1
|
Chan JFW, Yuan S, Chu H, Sridhar S, Yuen KY. COVID-19 drug discovery and treatment options. Nat Rev Microbiol 2024; 22:391-407. [PMID: 38622352 DOI: 10.1038/s41579-024-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
2
|
Shen Q, Zhou YH, Zhou YQ. A prospects tool in virus research: Analyzing the applications of organoids in virus studies. Acta Trop 2024; 254:107182. [PMID: 38479469 DOI: 10.1016/j.actatropica.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024]
Abstract
Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China
| | - Yu-Han Zhou
- College of Public Health, Jilin University, Changchun 130021, China
| | - Yan-Qiu Zhou
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China.
| |
Collapse
|
3
|
Jin YY, Liang YP, Huang WH, Guo L, Cheng LL, Ran TT, Yao JP, Zhu L, Chen JH. Ocular A-to-I RNA editing signatures associated with SARS-CoV-2 infection. BMC Genomics 2024; 25:431. [PMID: 38693480 PMCID: PMC11061923 DOI: 10.1186/s12864-024-10324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Wen-Hao Huang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Liang Guo
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Li-Li Cheng
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Tian-Tian Ran
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Jin-Ping Yao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Lin Zhu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
Monu M, Ahmad F, Olson RM, Balendiran V, Singh PK. SARS-CoV-2 infects cells lining the blood-retinal barrier and induces a hyperinflammatory immune response in the retina via systemic exposure. PLoS Pathog 2024; 20:e1012156. [PMID: 38598560 PMCID: PMC11034659 DOI: 10.1371/journal.ppat.1012156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
SARS-CoV-2 has been shown to cause wide-ranging ocular abnormalities and vision impairment in COVID-19 patients. However, there is limited understanding of SARS-CoV-2 in ocular transmission, tropism, and associated pathologies. The presence of viral RNA in corneal/conjunctival tissue and tears, along with the evidence of viral entry receptors on the ocular surface, has led to speculation that the eye may serve as a potential route of SARS-CoV-2 transmission. Here, we investigated the interaction of SARS-CoV-2 with cells lining the blood-retinal barrier (BRB) and the role of the eye in its transmission and tropism. The results from our study suggest that SARS-CoV-2 ocular exposure does not cause lung infection and moribund illness in K18-hACE2 mice despite the extended presence of viral remnants in various ocular tissues. In contrast, intranasal exposure not only resulted in SARS-CoV-2 spike (S) protein presence in different ocular tissues but also induces a hyperinflammatory immune response in the retina. Additionally, the long-term exposure to viral S-protein caused microaneurysm, retinal pigmented epithelium (RPE) mottling, retinal atrophy, and vein occlusion in mouse eyes. Notably, cells lining the BRB, the outer barrier, RPE, and the inner barrier, retinal vascular endothelium, were highly permissive to SARS-CoV-2 replication. Unexpectedly, primary human corneal epithelial cells were comparatively resistant to SARS-CoV-2 infection. The cells lining the BRB showed induced expression of viral entry receptors and increased susceptibility towards SARS-CoV-2-induced cell death. Furthermore, hyperglycemic conditions enhanced the viral entry receptor expression, infectivity, and susceptibility of SARS-CoV-2-induced cell death in the BRB cells, confirming the reported heightened pathological manifestations in comorbid populations. Collectively, our study provides the first evidence of SARS-CoV-2 ocular tropism via cells lining the BRB and that the virus can infect the retina via systemic permeation and induce retinal inflammation.
