generation of human cancer and hESC lines with high homozygous degron-tagging efficiency based on an optimized AID2 system and homology-directed repair enhancers. We demonstrate its application for rapid and inducible functional inactivation of twelve endogenous target proteins in five cell lines, including targets with diverse expression levels and functions in hESCs and cells differentiated from hESCs.
Collapse
Affiliation(s)
- Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| | - Yafei Wang
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Miesje van der Stoel
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Kristiina Kanerva
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Vesa M Olkkonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
6
|
Riesle AJ, Gao M, Rosenblatt M, Hermes J, Hass H, Gebhard A, Veil M, Grüning B, Timmer J, Onichtchouk D. Activator-blocker model of transcriptional regulation by pioneer-like factors. Nat Commun 2023; 14:5677. [PMID: 37709752 PMCID: PMC10502082 DOI: 10.1038/s41467-023-41507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Zygotic genome activation (ZGA) in the development of flies, fish, frogs and mammals depends on pioneer-like transcription factors (TFs). Those TFs create open chromatin regions, promote histone acetylation on enhancers, and activate transcription. Here, we use the panel of single, double and triple mutants for zebrafish genome activators Pou5f3, Sox19b and Nanog, multi-omics and mathematical modeling to investigate the combinatorial mechanisms of genome activation. We show that Pou5f3 and Nanog act differently on synergistic and antagonistic enhancer types. Pou5f3 and Nanog both bind as pioneer-like TFs on synergistic enhancers, promote histone acetylation and activate transcription. Antagonistic enhancers are activated by binding of one of these factors. The other TF binds as non-pioneer-like TF, competes with the activator and blocks all its effects, partially or completely. This activator-blocker mechanism mutually restricts widespread transcriptional activation by Pou5f3 and Nanog and prevents premature expression of late developmental regulators in the early embryo.
Collapse
Affiliation(s)
- Aileen Julia Riesle
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Meijiang Gao
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany
| | - Marcus Rosenblatt
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany
| | - Jacques Hermes
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany
| | - Helge Hass
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany
| | - Anna Gebhard
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Marina Veil
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Björn Grüning
- Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104, Freiburg, Germany
| | - Jens Timmer
- Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany.
- Institute of Physics, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.
- Freiburg Center for Data Analysis and Modelling (FDM), 79104, Freiburg, Germany.
| | - Daria Onichtchouk
- Department of Developmental Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany.
- Institute of Developmental Biology RAS, 119991, Moscow, Russia.
| |
Collapse
|
7
|
Vainorius G, Novatchkova M, Michlits G, Baar JC, Raupach C, Lee J, Yelagandula R, Wernig M, Elling U. Ascl1 and Ngn2 convert mouse embryonic stem cells to neurons via functionally distinct paths. Nat Commun 2023; 14:5341. [PMID: 37660160 PMCID: PMC10475046 DOI: 10.1038/s41467-023-40803-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/09/2023] [Indexed: 09/04/2023] Open
Abstract
Ascl1 and Ngn2, closely related proneural transcription factors, are able to convert mouse embryonic stem cells into induced neurons. Despite their similarities, these factors elicit only partially overlapping transcriptional programs, and it remains unknown whether cells are converted via distinct mechanisms. Here we show that Ascl1 and Ngn2 induce mutually exclusive side populations by binding and activating distinct lineage drivers. Furthermore, Ascl1 rapidly dismantles the pluripotency network and installs neuronal and trophoblast cell fates, while Ngn2 generates a neural stem cell-like intermediate supported by incomplete shutdown of the pluripotency network. Using CRISPR-Cas9 knockout screening, we find that Ascl1 relies more on factors regulating pluripotency and the cell cycle, such as Tcf7l1. In the absence of Tcf7l1, Ascl1 still represses core pluripotency genes but fails to exit the cell cycle. However, overexpression of Cdkn1c induces cell cycle exit and restores the generation of neurons. These findings highlight that cell type conversion can occur through two distinct mechanistic paths, even when induced by closely related transcription factors.
Collapse
Affiliation(s)
- Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria.
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria.
