1
|
Bhardwaj P, Iyengar NM, Zahid H, Carter KM, Byun DJ, Choi MH, Sun Q, Savenkov O, Louka C, Liu C, Piloco P, Acosta M, Bareja R, Elemento O, Foronda M, Dow LE, Oshchepkova S, Giri DD, Pollak M, Zhou XK, Hopkins BD, Laughney AM, Frey MK, Ellenson LH, Morrow M, Spector JA, Cantley LC, Brown KA. Obesity promotes breast epithelium DNA damage in women carrying a germline mutation in BRCA1 or BRCA2. Sci Transl Med 2023; 15:eade1857. [PMID: 36812344 PMCID: PMC10557057 DOI: 10.1126/scitranslmed.ade1857] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Obesity, defined as a body mass index (BMI) ≥ 30, is an established risk factor for breast cancer among women in the general population after menopause. Whether elevated BMI is a risk factor for women with a germline mutation in BRCA1 or BRCA2 is less clear because of inconsistent findings from epidemiological studies and a lack of mechanistic studies in this population. Here, we show that DNA damage in normal breast epithelia of women carrying a BRCA mutation is positively correlated with BMI and with biomarkers of metabolic dysfunction. In addition, RNA sequencing showed obesity-associated alterations to the breast adipose microenvironment of BRCA mutation carriers, including activation of estrogen biosynthesis, which affected neighboring breast epithelial cells. In breast tissue explants cultured from women carrying a BRCA mutation, we found that blockade of estrogen biosynthesis or estrogen receptor activity decreased DNA damage. Additional obesity-associated factors, including leptin and insulin, increased DNA damage in human BRCA heterozygous epithelial cells, and inhibiting the signaling of these factors with a leptin-neutralizing antibody or PI3K inhibitor, respectively, decreased DNA damage. Furthermore, we show that increased adiposity was associated with mammary gland DNA damage and increased penetrance of mammary tumors in Brca1+/- mice. Overall, our results provide mechanistic evidence in support of a link between elevated BMI and breast cancer development in BRCA mutation carriers. This suggests that maintaining a lower body weight or pharmacologically targeting estrogen or metabolic dysfunction may reduce the risk of breast cancer in this population.
Collapse
Affiliation(s)
- Priya Bhardwaj
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Neil M. Iyengar
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heba Zahid
- Department of Medical Laboratory Technology, College of Applied Medical Science, Taibah University, Medina 42353, Saudi Arabia
| | | | - Dong Jun Byun
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Qi Sun
- Computational Biology Service Unit of Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA
| | - Oleksandr Savenkov
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Charalambia Louka
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Catherine Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Phoebe Piloco
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Monica Acosta
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miguel Foronda
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lukas E. Dow
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sofya Oshchepkova
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dilip D. Giri
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Pollak
- Departments of Medicine and Oncology, McGill University, Montreal, Canada
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin D. Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashley M. Laughney
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melissa K. Frey
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lora Hedrick Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Monica Morrow
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason A. Spector
- Laboratory of Bioregenerative Medicine and Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lewis C. Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
2
|
Ka NL, Lim GY, Kim SS, Hwang S, Han J, Lee YH, Lee MO. Type I IFN stimulates IFI16-mediated aromatase expression in adipocytes that promotes E 2-dependent growth of ER-positive breast cancer. Cell Mol Life Sci 2022; 79:306. [PMID: 35593921 PMCID: PMC9122892 DOI: 10.1007/s00018-022-04333-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Although type I interferons (IFNs) play multifaceted roles during tumorigenesis and cancer treatment, the interplay between type I IFNs and estrogen signaling in breast cancer (BC) microenvironment is not well understood. Here, we report a novel function of type I IFNs in inducing aromatase expression in adipose tissues surrounding BC, which potentiates the E2-dependent growth of estrogen receptor (ER)-positive BC. First, we found that expression levels of type I IFNs correlate negatively with clinical outcome but positively with tumor grade in patients with ER-positive BC. Levels of type I IFNs were elevated in cocultured media of immune cells and BC cells, which increased aromatase expression and E2 production in Simpson-Golabi-Behmel syndrome preadipocytes. The type I IFN-induced aromatase expression was dependent on IFN-γ-inducible protein 16 (IFI16), which is encoded by an interferon-stimulated gene. At the molecular level, type I IFNs led to recruitment of HIF1α-IFI16-PRMT2 complex to the hypoxia-response element located in the aromatase PI.3/PII promoter. Next, we generated an adipocyte-specific Ifi204, which is a mouse ortholog of human IFI16, knockout mouse (Ifi204-AKO). IFNβ induced E2 production in the preadipocytes isolated from the control mice, but such E2 production was far lower in the Ifi204-AKO preadipocytes. Importantly, the growth of orthotopically inoculated E0771 ER-positive mammary tumors was reduced significantly in the Ifi204-AKO mice. Taken together, our findings provide novel insights into the crosstalk between type I IFNs and estrogen signaling in the progression of ER-positive BC.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Juhyeong Han
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Yun-Hee Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Rubinstein MM, Brown KA, Iyengar NM. Targeting obesity-related dysfunction in hormonally driven cancers. Br J Cancer 2021; 125:495-509. [PMID: 33911195 PMCID: PMC8368182 DOI: 10.1038/s41416-021-01393-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is a risk factor for at least 13 different types of cancer, many of which are hormonally driven, and is associated with increased cancer incidence and morbidity. Adult obesity rates are steadily increasing and a subsequent increase in cancer burden is anticipated. Obesity-related dysfunction can contribute to cancer pathogenesis and treatment resistance through various mechanisms, including those mediated by insulin, leptin, adipokine, and aromatase signalling pathways, particularly in women. Furthermore, adiposity-related changes can influence tumour vascularity and inflammation in the tumour microenvironment, which can support tumour development and growth. Trials investigating non-pharmacological approaches to target the mechanisms driving obesity-mediated cancer pathogenesis are emerging and are necessary to better appreciate the interplay between malignancy, adiposity, diet and exercise. Diet, exercise and bariatric surgery are potential strategies to reverse the cancer-promoting effects of obesity; trials of these interventions should be conducted in a scientifically rigorous manner with dose escalation and appropriate selection of tumour phenotypes and have cancer-related clinical and mechanistic endpoints. We are only beginning to understand the mechanisms by which obesity effects cell signalling and systemic factors that contribute to oncogenesis. As the rates of obesity and cancer increase, we must promote the development of non-pharmacological lifestyle trials for the treatment and prevention of malignancy.