Collapse
Affiliation(s)
- Monu Monu
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Faraz Ahmad
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Rachel M. Olson
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Vaishnavi Balendiran
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Pawan Kumar Singh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| |
Collapse
|
5
|
Pan Y, Zhang J, He T. SARS-CoV-2 neurovascular invasion supported by Mendelian randomization. J Transl Med 2024; 22:101. [PMID: 38268029 PMCID: PMC10809787 DOI: 10.1186/s12967-024-04907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to affect vessels and nerves and can be easily visualized in the retina. However, the effect of SARS-CoV-2 on retinal morphology remains controversial. In the present research, we applied Mendelian randomization (MR) analysis to estimate the association between SARS-CoV-2 and changes in the thickness of the inner retina. METHODS Two-sample MR analysis was conducted using summary-level data from 3 open genome-wide association study databases concerning COVID-19 infection (2,942,817 participants) and COVID-19 hospitalization (2,401,372 participants); moreover, the dataset of inner retina thickness, including the macular retinal nerve fiber layer (mRNFL) and macular ganglion cell-inner plexiform layer (mGCIPL), included 31,434 optical coherence tomography (OCT) images derived from healthy UK Biobank participants. All the participants were of European ancestry. The inverse variance weighted (IVW) meta-analysis was used as our primary method. Various complementary MR approaches were established to provide robust causal estimates under different assumptions. RESULTS According to our MR analysis, genetically predicted COVID-19 infection was associated with an increased risk of mRNFL and mGCIPL thickness (OR = 1.74, 95% CI 1.20-2.52, P = 3.58 × 10-3; OR = 2.43, 95% CI 1.49-3.96, P = 3.6 × 10-4). The other MR methods produced consistent results. However, genetically predicted COVID-19 hospitalization did not affect the thickness of the inner retina (OR = 1.11, 95% CI 0.90-1.37, P = 0.32; OR = 1.28, 95% CI 0.88-1.85, P = 0.19). CONCLUSION This work provides the first genetically predictive causal evidence between COVID-19 infection and inner retinal thickness in a European population. These findings will contribute to further understanding of the pathogenesis of COVID-19 and stimulate improvements in treatment modalities.
Collapse
Affiliation(s)
- Yiji Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Eye Research Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
- Eye Research Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
- Eye Research Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Trofor AC, Robu Popa D, Melinte OE, Trofor L, Vicol C, Grosu-Creangă IA, Crișan Dabija RA, Cernomaz AT. Looking at the Data on Smoking and Post-COVID-19 Syndrome-A Literature Review. J Pers Med 2024; 14:97. [PMID: 38248798 PMCID: PMC10821354 DOI: 10.3390/jpm14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Long COVID is a recently described entity that is responsible for significant morbidity and that has consequences ranging from mild to life-threatening. The underlying mechanisms are not completely understood, and treatment options are currently limited, as existing data focus more on risk factors and predictors. Smoking has been reported as a risk factor for poor outcomes of acute SARS-CoV-2 infection and seems to also play a role in mediating post-COVID-19 symptoms. We aimed to review relevant work addressing the interaction between smoking and long COVID in order to characterize smoking's role as a risk factor and possibly identify new research directions. Methods: The PubMed/MEDLINE database was searched using the keywords 'smoking', 'long COVID', and 'post-acute COVID' to identify relevant English-language articles published up to October 2023. Results and conclusions: From the 374 initial hits, a total of 36 papers were deemed relevant to the aim of the review. There was significant variability concerning the ways in which tobacco usage was quantified and reported; still, there is compelling evidence linking smoking to an increased risk of developing manifestations of post-acute-COVID disease. Some clinical conditions, such as dyspnea, cardiovascular symptoms, and cognitive or mental-health impairment, seem to be relatively strongly associated with smoking, while the connection between smoking and upper-airway involvement seems less certain. The available data support recommending smoking cessation as a clinical tool for the prevention of long COVID.
Collapse
Affiliation(s)
- Antigona Carmen Trofor
- Discipline of Pneumology, III-rd Medical Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.T.); (O.E.M.); (C.V.); (I.A.G.-C.); (R.A.C.D.); (A.T.C.)
