1
|
Werner JM, Gillis J. Meta-analysis of single-cell RNA sequencing co-expression in human neural organoids reveals their high variability in recapitulating primary tissue. PLoS Biol 2024; 22:e3002912. [PMID: 39621752 PMCID: PMC11637388 DOI: 10.1371/journal.pbio.3002912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2024] [Accepted: 10/24/2024] [Indexed: 12/14/2024] Open
Abstract
Human neural organoids offer an exciting opportunity for studying inaccessible human-specific brain development; however, it remains unclear how precisely organoids recapitulate fetal/primary tissue biology. We characterize field-wide replicability and biological fidelity through a meta-analysis of single-cell RNA-sequencing data for first and second trimester human primary brain (2.95 million cells, 51 data sets) and neural organoids (1.59 million cells, 173 data sets). We quantify the degree primary tissue cell type marker expression and co-expression are recapitulated in organoids across 10 different protocol types. By quantifying gene-level preservation of primary tissue co-expression, we show neural organoids lie on a spectrum ranging from virtually no signal to co-expression indistinguishable from primary tissue, demonstrating a high degree of variability in biological fidelity among organoid systems. Our preserved co-expression framework provides cell type-specific measures of fidelity applicable to diverse neural organoids, offering a powerful tool for uncovering unifying axes of variation across heterogeneous neural organoid experiments.
Collapse
Affiliation(s)
- Jonathan M. Werner
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jesse Gillis
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Kumar S, Hsiao YW, Wong VHY, Aubin D, Wang JH, Lisowski L, Rakoczy EP, Li F, Alarcon-Martinez L, Gonzalez-Cordero A, Bui BV, Liu GS. Characterization of RNA editing and gene therapy with a compact CRISPR-Cas13 in the retina. Proc Natl Acad Sci U S A 2024; 121:e2408345121. [PMID: 39475642 PMCID: PMC11551378 DOI: 10.1073/pnas.2408345121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
CRISPR-Cas13 nucleases are programmable RNA-targeting effectors that can silence gene expression in a transient manner. Recent iterations of Cas13 nucleases are compact for adeno-associated virus (AAV) delivery to achieve strong and persistent expression of various organs in a safe manner. Here, we report significant transcriptomic signatures of Cas13bt3 expression in retinal cells and show all-in-one AAV gene therapy with Cas13bt3 can effectively silence VEGFA mRNA in human retinal organoids and humanized VEGF transgenic mouse (trVEGF029, Kimba) models. Specifically, human embryonic stem cells (hESC)-derived retinal pigment epithelium cells show high expression of Cas13bt3 from virus delivery corresponding to a significant reduction of VEGFA mRNA. We further show that intravitreal delivery of Cas13bt3 by AAV2.7m8 can efficiently transduce mouse retinal cells for specific knockdown of human VEGFA in the Kimba mouse. Our results reveal important considerations for assessing Cas13 activity, and establish the Cas13bt3 RNA editing system as a potential anti-VEGF agent that can achieve significant control of VEGFA for the treatment of retinal neovascularization.
Collapse
Affiliation(s)
- Satheesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC3002, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS7000, Australia
| | - Yi-Wen Hsiao
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC3002, Australia
| | - Vickie H. Y. Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC3052, Australia
| | - Deborah Aubin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW2050, Australia
- Stem Cell Medicine and Stem Cell and Organoid Facility, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW2145, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC3002, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw04-349, Poland
- Australian Genome Therapeutics Centre, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Westmead, NSW2145, Australia
| | - Elizabeth P. Rakoczy
- Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA6009, Australia
| | - Fan Li
- Eye Center, Zhongshan City People’s Hospital, Zhongshan, Guangdong Province528403, China
| | - Luis Alarcon-Martinez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC3002, Australia
| | - Anai Gonzalez-Cordero
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW2050, Australia
- Stem Cell Medicine and Stem Cell and Organoid Facility, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW2145, Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC3052, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC3002, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS7000, Australia
| |
Collapse
|
3
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10802-7. [PMID: 39422807 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
Matsushita T, Onishi A, Matsuyama T, Masuda T, Ogino Y, Kageyama M, Takahashi M, Uchiumi F. Rapid and efficient generation of mature retinal organoids derived from human pluripotent stem cells via optimized pharmacological modulation of Sonic hedgehog, activin A, and retinoic acid signal transduction. PLoS One 2024; 19:e0308743. [PMID: 39121095 PMCID: PMC11315325 DOI: 10.1371/journal.pone.0308743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Abstract
Human retinal organoids have become indispensable tools for retinal disease modeling and drug screening. Despite its versatile applications, the long timeframe for their differentiation and maturation limits the throughput of such research. Here, we successfully shortened this timeframe by accelerating human retinal organoid development using unique pharmacological approaches. Our method comprised three key steps: 1) a modified self-formed ectodermal autonomous multizone (SEAM) method, including dual SMAD inhibition and bone morphogenetic protein 4 treatment, for initial neural retinal induction; 2) the concurrent use of a Sonic hedgehog agonist SAG, activin A, and all-trans retinoic acid for rapid retinal cell specification; and 3) switching to SAG treatment alone for robust retinal maturation and lamination. The generated retinal organoids preserved typical morphological features of mature retinal organoids, including hair-like surface structures and well-organized outer layers. These features were substantiated by the spatial immunostaining patterns of several retinal cell markers, including rhodopsin and L/M opsin expression in the outermost layer, which was accompanied by reduced ectopic cone photoreceptor generation. Importantly, our method required only 90 days for retinal organoid maturation, which is approximately two-thirds the time necessary for other conventional methods. These results indicate that thoroughly optimized pharmacological interventions play a pivotal role in rapid and precise photoreceptor development during human retinal organoid differentiation and maturation. Thus, our present method may expedite human retinal organoid research, eventually contributing to the development of better treatment options for various degenerative retinal diseases.