Collapse
Affiliation(s)
- Maria M. Rubinstein
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Kristy A. Brown
- grid.5386.8000000041936877XDepartment of Biochemistry in Medicine, Weill Cornell Medical College, New York, NY USA
| | - Neil M. Iyengar
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| |
Collapse
|
4
|
Abstract
This Review focuses on the mechanistic evidence for a link between obesity, dysregulated cellular metabolism and breast cancer. Strong evidence now links obesity with the development of 13 different types of cancer, including oestrogen receptor-positive breast cancer in postmenopausal women. A number of local and systemic changes are hypothesized to support this relationship, including increased circulating levels of insulin and glucose as well as adipose tissue-derived oestrogens, adipokines and inflammatory mediators. Metabolic pathways of energy production and utilization are dysregulated in tumour cells and this dysregulation is a newly accepted hallmark of cancer. Dysregulated metabolism is also hypothesized to be a feature of non-neoplastic cells in the tumour microenvironment. Obesity-associated factors regulate metabolic pathways in both breast cancer cells and cells in the breast microenvironment, which provides a molecular link between obesity and breast cancer. Consequently, interventions that target these pathways might provide a benefit in postmenopausal women and individuals with obesity, a population at high risk of breast cancer.
Collapse
Affiliation(s)
- Kristy A Brown
- Sandra and Edward Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Bhardwaj P, Brown KA. Obese Adipose Tissue as a Driver of Breast Cancer Growth and Development: Update and Emerging Evidence. Front Oncol 2021; 11:638918. [PMID: 33859943 PMCID: PMC8042134 DOI: 10.3389/fonc.2021.638918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is an established risk factor for breast cancer growth and progression. A number of advances have been made in recent years revealing new insights into this link. Early events in breast cancer development involve the neoplastic transformation of breast epithelial cells to cancer cells. In obesity, breast adipose tissue undergoes significant hormonal and inflammatory changes that create a mitogenic microenvironment. Many factors that are produced in obesity have also been shown to promote tumorigenesis. Given that breast epithelial cells are surrounded by adipose tissue, the crosstalk between the adipose compartment and breast epithelial cells is hypothesized to be a significant player in the initiation and progression of breast cancer in individuals with excess adiposity. The present review examines this crosstalk with a focus on obese breast adipose-derived estrogen, inflammatory mediators and adipokines, and how they are mechanistically linked to breast cancer risk and growth through stimulation of oxidative stress, DNA damage, and pro-oncogenic transcriptional programs. Pharmacological and lifestyle strategies targeting these factors and their downstream effects are evaluated for feasibility and efficacy in decreasing the risk of obesity-induced breast epithelial cell transformation and consequently, breast cancer development.
Collapse
Affiliation(s)
- Priya Bhardwaj
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
6
|
Pimentel I, Chen BE, Lohmann AE, Ennis M, Ligibel J, Shepherd L, Hershman DL, Whelan T, Stambolic V, Mayer I, Hobday T, Lemieux J, Thompson A, Rastogi P, Gelmon K, Rea D, Rabaglio M, Ellard S, Mates M, Bedard P, Pitre L, Vandenberg T, Dowling RJO, Parulekar W, Goodwin PJ. The Effect of Metformin vs Placebo on Sex Hormones in Canadian Cancer Trials Group MA.32. J Natl Cancer Inst 2021; 113:192-198. [PMID: 33527137 PMCID: PMC7850529 DOI: 10.1093/jnci/djaa082] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Metformin has been associated with lower breast cancer (BC) risk and improved outcomes in observational studies. Multiple biologic mechanisms have been proposed, including a recent report of altered sex hormones. We evaluated the effect of metformin on sex hormones in MA.32, a phase III trial of nondiabetic BC subjects who were randomly assigned to metformin or placebo. METHODS We studied the subgroup of postmenopausal hormone receptor-negative BC subjects not receiving endocrine treatment who provided fasting blood at baseline and at 6 months after being randomly assigned. Sex hormone-binding globulin, bioavailable testosterone, and estradiol levels were assayed using electrochemiluminescence immunoassay. Change from baseline to 6 months between study arms was compared using Wilcoxon sum rank tests and regression models. RESULTS 312 women were eligible (141 metformin vs 171 placebo); the majority of subjects in each arm had T1/2, N0, HER2-negative BC and had received (neo)adjuvant chemotherapy. Mean age was 58.1 (SD=6.9) vs 57.5 (SD=7.9) years, mean body mass index (BMI) was 27.3 (SD=5.5) vs 28.9 (SD=6.4) kg/m2 for metformin vs placebo, respectively. Median estradiol decreased between baseline and 6 months on metformin vs placebo (-5.7 vs 0 pmol/L; P < .001) in univariable analysis and after controlling for baseline BMI and BMI change (P < .001). There was no change in sex hormone-binding globulin or bioavailable testosterone. CONCLUSION Metformin lowered estradiol levels, independent of BMI. This observation suggests a new metformin effect that has potential relevance to estrogen sensitive cancers.