- Clinical Hospital of Pulmonary Diseases, 700116 Iasi, Romania
| | - Daniela Robu Popa
- Discipline of Pneumology, III-rd Medical Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.T.); (O.E.M.); (C.V.); (I.A.G.-C.); (R.A.C.D.); (A.T.C.)
| | - Oana Elena Melinte
- Discipline of Pneumology, III-rd Medical Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.T.); (O.E.M.); (C.V.); (I.A.G.-C.); (R.A.C.D.); (A.T.C.)
- Clinical Hospital of Pulmonary Diseases, 700116 Iasi, Romania
| | | | - Cristina Vicol
- Discipline of Pneumology, III-rd Medical Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.T.); (O.E.M.); (C.V.); (I.A.G.-C.); (R.A.C.D.); (A.T.C.)
| | - Ionela Alina Grosu-Creangă
- Discipline of Pneumology, III-rd Medical Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.T.); (O.E.M.); (C.V.); (I.A.G.-C.); (R.A.C.D.); (A.T.C.)
- Clinical Hospital of Pulmonary Diseases, 700116 Iasi, Romania
| | - Radu Adrian Crișan Dabija
- Discipline of Pneumology, III-rd Medical Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.T.); (O.E.M.); (C.V.); (I.A.G.-C.); (R.A.C.D.); (A.T.C.)
- Clinical Hospital of Pulmonary Diseases, 700116 Iasi, Romania
| | - Andrei Tudor Cernomaz
- Discipline of Pneumology, III-rd Medical Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.T.); (O.E.M.); (C.V.); (I.A.G.-C.); (R.A.C.D.); (A.T.C.)
| |
Collapse
|
7
|
Zhang J, Xia Y, Li X, He R, Xie X. Case report: A case of Acute Macular Neuroretinopathy secondary to Influenza A virus during Long COVID. Front Immunol 2024; 14:1302504. [PMID: 38288123 PMCID: PMC10822910 DOI: 10.3389/fimmu.2023.1302504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024] Open
Abstract
Ocular abnormalities have been reported in association with viral infections, including Long COVID, a debilitating illness caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This report presents a case of a female patient diagnosed with Acute Macular Neuroretinopathy (AMN) following an Influenza A virus infection during Long COVID who experienced severe inflammation symptoms and ocular complications. We hypothesize that the rare occurrence of AMN in this patient could be associated with the immune storm secondary to the viral infection during Long COVID.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihao Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaodong Li
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Runxi He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Li M, Yuan Y, Zou T, Hou Z, Jin L, Wang B. Development trends of human organoid-based COVID-19 research based on bibliometric analysis. Cell Prolif 2023; 56:e13496. [PMID: 37218396 PMCID: PMC10693193 DOI: 10.1111/cpr.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a catastrophic threat to human health worldwide. Human stem cell-derived organoids serve as a promising platform for exploring SARS-CoV-2 infection. Several review articles have summarized the application of human organoids in COVID-19, but the research status and development trend of this field have seldom been systematically and comprehensively studied. In this review, we use bibliometric analysis method to identify the characteristics of organoid-based COVID-19 research. First, an annual trend of publications and citations, the most contributing countries or regions and organizations, co-citation analysis of references and sources and research hotspots are determined. Next, systematical summaries of organoid applications in investigating the pathology of SARS-CoV-2 infection, vaccine development and drug discovery, are provided. Lastly, the current challenges and future considerations of this field are discussed. The present study will provide an objective angle to identify the current trend and give novel insights for directing the future development of human organoid applications in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Ting Zou
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zongkun Hou
- School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine)Guizhou Medical UniversityGuiyangChina
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
9
|
Sen HN, Vannella KM, Wang Y, Chung JY, Kodati S, Ramelli SC, Lee JW, Perez P, Stein SR, Grazioli A, Dickey JM, Ylaya K, Singh M, Yinda KC, Platt A, Ramos-Benitez MJ, Zerbe C, Munster VJ, de Wit E, Warner BM, Herr DL, Rabin J, Saharia KK, Kleiner DE, Hewitt SM, Chan CC, Chertow DS. Histopathology and SARS-CoV-2 Cellular Localization in Eye Tissues of COVID-19 Autopsies. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1809-1816. [PMID: 36963628 PMCID: PMC10032059 DOI: 10.1016/j.ajpath.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/24/2023]
Abstract
Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.