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-BioCenter 1, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
- JLP Health GmbH, Himmelhofgasse 62, 1130, Vienna, Austria
| | - Juliane Christina Baar
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Cecilia Raupach
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Joonsun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Ramesh Yelagandula
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
- Laboratory of Epigenetics, Cell Fate & Disease, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, 500039, India
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
8
|
Hafner A, Park M, Berger SE, Murphy SE, Nora EP, Boettiger AN. Loop stacking organizes genome folding from TADs to chromosomes. Mol Cell 2023; 83:1377-1392.e6. [PMID: 37146570 PMCID: PMC10167645 DOI: 10.1016/j.molcel.2023.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Although population-level analyses revealed significant roles for CTCF and cohesin in mammalian genome organization, their contributions at the single-cell level remain incompletely understood. Here, we used a super-resolution microscopy approach to measure the effects of removal of CTCF or cohesin in mouse embryonic stem cells. Single-chromosome traces revealed cohesin-dependent loops, frequently stacked at their loop anchors forming multi-way contacts (hubs), bridging across TAD boundaries. Despite these bridging interactions, chromatin in intervening TADs was not intermixed, remaining separated in distinct loops around the hub. At the multi-TAD scale, steric effects from loop stacking insulated local chromatin from ultra-long range (>4 Mb) contacts. Upon cohesin removal, the chromosomes were more disordered and increased cell-cell variability in gene expression. Our data revise the TAD-centric understanding of CTCF and cohesin and provide a multi-scale, structural picture of how they organize the genome on the single-cell level through distinct contributions to loop stacking.
Collapse
Affiliation(s)
- Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Minhee Park
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Scott E Berger
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Sedona E Murphy
- Department of Developmental Biology, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
9
|
Li J, Dai C, Xie W, Zhang H, Huang X, Chronis C, Ye Y, Zhang W. A One-step strategy to target essential factors with auxin-inducible degron system in mouse embryonic stem cells. Front Cell Dev Biol 2022; 10:964119. [PMID: 36003152 PMCID: PMC9393215 DOI: 10.3389/fcell.2022.964119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The self-renewal and pluripotency of embryonic stem cells (ESCs) are conferred by networks including transcription factors and histone modifiers. The Auxin-inducible degron (AID) system can rapidly and reversibly degrade its target proteins and is becoming a powerful tool to explore novel function of key pluripotent and histone modifier genes in ESCs. However, the low biallelic tagging efficiency and a basal degradation level of the current AID systems deem it unsuitable to target key pluripotent genes with tightly controlled expression levels. Here, we develop a one-step strategy to successfully target and repress the endogenous pluripotent genes in mouse ESCs and replace their expression with AID fused transgenes. Therefore, this work provides an efficient way for employing the AID system to uncover novel function of essential pluripotent and chromatin modifier genes in ESCs.
Collapse
Affiliation(s)
- Jingsheng Li
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Chunhong Dai
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Wenyan Xie
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Heyao Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xin Huang
- Department of Computational Biology St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, Chicago, IL, United States
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
- *Correspondence: Ying Ye, ; Wensheng Zhang,
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
- Department of Physiology School of Basic Medical Sciences Binzhou Medical University, Yantai, China
- *Correspondence: Ying Ye, ; Wensheng Zhang,
| |
Collapse
|
10
|
Bernard LD, Dubois A, Heurtier V, Fischer V, Gonzalez I, Chervova A, Tachtsidi A, Gil N, Owens N, Bates L, Vandormael-Pournin S, Silva JCR, Ulitsky I, Cohen-Tannoudji M, Navarro P. OCT4 activates a Suv39h1-repressive antisense lncRNA to couple histone H3 Lysine 9 methylation to pluripotency. Nucleic Acids Res 2022; 50:7367-7379. [PMID: 35762231 PMCID: PMC9303268 DOI: 10.1093/nar/gkac550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Histone H3 Lysine 9 (H3K9) methylation, a characteristic mark of heterochromatin, is progressively implemented during development to contribute to cell fate restriction as differentiation proceeds. Accordingly, in undifferentiated and pluripotent mouse Embryonic Stem (ES) cells the global levels of H3K9 methylation are rather low and increase only upon differentiation. How global H3K9 methylation levels are coupled with the loss of pluripotency remains largely unknown. Here, we identify SUV39H1, a major H3K9 di- and tri-methylase, as an indirect target of the pluripotency network of Transcription Factors (TFs). We find that pluripotency TFs, principally OCT4, activate the expression of Suv39h1as, an antisense long non-coding RNA to Suv39h1. In turn, Suv39h1as downregulates Suv39h1 transcription in cis via a mechanism involving the modulation of the chromatin status of the locus. The targeted deletion of the Suv39h1as promoter region triggers increased SUV39H1 expression and H3K9me2 and H3K9me3 levels, affecting all heterochromatic regions, particularly peri-centromeric major satellites and retrotransposons. This increase in heterochromatinization efficiency leads to accelerated and more efficient commitment into differentiation. We report, therefore, a simple genetic circuitry coupling the genetic control of pluripotency with the global efficiency of H3K9 methylation associated with a major cell fate restriction, the irreversible loss of pluripotency.