Collapse
Affiliation(s)
- Isabel Pimentel
- Vall d`Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Bingshu E Chen
- Canadian Cancer Trials Group, Queen’s University–Cancer Research Institute, Kingston, ON, Canada
| | | | | | | | - Lois Shepherd
- Canadian Cancer Trials Group, Queen’s University–Cancer Research Institute, Kingston, ON, Canada
| | - Dawn L Hershman
- Herbert Irving Cancer Center, Columbia University, New York, NY, USA
| | - Timothy Whelan
- Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, ON, Canada
| | - Vuk Stambolic
- University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - Ingrid Mayer
- Vanderbilt University, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Julie Lemieux
- CHA-Hopital Du St-Sacrement, Hopital Enfant Jesus Site, Quebec City, Canada
| | | | - Priya Rastogi
- National Surgical Adjuvant Breast and Bowel Project, Pittsburgh, PA, USA
| | - Karen Gelmon
- BCCA–Vancouver Cancer Centre, Vancouver, BC, Canada
| | - Daniel Rea
- Institute of Cancer Research, Clinical Trials and Statistics Unit, Sutton, UK
| | | | - Susan Ellard
- BCCA-Cancer Centre for the Southern Interior, Kelowna, BC, Canada
| | - Mihaela Mates
- Cancer Centre of Southeastern Ontario, Kingston, ON, Canada
| | - Philippe Bedard
- University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | | | | | - Ryan J O Dowling
- University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - Wendy Parulekar
- Canadian Cancer Trials Group , Queen’s University–Cancer Research Institute, Kingston, ON, Canada
| | - Pamela J Goodwin
- Lunenfeld Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F, Giulivi C, Dupont J, Froment P. Metformin in Reproductive Biology. Front Endocrinol (Lausanne) 2018; 9:675. [PMID: 30524372 PMCID: PMC6262031 DOI: 10.3389/fendo.2018.00675] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Initially produced in Europe in 1958, metformin is still one of the most widely prescribed drugs to treat type II diabetes and other comorbidities associated with insulin resistance. Metformin has been shown to improve fertility outcomes in females with insulin resistance associated with polycystic ovary syndrome (PCOS) and in obese males with reduced fertility. Metformin treatment reinstates menstrual cyclicity, decreases the incidence of cesareans, and limits the number of premature births. Notably, metformin reduces steroid levels in conditions associated with hyperandrogenism (e.g., PCOS and precocious puberty) in females and improves fertility of adult men with metabolic syndrome through increased testosterone production. While the therapeutical use of metformin is considered to be safe, in the last 10 years some epidemiological studies have described phenotypic differences after prenatal exposure to metformin. The goals of this review are to briefly summarize the current knowledge on metformin focusing on its effects on the female and male reproductive organs, safety concerns, including the potential for modulating fetal imprinting via epigenetics.
Collapse
Affiliation(s)
- Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Alice Bongrani
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, Verneuil-en-Halatte, France
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, Davis, Davis, CA, United States
| | - Joelle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| |
Collapse
|
8
|
Gérard C, Brown KA. Obesity and breast cancer - Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 2018; 466:15-30. [PMID: 28919302 DOI: 10.1016/j.mce.2017.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
One in eight women will develop breast cancer over their lifetime making it the most common female cancer. The cause of breast cancer is multifactorial and includes hormonal, genetic and environmental cues. Obesity is now an accepted risk factor for breast cancer in postmenopausal women, particularly for the hormone-dependent subtype of breast cancer. Obesity, which is characterized by an excess accumulation of body fat, is at the origin of chronic inflammation of white adipose tissue and is associated with dramatic changes in the biology of adipocytes leading to their dysfunction. Inflammatory factors found in the breast of obese women considerably impact estrogen signaling, mainly by driving changes in aromatase expression the enzyme responsible for estrogen production, and therefore promote tumor formation and progression. There is thus a strong link between adipose inflammation and estrogen biosynthesis and their signaling pathways converge in obese patients. This review describes how obesity-related factors can affect the risk of hormone-dependent breast cancer, highlighting the different molecular mechanisms and metabolic pathways involved in aromatase regulation, estrogen production and breast malignancy in the context of obesity.