Collapse
Affiliation(s)
- H Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin M Vannella
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yujuan Wang
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Joon-Yong Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shilpa Kodati
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sabrina C Ramelli
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jung Wha Lee
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Sydney R Stein
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alison Grazioli
- Department of Medicine, R Adams Crowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - James M Dickey
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Manmeet Singh
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Kwe Claude Yinda
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Andrew Platt
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marcos J Ramos-Benitez
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland
| | - Christa Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Vincent J Munster
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Emmie de Wit
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Daniel L Herr
- Department of Medicine, R Adams Crowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph Rabin
- Department of Surgery and Program in Trauma, R Adams Crowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kapil K Saharia
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chi-Chao Chan
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel S Chertow
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
10
|
An Y, He Y, Ge N, Guo J, Yang F, Sun S. Organoids to Remodel SARS-CoV-2 Research: Updates, Limitations and Perspectives. Aging Dis 2023; 14:1677-1699. [PMID: 37196111 PMCID: PMC10529756 DOI: 10.14336/ad.2023.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 05/19/2023] Open
Abstract
The novel COVID-19 pneumonia caused by the SARS-CoV-2 virus poses a significant threat to human health. Scientists have made significant efforts to control this virus, consequently leading to the development of novel research methods. Traditional animal and 2D cell line models might not be suitable for large-scale applications in SARS-CoV-2 research owing to their limitations. As an emerging modelling method, organoids have been applied in the study of various diseases. Their advantages include their ability to closely mirror human physiology, ease of cultivation, low cost, and high reliability; thus, they are considered to be a suitable choice to further the research on SARS-CoV-2. During the course of various studies, SARS-CoV-2 was shown to infect a variety of organoid models, exhibiting changes similar to those observed in humans. This review summarises the various organoid models used in SARS-CoV-2 research, revealing the molecular mechanisms of viral infection and exploring the drug screening tests and vaccine research that have relied on organoid models, hence illustrating the role of organoids in remodelling SARS-CoV-2 research.
Collapse
Affiliation(s)
- Yucheng An
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| | - Yanjie He
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Nan Ge
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| | - Fan Yang
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Boufidou F, Medić S, Lampropoulou V, Siafakas N, Tsakris A, Anastassopoulou C. SARS-CoV-2 Reinfections and Long COVID in the Post-Omicron Phase of the Pandemic. Int J Mol Sci 2023; 24:12962. [PMID: 37629143 PMCID: PMC10454552 DOI: 10.3390/ijms241612962] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We are reviewing the current state of knowledge on the virological and immunological correlates of long COVID, focusing on recent evidence for the possible association between the increasing number of SARS-CoV-2 reinfections and the parallel pandemic of long COVID. The severity of reinfections largely depends on the severity of the initial episode; in turn, this is determined both by a combination of genetic factors, particularly related to the innate immune response, and by the pathogenicity of the specific variant, especially its ability to infect and induce syncytia formation at the lower respiratory tract. The cumulative risk of long COVID as well as of various cardiac, pulmonary, or neurological complications increases proportionally to the number of SARS-CoV-2 infections, primarily in the elderly. Therefore, the number of long COVID cases is expected to remain high in the future. Reinfections apparently increase the likelihood of long COVID, but less so if they are mild or asymptomatic as in children and adolescents. Strategies to prevent SARS-CoV-2 reinfections are urgently needed, primarily among older adults who have a higher burden of comorbidities. Follow-up studies using an established case definition and precise diagnostic criteria of long COVID in people with or without reinfection may further elucidate the contribution of SARS-CoV-2 reinfections to the long COVID burden. Although accumulating evidence supports vaccination, both before and after the SARS-CoV-2 infection, as a preventive strategy to reduce the risk of long COVID, more robust comparative observational studies, including randomized trials, are needed to provide conclusive evidence of the effectiveness of vaccination in preventing or mitigating long COVID in all age groups. Thankfully, answers not only on the prevention, but also on treatment options and rates of recovery from long COVID are gradually starting to emerge.