Collapse
Affiliation(s)
- Laure D Bernard
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Agnès Dubois
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Victor Heurtier
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Véronique Fischer
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Inma Gonzalez
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Alexandra Tachtsidi
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Noa Gil
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nick Owens
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Lawrence E Bates
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - José C R Silva
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou510005, Guangdong Province, China
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Pablo Navarro
- To whom correspondence should be addressed. Tel: +33 145688285;
| |
Collapse
|
11
|
Abstract
POUV is a relatively newly emerged class of POU transcription factors present in jawed vertebrates (Gnathostomata). The function of POUV-class proteins is inextricably linked to zygotic genome activation (ZGA). A large body of evidence now extends the role of these proteins to subsequent developmental stages. While some functions resemble those of other POU-class proteins and are related to neuroectoderm development, others have emerged de novo. The most notable of the latter functions is pluripotency control by Oct4 in mammals. In this review, we focus on these de novo functions in the best-studied species harbouring POUV proteins-zebrafish, Xenopus (anamniotes) and mammals (amniotes). Despite the broad diversity of their biological functions in vertebrates, POUV proteins exert a common feature related to their role in safeguarding the undifferentiated state of cells. Here we summarize numerous pieces of evidence for these specific functions of the POUV-class proteins and recap available loss-of-function data.
Collapse
Affiliation(s)
- Evgeny I. Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexey N. Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
12
|
Xiong L, Tolen EA, Choi J, Velychko S, Caizzi L, Velychko T, Adachi K, MacCarthy CM, Lidschreiber M, Cramer P, Schöler HR. Oct4 differentially regulates chromatin opening and enhancer transcription in pluripotent stem cells. eLife 2022; 11:71533. [PMID: 35621159 PMCID: PMC9142147 DOI: 10.7554/elife.71533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The transcription factor Oct4 is essential for the maintenance and induction of stem cell pluripotency, but its functional roles are not fully understood. Here, we investigate the functions of Oct4 by depleting and subsequently recovering it in mouse embryonic stem cells (ESCs) and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to enhancers, accompanied by a decrease in mRNA synthesis from its target genes that are part of the transcriptional network that maintains pluripotency. Gradual decrease of Oct4 binding to enhancers does not immediately change the chromatin accessibility but reduces transcription of enhancers. Conversely, partial recovery of Oct4 expression results in a rapid increase in chromatin accessibility, whereas enhancer transcription does not fully recover. These results indicate different concentration-dependent activities of Oct4. Whereas normal ESC levels of Oct4 are required for transcription of pluripotency enhancers, low levels of Oct4 are sufficient to retain chromatin accessibility, likely together with other factors such as Sox2.
Collapse
Affiliation(s)
- Le Xiong
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Erik A Tolen
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Jinmi Choi
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Livia Caizzi
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Taras Velychko
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Kenjiro Adachi
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Caitlin M MacCarthy
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| |
Collapse
|
13
|
Oct4 dependent chromatin activation is required for chicken primordial germ cell migration. Stem Cell Rev Rep 2022; 18:2535-2546. [PMID: 35397052 DOI: 10.1007/s12015-022-10371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Primordial germ cells (PGCs) are the undifferentiated progenitors of the gametes. Unlike the poor maintenance of cultured mammalian PGCs, the avian PGCs can be expanded in vitro indefinitely while preserving pluripotency and germline competence. In mammals, the Oct4 is the master transcription factor that ensures the stemness of pluripotent cells such as PGCs, but the specific function of Oct4 in chicken PGCs remains unclear. As expected, the loss of Oct4 in chicken PGCs reduced the expression of key pluripotency factors and promoted the genes involved in endoderm and ectoderm differentiation. Furthermore, the global active chromatin was reduced as shown by the depletion of the H3K27ac upon Oct4 suppression. Interestingly, the de-activated chromatin caused the down-regulation of adjacent genes which are mostly known regulators of cell junction, chemotaxis and cell migration. Consequently, the Oct4-deficient PGCs show impaired cell migration and could not colonize the gonads when re-introduced into the bloodstream of the embryo. We propose that, in addition to maintaining pluripotency, the Oct4 mediated chromatin activation is dictating chicken PGC migration.
Collapse
|