Collapse
Affiliation(s)
- Céline Gérard
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Zahid H, Simpson ER, Brown KA. Inflammation, dysregulated metabolism and aromatase in obesity and breast cancer. Curr Opin Pharmacol 2016; 31:90-96. [PMID: 27875786 DOI: 10.1016/j.coph.2016.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022]
Abstract
Obesity is associated with an increased risk of estrogen-dependent breast cancer after menopause. Adipose tissue undergoes important changes in obesity due to excess storage of lipids, leading to adipocyte cell death and the recruitment of macrophages. The resultant state of chronic low-grade inflammation is associated with the activation of NFkB signaling and elevated levels of aromatase, the rate-limiting enzyme in estrogen biosynthesis. This occurs not only in the visceral and subcutaneous fat, but also in the breast fat. The regulation of aromatase in the breast adipose stromal cell in response to inflammatory mediators is under the control of complex signaling pathways, including metabolic pathways involving LKB1/AMPK, p53, HIF1α and PKM2. Interventions aimed at modifying weight, including diet and exercise, are associated with changes in adipose tissue inflammation and estrogen production that are likely to impact breast cancer risk. This review will present an overview of these topics.
Collapse
Affiliation(s)
- Heba Zahid
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Faculty of Applied Medical Science, Taibah University, Medina, Saudi Arabia; Monash University, Clayton, Victoria, Australia
| | - Evan R Simpson
- Centre for Endocrinology and Metabolism, Hudson Institute for Medical Research, Clayton, Victoria, Australia; Monash University, Clayton, Victoria, Australia
| | - Kristy A Brown
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
10
|
Heckman-Stoddard BM, Gandini S, Puntoni M, Dunn BK, DeCensi A, Szabo E. Repurposing old drugs to chemoprevention: the case of metformin. Semin Oncol 2015; 43:123-133. [PMID: 26970131 DOI: 10.1053/j.seminoncol.2015.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multiple epidemiologic studies have documented an association between the anti-diabetic agent metformin and reduced cancer incidence and mortality. However, this effect has not been consistently demonstrated in animal models or more recent epidemiological studies. The purpose of this paper is to examine metformin's chemopreventive potential by reviewing relevant mechanisms of action, preclinical evidence of efficacy, updated epidemiologic evidence after correction for potential biases and confounders, and recently completed and ongoing clinical trials. Although repurposing drugs with well described mechanisms of action and safety profiles is an appealing strategy for cancer prevention, there is no substitute for well executed late phase clinical trials to define efficacy and populations that are most likely to benefit from an intervention.
Collapse
Affiliation(s)
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Matteo Puntoni
- Office of the Scientific Director, E.O. Ospedali Galliera, Genoa, Italy
| | - Barbara K Dunn
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Andrea DeCensi
- Division of Medical Oncology, E.O. Ospedali Galliera, Genoa, Italy; Division of Cancer Prevention and Genetics, European Institute of Oncology, Milan, Italy
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
11
|
Wang X, Simpson ER, Brown KA. Aromatase overexpression in dysfunctional adipose tissue links obesity to postmenopausal breast cancer. J Steroid Biochem Mol Biol 2015. [PMID: 26209254 DOI: 10.1016/j.jsbmb.2015.07.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The number of breast cancer cases has increased in the last a few decades and this is believed to be associated with the increased prevalence of obesity worldwide. The risk of breast cancer increases with age beyond menopause and the relationship between obesity and the risk of breast cancer in postmenopausal women is well established. The majority of postmenopausal breast cancers are estrogen receptor (ER) positive and estrogens produced in the adipose tissue promotes tumor formation. Obesity results in the secretion of inflammatory factors that stimulate the expression of the aromatase enzyme, which converts androgens into estrogens in the adipose tissue. Evidence demonstrating a link between obesity and breast cancer has led to the investigation of metabolic pathways as novel regulators of estrogen production, including pathways that can be targeted to inhibit aromatase specifically within the breast. This review aims to present some of the key findings in this regard.
Collapse
Affiliation(s)
- Xuyi Wang
- Metabolism & Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Evan R Simpson
- Metabolism & Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia; Department of biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
12
|
Hatoum D, McGowan EM. Recent advances in the use of metformin: can treating diabetes prevent breast cancer? BIOMED RESEARCH INTERNATIONAL 2015; 2015:548436. [PMID: 25866793 PMCID: PMC4383151 DOI: 10.1155/2015/548436] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Abstract
There is substantial epidemiological evidence pointing to an increased incidence of breast cancer and morbidity in obese, prediabetic, and diabetic patients. In vitro studies strongly support metformin, a diabetic medication, in breast cancer therapy. Although metformin has been heralded as an exciting new breast cancer treatment, the principal consideration is whether metformin can be used as a generic treatment for all breast cancer types. Importantly, will metformin be useful as an inexpensive therapy for patients with comorbidity of diabetes and breast cancer? In general, meta-analyses of clinical trial data from retrospective studies in which metformin treatment has been used for patients with diabetes and breast cancer have a positive trend; nevertheless, the supporting clinical data outcomes remain inconclusive. The heterogeneity of breast cancer, confounded by comorbidity of disease in the elderly population, makes it difficult to determine the actual benefits of metformin therapy. Despite the questionable evidence available from observational clinical studies and meta-analyses, randomized phases I-III clinical trials are ongoing to test the efficacy of metformin for breast cancer. This special issue review will focus on recent research, highlighting in vitro research and retrospective observational clinical studies and current clinical trials on metformin action in breast cancer.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Medical and Molecular Biosciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Medical and Molecular Biosciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Medicine, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Rice S, Pellat L, Ahmetaga A, Bano G, Mason HD, Whitehead SA. Dual effect of metformin on growth inhibition and oestradiol production in breast cancer cells. Int J Mol Med 2015; 35:1088-94. [PMID: 25716282 DOI: 10.3892/ijmm.2015.2108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 11/06/2022] Open
Abstract
Evidence has been accumulating for a role for metformin in reducing breast cancer risk in post-menopausal women. It inhibits growth of breast cancer cells via several mechanisms, primarily the AMPK/mTOR signalling pathway. Another possible protective mechanism may be the ability of metformin to inhibit aromatase activity. In the present study, we investigated the effects of metformin on the basal growth of MCF-7 cells, after oestradiol (E2) stimulation and after the inhibition of mTOR by rapamycin. Secondly, we investigated the effects of metformin on the activity of a number of steroidogenic enzymes and the mRNA expression of aromatase and steroid sulphatase (STS). High doses of metformin significantly inhibited both basal and oestrogen-stimulated cell division. Low-dose rapamycin (10-10 M) did not inhibit growth, but the addition of metformin induced a significant reduction in growth. High-dose rapamycin (10-8 M) inhibited growth, and this was further attenuated by the addition of metformin. Exposure to low (10-7 M) and high (10-4 M) doses of metformin for 7-10 days significantly reduced the conversion of androstenedione (ANDRO) and testosterone (TESTO) (both requiring aromatase), but not the conversion of oestrone or oestrone sulphate (ES) via 17β-hydroxysteroid dehydrogenase/sulphatase to E2. This attenuation was via a downregulation in the expression of total aromatase mRNA and promoter II, whilst the expression of sulphatase was unaffected by metformin. In conclusion, plasma levels of metformin have a dual therapeutic action, first by directly inhibiting cell proliferation which can be augmented by rapamycin analogues, and secondly, by inhibiting aromatase activity and reducing the local conversion of androgens to E2.