Collapse
Affiliation(s)
- Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Snežana Medić
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Vicky Lampropoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.L.); (A.T.)
| | - Nikolaos Siafakas
- Department of Clinical Microbiology, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.L.); (A.T.)
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.L.); (A.T.)
| |
Collapse
|
12
|
In the Eye of the Cytokine Storm: A Tale of SARS-CoV-2-Induced Acute Macular Neuroretinopathy. Cureus 2023; 15:e36797. [PMID: 36998919 PMCID: PMC10044158 DOI: 10.7759/cureus.36797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 03/30/2023] Open
Abstract
Acute macular neuroretinopathy (AMN) commonly affects young to middle-aged females and is considered a relatively rare retinal disease, and the etiology is complex. Advances in multimodal imaging provide a better characterization of retinal disorders and have helped identify that one of the etiologies of AMN is microvascular in nature. This case is clinically relevant as it adds to the literature that the pathophysiology of AMN is vascular-driven. Our case is a 24-year-old Black female with no past medical history, the only medication she was taking was an oral contraceptive pill, who presented to the emergency room with a 24-hour history of left central field vision loss and endorsed a recent upper respiratory tract infection preceding the acute vision loss. It was subsequently found on admission that the patient tested positive for and had a SARS-CoV-2 infection. A retina specialist performed optical coherence tomography (OCT), which showed disruption in the outer segment junction, including the ellipsoid zone and outer plexiform. The use of multimodal imaging like OCT helped confirm AMN; therefore, prompt examination by ophthalmology is critical to confirm a correct diagnosis. This patient’s vision improved and remained stable five months later. This case demonstrates that, like other viruses, SARS-CoV-2 has the potential to cause retinal disease complications such as AMN. These findings reinforce and add to the current literature that SARS-CoV-2 can cause multiple-organ system dysfunction at a vascular level through immune-mediated pathways.
Collapse
|
13
|
Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 2023; 21:133-146. [PMID: 36639608 PMCID: PMC9839201 DOI: 10.1038/s41579-022-00846-2] [Citation(s) in RCA: 1448] [Impact Index Per Article: 1448.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/15/2023]
Abstract
Long COVID is an often debilitating illness that occurs in at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. More than 200 symptoms have been identified with impacts on multiple organ systems. At least 65 million individuals worldwide are estimated to have long COVID, with cases increasing daily. Biomedical research has made substantial progress in identifying various pathophysiological changes and risk factors and in characterizing the illness; further, similarities with other viral-onset illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome have laid the groundwork for research in the field. In this Review, we explore the current literature and highlight key findings, the overlap with other conditions, the variable onset of symptoms, long COVID in children and the impact of vaccinations. Although these key findings are critical to understanding long COVID, current diagnostic and treatment options are insufficient, and clinical trials must be prioritized that address leading hypotheses. Additionally, to strengthen long COVID research, future studies must account for biases and SARS-CoV-2 testing issues, build on viral-onset research, be inclusive of marginalized populations and meaningfully engage patients throughout the research process.