Collapse
Affiliation(s)
- Tokiyoshi Matsushita
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Akishi Onishi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Takahiro Matsuyama
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Yoko Ogino
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
| | - Masaaki Kageyama
- Product Discovery, Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Ikoma, Nara, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Cell and Gene Therapy in Ophthalmology Laboratory, Baton Zone Program, RIKEN, Wako, Saitama, Japan
| | - Fumiaki Uchiumi
- Faculty of Pharmaceutical Sciences, Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
5
|
Dorgau B, Collin J, Rozanska A, Boczonadi V, Moya-Molina M, Unsworth A, Hussain R, Coxhead J, Dhanaseelan T, Armstrong L, Queen R, Lako M. Deciphering the spatiotemporal transcriptional and chromatin accessibility of human retinal organoid development at the single-cell level. iScience 2024; 27:109397. [PMID: 38510120 PMCID: PMC10952046 DOI: 10.1016/j.isci.2024.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Molecular information on the early stages of human retinal development remains scarce due to limitations in obtaining early human eye samples. Pluripotent stem cell-derived retinal organoids (ROs) provide an unprecedented opportunity for studying early retinogenesis. Using a combination of single cell RNA-seq and spatial transcriptomics we present for the first-time a single cell spatiotemporal transcriptome of RO development. Our data demonstrate that ROs recapitulate key events of retinogenesis including optic vesicle/cup formation, presence of a putative ciliary margin zone, emergence of retinal progenitor cells and their orderly differentiation to retinal neurons. Combining the scRNA- with scATAC-seq data, we were able to reveal cell-type specific transcription factor binding motifs on accessible chromatin at each stage of organoid development, and to show that chromatin accessibility is highly correlated to the developing human retina, but with some differences in the temporal emergence and abundance of some of the retinal neurons.
Collapse
Affiliation(s)
- Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Agata Rozanska
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Veronika Boczonadi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Marina Moya-Molina
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
- Newcells Biotech, Newcastle upon Tyne NE4 5BX, UK
| | - Adrienne Unsworth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Tamil Dhanaseelan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
6
|
Spirig SE, Renner M. Toward Retinal Organoids in High-Throughput. Cold Spring Harb Perspect Med 2024; 14:a041275. [PMID: 37217280 PMCID: PMC10910359 DOI: 10.1101/cshperspect.a041275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human retinal organoids recapitulate the cellular diversity, arrangement, gene expression, and functional aspects of the human retina. Protocols to generate human retinal organoids from pluripotent stem cells are typically labor intensive, include many manual handling steps, and the organoids need to be maintained for several months until they mature. To generate large numbers of human retinal organoids for therapy development and screening purposes, scaling up retinal organoid production, maintenance, and analysis is of utmost importance. In this review, we discuss strategies to increase the number of high-quality retinal organoids while reducing manual handling steps. We further review different approaches to analyze thousands of retinal organoids with currently available technologies and point to challenges that still await to be overcome both in culture and analysis of retinal organoids.
Collapse
Affiliation(s)
- Stefan Erich Spirig
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Werner JM, Gillis J. Preservation of co-expression defines the primary tissue fidelity of human neural organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535112. [PMID: 37034757 PMCID: PMC10081321 DOI: 10.1101/2023.03.31.535112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Human neural organoid models offer an exciting opportunity for studying often inaccessible human-specific brain development; however, it remains unclear how precisely organoids recapitulate fetal/primary tissue biology. Here, we characterize field-wide replicability and biological fidelity through a meta-analysis of single-cell RNA-sequencing data for first and second trimester human primary brain (2.95 million cells, 51 datasets) and neural organoids (1.63 million cells, 130 datasets). We quantify the degree to which primary tissue cell-type marker expression and co-expression are recapitulated in organoids across 12 different protocol types. By quantifying gene-level preservation of primary tissue co-expression, we show neural organoids lie on a spectrum ranging from virtually no signal to co-expression near indistinguishable from primary tissue data, demonstrating high fidelity is within the scope of current methods. Additionally, we show neural organoids preserve the cell-type specific co-expression of developing rather than adult cells, confirming organoids are an appropriate model for primary tissue development. Overall, quantifying the preservation of primary tissue co-expression is a powerful tool for uncovering unifying axes of variation across heterogeneous neural organoid experiments.
Collapse
Affiliation(s)
- Jonathan M Werner
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse Gillis
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Carido M, Völkner M, Steinheuer LM, Wagner F, Kurth T, Dumler N, Ulusoy S, Wieneke S, Norniella AV, Golfieri C, Khattak S, Schönfelder B, Scamozzi M, Zoschke K, Canzler S, Hackermüller J, Ader M, Karl MO. Reliability of human retina organoid generation from hiPSC-derived neuroepithelial cysts. Front Cell Neurosci 2023; 17:1166641. [PMID: 37868194 PMCID: PMC10587494 DOI: 10.3389/fncel.2023.1166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.
Collapse
Affiliation(s)
- Madalena Carido
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Manuela Völkner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lisa Maria Steinheuer
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Felix Wagner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Core Facility Electron Microscopy and Histology, TU Dresden, Dresden, Germany
| | - Natalie Dumler
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Selen Ulusoy
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Stephanie Wieneke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | | | - Cristina Golfieri
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Shahryar Khattak
- Center for Molecular and Cellular Bioengineering (CMCB), Stem Cell Engineering Facility, TU Dresden, Dresden, Germany
| | - Bruno Schönfelder
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Maria Scamozzi
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Katja Zoschke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Sebastian Canzler
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Mike O Karl
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| |
Collapse
|