Collapse
Affiliation(s)
- S Rice
- Division of Biomedical Sciences, St. George's University of London, London SW17 0RE, UK
| | - L Pellat
- Bromley College of F&HE, Bromley Campus, Rookery Lane, Bromley BR2 8HE, UK
| | - A Ahmetaga
- MBBS5 Programme, St. George's University of London, London SW17 0RE, UK
| | - G Bano
- Thomas Addison Unit, St. George's Hospital, Cranmer Terrace, London SW17 0RE, UK
| | - H D Mason
- Division of Biomedical Sciences, St. George's University of London, London SW17 0RE, UK
| | - S A Whitehead
- Division of Biomedical Sciences, St. George's University of London, London SW17 0RE, UK
| |
Collapse
|
14
|
To SQ, Knower KC, Cheung V, Simpson ER, Clyne CD. Transcriptional control of local estrogen formation by aromatase in the breast. J Steroid Biochem Mol Biol 2015; 145:179-86. [PMID: 24846828 DOI: 10.1016/j.jsbmb.2014.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/11/2014] [Indexed: 12/11/2022]
Abstract
Aromatase is the critical enzyme that converts androgens to estrogens. It is frequently highly expressed in the tumour bearing breast of women diagnosed with estrogen receptor positive tumours, resulting in dramatically increased local estrogen production to drive tumour progression. Expression of aromatase is regulated primarily at the transcriptional level of its encoding gene CYP19A1, located on chromosome 15 of the human genome. A characteristic feature of CYP19A1 expression is its use of alternative promoters to regulate transcription in a tissue-specific manner. In breast cancer, the increase in aromatase expression is mediated via higher expression of the distal adipose-specific promoter I.4 and a switch to the preferential use of proximal promoters I.3 and II. This results in a net increase of CYP19A1 transcripts in tumour-bearing breast up to 3-4-fold higher than normal breast. Current aromatase inhibitors - whilst efficacious - exhibit significant side effects that reduce patient compliance. Understanding the transcription factors and signalling pathways that control aromatase expression will lead to opportunities to develop breast-specific inhibitors with an improved side-effects profile. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Sarah Q To
- Cancer Drug Discovery Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia.
| | - Kevin C Knower
- Cancer Drug Discovery Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia.
| | - Vanessa Cheung
- Cancer Drug Discovery Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia
| | - Evan R Simpson
- Metabolism and Cancer Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia
| | - Colin D Clyne
- Cancer Drug Discovery Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
15
|
Pulito C, Donzelli S, Muti P, Puzzo L, Strano S, Blandino G. microRNAs and cancer metabolism reprogramming: the paradigm of metformin. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:58. [PMID: 25333033 PMCID: PMC4200659 DOI: 10.3978/j.issn.2305-5839.2014.06.03] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/26/2014] [Indexed: 12/13/2022]
Abstract
Increasing evidence witnesses that cancer metabolism alterations represent a critical hallmark for many types of human tumors. There is a strong need to understand and dissect the molecular mechanisms underlying cancer metabolism to envisage specific biomarkers and underpin critical molecular components that might represent novel therapeutic targets. One challenge, that is the focus of this review, is the reprogramming of the altered metabolism of a cancer cell toward that of un-transformed cell. The anti-hyperglicemic agent, metformin has proven to be effective in reprogramming the metabolism of cancer cells even from those subpopulations endowed with cancer stem like features and very high chemoresistenace to conventional anticancer treatments. A functional interplay involving selective modulation of microRNAs (miRNAs) takes place along the anticancer metabolic effects exerted by metformin. The implications of this interplay will be also discussed in this review.