Collapse
Affiliation(s)
| | | | - Julia Moore Vogel
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
14
|
Brechbühl J, Ferreira F, Lopes AC, Corset E, Gilliand N, Broillet MC. Ocular Symptoms Associated with COVID-19 Are Correlated with the Expression Profile of Mouse SARS-CoV-2 Binding Sites. Viruses 2023; 15:354. [PMID: 36851565 PMCID: PMC9961464 DOI: 10.3390/v15020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The COVID-19 pandemic has engendered significant scientific efforts in the understanding of its infectious agent SARS-CoV-2 and of its associated symptoms. A peculiar characteristic of this virus lies in its ability to challenge our senses, as its infection can lead to anosmia and ageusia. While ocular symptoms, such as conjunctivitis, optic neuritis or dry eyes, are also reported after viral infection, they have lower frequencies and severities, and their functional development is still elusive. Here, using combined technical approaches based on histological and gene profiling methods, we characterized the expression of SARS-CoV-2 binding sites (Ace2/Tmprss2) in the mouse eye. We found that ACE2 was ectopically expressed in subtissular ocular regions, such as in the optic nerve and in the Harderian/intraorbital lacrimal glands. Moreover, we observed an important variation of Ace2/Tmprss2 expression that is not only dependent on the age and sex of the animal, but also highly heterogenous between individuals. Our results thus give new insight into the expression of SARS-CoV-2 binding sites in the mouse eye and propose an interpretation of the human ocular-associated symptoms linked to SARS-CoV-2.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| | | | | | | | | | - Marie-Christine Broillet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland
| |
Collapse
|
15
|
Cheng L, Kuehn MH. Human Retinal Organoids in Therapeutic Discovery: A Review of Applications. Handb Exp Pharmacol 2023; 281:157-187. [PMID: 37608005 DOI: 10.1007/164_2023_691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Human embryonic stem cells (hESCs)- and induced pluripotent stem cells (hiPSCs)-derived retinal organoids (ROs) are three-dimensional laminar structures that recapitulate the developmental trajectory of the human retina. The ROs provide a fascinating tool for basic science research, eye disease modeling, treatment development, and biobanking for tissue/cell replacement. Here we review the previous studies that paved the way for RO technology, the two most widely accepted, standardized protocols to generate ROs, and the utilization of ROs in medical discovery. This review is conducted from the perspective of basic science research, transplantation for regenerative medicine, disease modeling, and therapeutic development for drug screening and gene therapy. ROs have opened avenues for new technologies such as assembloids, coculture with other organoids, vasculature or immune cells, microfluidic devices (organ-on-chip), extracellular vesicles for drug delivery, biomaterial engineering, advanced imaging techniques, and artificial intelligence (AI). Nevertheless, some shortcomings of ROs currently limit their translation for medical applications and pose a challenge for future research. Despite these limitations, ROs are a powerful tool for functional studies and therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA.
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
16
|
Roy B, Runa SA. SARS-CoV-2 infection and diabetes: Pathophysiological mechanism of multi-system organ failure. World J Virol 2022; 11:252-274. [PMID: 36188734 PMCID: PMC9523319 DOI: 10.5501/wjv.v11.i5.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of the coronavirus disease 2019 outbreak, a vast majority of studies have been carried out that confirmed the worst outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in people with preexisting health conditions, including diabetes, obesity, hypertension, cancer, and cardiovascular diseases. Likewise, diabetes itself is one of the leading causes of global public health concerns that impose a heavy global burden on public health as well as socio-economic development. Both diabetes and SARS-CoV-2 infection have their independent ability to induce the pathogenesis and severity of multi-system organ failure, while the co-existence of these two culprits can accelerate the rate of disease progression and magnify the severity of the disease. However, the exact pathophysiology of multi-system organ failure in diabetic patients after SARS-CoV-2 infection is still obscure. This review summarized the organ-specific possible molecular mechanisms of SARS-CoV-2 and diabetes-induced pathophysiology of several diseases of multiple organs, including the lungs, heart, kidneys, brain, eyes, gastrointestinal system, and bones, and sub-sequent manifestation of multi-system organ failure.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Physiology, Wayne State University, Detroit, MI 48201, United States
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Sadia Afrin Runa
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
17
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|