Collapse
|
16
|
Gibb FW, Strachan MWJ. Androgen deficiency and type 2 diabetes mellitus. Clin Biochem 2014; 47:940-9. [PMID: 24768826 DOI: 10.1016/j.clinbiochem.2014.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 01/14/2023]
Abstract
The rising incidence of T2DM is well recognised and associated with trends in obesity and ageing. It is estimated that 2.8% of the world population had a diagnosis of diabetes mellitus in 2000, which is projected to rise to 4.3% by 2030. Diabetes, obesity and ageing are also associated with an increased risk of isolated male hypogonadotropic hypogonadism, often labelled 'late onset hypogonadism' (LOH) to distinguish it from hypogonadism secondary to distinct hypothalamopituitary pathology. Whether the incidence of hypogonadism is increasing is open to question; the past decade, however, has witnessed a marked increase in the prescription of testosterone replacement therapy. Testosterone deficiency appears to be particularly common in type 2 diabetes with a prevalence of 33% observed in one cohort of 103 men (mean age 54.7). However, the diagnosis of androgen deficiency states is not necessarily straightforward, depending amongst other factors, upon whether a biochemical threshold or a syndromic approach (mandating the presence of certain key clinical features) is employed. The pathogenic mechanisms underlying obesity and diabetes related hypogonadism remain unclear with several competing theories, most of which are not mutually exclusive. Whilst a large body of epidemiological evidence associates testosterone deficiency with increased risk of cardiovascular disease and mortality, little evidence exists to support a protective effect of testosterone replacement. The benefits of androgen replacement in younger men with pituitary disease are well established, however, the potential benefits and safety of androgen replacement in older men is much less well developed. At present, replacement therapy in older men is advocated principally for the amelioration of sexual symptoms. This review will seek to explore issues around the pathogenesis, diagnosis, clinical consequences and management of male hypogonadism as it relates to T2DM.
Collapse
Affiliation(s)
- Fraser W Gibb
- Edinburgh Centre for Endocrinology and Diabetes, UK.
| | | |
Collapse
|
17
|
Pulito C, Sanli T, Rana P, Muti P, Blandino G, Strano S. Metformin: On Ongoing Journey across Diabetes, Cancer Therapy and Prevention. Metabolites 2013; 3:1051-75. [PMID: 24958265 PMCID: PMC3937831 DOI: 10.3390/metabo3041051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/31/2013] [Indexed: 02/08/2023] Open
Abstract
Cancer metabolism is the focus of intense research, which witnesses its key role in human tumors. Diabetic patients treated with metformin exhibit a reduced incidence of cancer and cancer-related mortality. This highlights the possibility that the tackling of metabolic alterations might also hold promising value for treating cancer patients. Here, we review the emerging role of metformin as a paradigmatic example of an old drug used worldwide to treat patients with type II diabetes which to date is gaining strong in vitro and in vivo anticancer activities to be included in clinical trials. Metformin is also becoming the focus of intense basic and clinical research on chemoprevention, thus suggesting that metabolic alteration is an early lesion along cancer transformation. Metabolic reprogramming might be a very efficient prevention strategy with a profound impact on public health worldwide.
Collapse
Affiliation(s)
- Claudio Pulito
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Toran Sanli
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Punam Rana
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Giovanni Blandino
- Translational Oncogenomics Unit-ROC, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Sabrina Strano
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| |
Collapse
|
18
|
Xiao Y, Zhang S, Hou G, Zhang X, Hao X, Zhang J. Clinical pathological characteristics and prognostic analysis of diabetic women with luminal subtype breast cancer. Tumour Biol 2013; 35:2035-45. [PMID: 24096546 DOI: 10.1007/s13277-013-1270-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/25/2013] [Indexed: 12/17/2022] Open
Abstract
This study selected luminal-type breast cancer patients as the study subjects. The patients were divided into groups according to the presence of diabetes and the types of medication used, and the patients' clinicopathological characteristics and prognostic indicators were explored. A total of 5,785 patients with luminal-type breast cancer admitted to Tianjin Medical University Cancer Institute and Hospital between January 2002 and December 2006 were selected as the study subjects. The subjects included 680 breast cancer patients with diabetes and 5,105 breast cancer patients without diabetes. The patients were divided into Luminal A, Luminal B (high ki67), and Luminal B (her-2/neu+) subtypes. Each subtype was further divided into a metformin group, a non-metformin group, and a nondiabetic group. The research indicators included breast cancer mortality, age, body mass index (BMI), amenorrhea, the presence of cardiovascular and cerebrovascular disease, pathological stage, pathological type, lymph node involvement, vessel carcinoma embolus, and the chemotherapy and endocrine regimen. A Kaplan-Meier analysis was conducted to analyze the differences in breast cancer mortality rates among the groups. The Cox proportional hazard model was adopted to detect independent factors related to prognosis. Kaplan-Meier univariate analysis showed that for the Luminal A, Luminal B (high ki67), and Luminal B (her-2/neu+) subtypes, the cancer-specific mortality rates differed significantly among the metformin, non-metformin, and nondiabetic groups. The 5-year survival rates were 94%, 82%, and 91% (P = 0.002); 93.5%, 81%, and 89% (P < 0.001); and 84%, 77%, and 83% (P = 0.035) for the subtypes within each group, respectively. Cox regression multivariate analysis showed that compared with the metformin group, all three subtypes of the, the non-metformin group showed poorer prognosis (hazard ratio [HR], 3.579; 95% confidence interval [CI], 1.506-8.506 [P = 0.004]; HR, 3.232; 95% CI, 1.839-5.678 [P < 0.001]; HR, 2.034; 95% CI,1.019-4.059 [P = 0.044] for Luminal A, Luminal B (high ki67), and Luminal B (her-2/neu+, respectively). Compared with the metformin group, the diabetic group showed poorer prognosis only for the Luminal B (high ki67) subtype (HR, 1.762; 95% CI, 1.033-3.005 [P = 0.038]). In addition, for the Luminal A, Luminal B (high ki67), and Luminal B (her-2/neu+) subgroups, there was a higher proportion of elderly patients (P < 0.001) and postmenopausal patients (P < 0.001) in the metformin and non-metformin groups than in the nondiabetic group. Moreover, the probability of having cardiovascular and cerebrovascular disease was also higher (P < 0.001) in the metformin and non-metformin groups. For the Luminal B (high ki67) and Luminal B (her-2/neu +) subgroups, there was a higher proportion of obese patients in the metformin and non-metformin groups (P < 0.001). In terms of clinical characteristics, for the Luminal B (high ki67) subtype, the proportion of patients with invasive ductal carcinoma was lower in the non-metformin group than in the other two groups (P = 0.001). In both the metformin and non-metformin groups, the proportion of T3/4 patients was higher (P < 0.001), the proportion of patients with lymph node metastasis was higher (P = 0.001), and the proportion of patients with vessel carcinoma embolus was higher (P = 0.001) compared with the nondiabetic group. In conclusion, compared with the metformin group, the non-metformin group had a poorer prognosis for all subtypes of luminal breast cancer. In the diabetic group, only patients with the Luminal B (high ki67) subtype exhibited a poorer prognosis. Therefore, different diabetes medication may have a different impact on the prognosis of different subtypes of luminal breast cancer.
Collapse
Affiliation(s)
- Yuanting Xiao
- Surgical Department, Tianhe Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
19
|
Tas M, Kutuk MS, Serin IS, Ozgun MT, Oner G, Ozturk F. Comparison of antiproliferative effects of metformine and progesterone on estrogen-induced endometrial hyperplasia in rats. Gynecol Endocrinol 2013; 29:311-4. [PMID: 23305503 DOI: 10.3109/09513590.2012.743010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metformin has been shown to inhibit the growth of endometriotic implants, and reverse endometrial hyperplasia when combined with oral contraceptive in a case report. The aim of this study is to compare the antiproliferative effects of medroxyprogesterone acetate (MPA), and metformin in oopherectomized rat endometrium. Forty oopherectomized Wistar-Albino rats were used, and assigned to receive saline, 17 β Estradiol hemihydrate (4 mg/kg), 17 β Estradiol hemihydrate (4 mg/kg) and metformin (50 mg/kg), 17 β Estradiol hemihydrate (4 mg/kg) and MPA (1 mg/day) for 14 days. Histological markers of uterotrophy, including endometrial height, luminal ephitelial cell height and density of endometrial glands on hysterectomy speciments were quantified for each specimen. Rats treated with estradiol had significantly increased in endometrial height, endomerial luminal epithelial height and endometrial gland densitiy than the other groups. Metformin and MPA acetate significantly reduced all parameters indicating endometrial hyperplasia, and uterotrophy with respect to the control group. Antiproliferative effects of metformin, and MPA was found to be comparable for all three parameters. In conclusion, metformin attenuates estrogen-induced endometrial hyperplasia in ooferectomized rats to the same degree as progesterone.
Collapse
Affiliation(s)
- Mustafa Tas
- Department of Obstetrics and Gynecology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | | | | | | | | |
Collapse
|
20
|
Simpson ER, Brown KA. Minireview: Obesity and breast cancer: a tale of inflammation and dysregulated metabolism. Mol Endocrinol 2013; 27:715-25. [PMID: 23518927 DOI: 10.1210/me.2013-1011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In addition to the spectrum of conditions known collectively as the Metabolic Syndrome, obesity is now recognized to be associated with increased risk of several cancers including colon, endometrial, and breast cancer. Obesity and carcinogenesis share 2 characteristics in common. On the one hand, they involve inflammatory pathways, and on the other hand, they involve dysregulated metabolism. In this review we focus on postmenopausal breast cancer and discuss the metabolic and cellular mechanisms whereby obesity and breast cancer are related. Because a majority of postmenopausal breast tumors are estrogen responsive, we include a discussion of the action of obesity-related factors on estrogen formation within the breast.
Collapse
Affiliation(s)
- Evan R Simpson
- Prince Henry's Institute of Medical Research-Monash Medical Centre, Block E, Level 4246 Clayton Road, PO Box 5152, Clayton, Victoria-3168, Australia.
| | | |
Collapse
|
21
|
New players for advanced prostate cancer and the rationalisation of insulin-sensitising medication. Int J Cell Biol 2013; 2013:834684. [PMID: 23573093 PMCID: PMC3614121 DOI: 10.1155/2013/834684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/29/2013] [Indexed: 12/13/2022] Open
Abstract
Obesity and type 2 diabetes are recognised risk factors for the development of some cancers and, increasingly, predict more aggressive disease, treatment failure, and cancer-specific mortality. Many factors may contribute to this clinical observation. Hyperinsulinaemia, dyslipidaemia, hypoxia, ER stress, and inflammation associated with expanded adipose tissue are thought to be among the main culprits driving malignant growth and cancer advancement. This observation has led to the proposal of the potential utility of "old players" for the treatment of type 2 diabetes and metabolic syndrome as new cancer adjuvant therapeutics. Androgen-regulated pathways drive proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen deprivation therapy (ADT) exploits this dependence to systemically treat advanced prostate cancer resulting in anticancer response and improvement of cancer symptoms. However, the initial therapeutic response from ADT eventually progresses to castrate resistant prostate cancer (CRPC) which is currently incurable. ADT rapidly induces hyperinsulinaemia which is associated with more rapid treatment failure. We discuss current observations of cancer in the context of obesity, diabetes, and insulin-lowering medication. We provide an update on current treatments for advanced prostate cancer and discuss whether metabolic dysfunction, developed during ADT, provides a unique therapeutic window for rapid translation of insulin-sensitising medication as combination therapy with antiandrogen targeting agents for the management of advanced prostate cancer.
Collapse
|
22
|
Brown KA, Samarajeewa NU, Simpson ER. Endocrine-related cancers and the role of AMPK. Mol Cell Endocrinol 2013; 366:170-9. [PMID: 22801104 DOI: 10.1016/j.mce.2012.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/06/2012] [Accepted: 06/21/2012] [Indexed: 01/27/2023]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis involved in the regulation of a number of physiological processes including β-oxidation of fatty acids, lipogenesis, protein and cholesterol synthesis, as well as cell cycle inhibition and apoptosis. Important changes to these processes are known to occur in cancer due to changes in AMPK activity within cancer cells and in the periphery. This review aims to present findings relating to the role and regulation of AMPK in endocrine-related cancers. Obesity is a known risk factor for many types of cancers and a number of endocrine factors, including adipokines and steroid hormones, are regulated by and regulate AMPK. A clear role for AMPK in breast cancer is evident from the already impressive body of work published to date. However, information pertaining to its role in prostate cancer is still contentious, and future work should unravel the intricacies behind its role to inhibit, in some cases, and stimulate cancer growth in others. This review also presents data relating to the role of AMPK in cancers of the endometrium, ovary and colon, and discusses the possible use of AMPK-activating drugs including metformin for the treatment of all endocrine-related cancers.
Collapse
Affiliation(s)
- Kristy A Brown
- Metabolism and Cancer Laboratory, Prince Henry's Institute, Clayton 3168, Australia.
| | | | | |
Collapse
|
23
|
Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov 2012; 2:778-90. [PMID: 22926251 DOI: 10.1158/2159-8290.cd-12-0263] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Laboratory research and pharmacoepidemiology are providing converging evidence that the widely used antidiabetic drug metformin has antineoplastic activity, but there are caveats. Although population studies suggest that metformin exposure is associated with reduced cancer risk and/or improved prognosis, these data are mostly retrospective and nonrandomized. Laboratory models show antineoplastic activity, but metformin concentrations used in many experiments exceed those achieved with conventional doses used for diabetes treatment. Ongoing translational research should be useful in guiding design of clinical trials, not only to evaluate metformin at conventional antidiabetic doses, where reduction of elevated insulin levels may contribute to antineoplastic activity for certain subsets of patients, but also to explore more aggressive dosing of biguanides, which may lead to reprogramming of energy metabolism in a manner that could provide important opportunities for synthetic lethality through rational drug combinations or in the context of genetic lesions associated with hypersensitivity to energetic stress. SIGNIFICANCE There are tantalizing clues that justify the investigation of antineoplastic activities of biguanides. The complexity of their biologic effects requires further translational research to guide clinical trial design.
Collapse
Affiliation(s)
- Michael N Pollak
- Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Del Barco S, Vazquez-Martin A, Cufí S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J, Martin-Castillo B, Menendez JA. Metformin: multi-faceted protection against cancer. Oncotarget 2012; 2:896-917. [PMID: 22203527 PMCID: PMC3282095 DOI: 10.18632/oncotarget.387] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The biguanide metformin, a widely used drug for the treatment of type 2 diabetes, may exert cancer chemopreventive effects by suppressing the transformative and hyperproliferative processes that initiate carcinogenesis. Metformin's molecular targets in cancer cells (e.g., mTOR, HER2) are similar to those currently being used for directed cancer therapy. However, metformin is nontoxic and might be extremely useful for enhancing treatment efficacy of mechanism-based and biologically targeted drugs. Here, we first revisit the epidemiological, preclinical, and clinical evidence from the last 5 years showing that metformin is a promising candidate for oncology therapeutics. Second, the anticancer effects of metformin by both direct (insulin-independent) and indirect (insulin-dependent) mechanisms are discussed in terms of metformin-targeted processes and the ontogenesis of cancer stem cells (CSC), including Epithelial-to-Mesenchymal Transition (EMT) and microRNAs-regulated dedifferentiation of CSCs. Finally, we present preliminary evidence that metformin may regulate cellular senescence, an innate safeguard against cellular immortalization. There are two main lines of evidence that suggest that metformin's primary target is the immortalizing step during tumorigenesis. First, metformin activates intracellular DNA damage response checkpoints. Second, metformin attenuates the anti-senescence effects of the ATP-generating glycolytic metabotype-the Warburg effect-, which is required for self-renewal and proliferation of CSCs. If metformin therapy presents an intrinsic barrier against tumorigenesis by lowering the threshold for stress-induced senescence, metformin therapeutic strategies may be pivotal for therapeutic intervention for cancer. Current and future clinical trials will elucidate whether metformin has the potential to be used in preventive and treatment settings as an adjuvant to current cancer therapeutics.
Collapse
Affiliation(s)
- Sonia Del Barco
- Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|