1
|
Zhang Y, Huang Y, Fan J, Zhang M, Hasan A, Yi Y, Yu R, Zhou X, Ye M, Qiao X. Expanding the Scope of Targeted Metabolomics by One-pot Microscale Synthesis and Tailored Metabolite Profiling: Investigation of Bile Acid–Amino Acid Conjugates. Anal Chem 2022; 94:16596-16603. [DOI: 10.1021/acs.analchem.2c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yuxi Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Jingjing Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Aobulikasimu Hasan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Rong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xujie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing 100034, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
2
|
Jiang C, Dong Q, Xin X, Degen AA, Ding L. Effect of Chinese Herbs on Serum Biochemical Parameters, Immunity Indices, Antioxidant Capacity and Metabolomics in Early Weaned Yak Calves. Animals (Basel) 2022; 12:ani12172228. [PMID: 36077948 PMCID: PMC9455063 DOI: 10.3390/ani12172228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chinese traditional herbs are used widely as feed supplements to improve the immune response and antioxidant capacity of livestock. Twenty early-weaned 4-month-old yak calves (72.3 ± 3.65 kg) were divided randomly into four groups (n = 5 per group); three groups were provided with supplementary 80 mL/kg DMI of the root water extracts of either Angelica sinensis, Codonopsis pilosula or Glycyrrhiza uralensis, and one group (control) was not provided with a supplement. Compared to control calves, calves consuming the three herbal extracts increased serum concentrations of albumin (ALB) and glutathione peroxidase (GSH-Px), but decreased serum concentrations of free fatty acids (FFAs) and malondialdehyde (MDA) (p < 0.05). Calves consuming A. sinensis decreased (p < 0.05) serum concentration of total cholesterol (TC), and increased (p < 0.05) serum concentration of total proteins (TP). Serum FFA concentrations increased (p = 0.004) linearly with time in the control group, but not in the groups consuming herbs. Serum metabolomic data demonstrated that A. sinensis and C. pilosula regulate mainly amino acid metabolism, while G. uralensis regulates mainly carbon and amino acid metabolism. It was concluded that the three herbal root extracts, as dietary supplements, improved energy and nitrogen metabolism, and enhanced the antioxidant capacity of yak calves.
Collapse
Affiliation(s)
- Cuixia Jiang
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Quanmin Dong
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining 810016, China
| | - Xiaoping Xin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luming Ding
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
3
|
Jiang S, Wang S, Dong P, Shi L, Li Q, Wei X, Gao P, Zhang J. A comprehensive profiling and identification of liquiritin metabolites in rats using ultra-high-performance liquid chromatography coupled with linear ion trap-orbitrap mass spectrometer. Xenobiotica 2021; 51:564-581. [PMID: 33222601 DOI: 10.1080/00498254.2020.1854366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liquiritin (LQ), a main component of liquorice, exerts various biological activities. However, insufficient attentions have been paid to the metabolism study on this natural compound until now. Our present study was conducted to investigate the LQ metabolites in rats urine, faeces and plasma using UHPLC-LTQ-Orbitrap mass spectrometer in both positive and negative ion modes. Meanwhile, post-acquisition data-mining methods including high-resolution extracted ion chromatogram (HREIC), multiple mass defect filters (MMDFs), neutral loss fragments (NLFs) and diagnostic product ions (DPIs) were utilised to screen and identify LQ metabolites from HR-ESI-MS to ESI-MSn stage. As a result, a total of 49 metabolites were detected and characterised unambiguously or tentatively. These metabolites were presumed to generate through glucuronidation, sulfation, deglucosylation, dehydrogenation, methylation, hydrogenation, hydroxylation, ring cleavage and their composite reactions. Our results not only provided novel and useful data to better understand the biological activities of LQ, but also indicated that the proposed strategy was reliable for a rapid discovery and identification drug-related constituents in vivo.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shaoping Wang
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
| | - Pingping Dong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiyan Li
- Shandong Institute for Food and Drug Control, Jinan, China
| | - Xia Wei
- Shandong Institute for Food and Drug Control, Jinan, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- School of Pharmacy, BIN ZHOU Medical University, Yantai, China
| |
Collapse
|
4
|
An Integrated Approach Exploring the Synergistic Mechanism of Herbal Pairs in a Botanical Dietary Supplement: A Case Study of a Liver Protection Health Food. Int J Genomics 2020; 2020:9054192. [PMID: 32351982 PMCID: PMC7171619 DOI: 10.1155/2020/9054192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Herbal pairs are used as a bridge between single herb and polyherbal formulas in Traditional Chinese Medicine (TCM) to provide rationale for complicated TCM formulas. The effectiveness and rationality of TCM herbal pairs have been widely applied as a strategy for dietary supplements. However, due to the complexity of the phytochemistry of individual and combinations of herbal materials, it is difficult to reveal their effective and synergistic mechanisms from a molecular or systematic point of view. In order to address this question, UPLC-Q-TOF/MS analysis and System Pharmacology tools were applied to explore the mechanism of action, using a White Peony (Paeoniae Radix Alba) and Licorice (Glycyrrhizae Radix et Rhizoma)-based dietary supplement. A total of sixteen chemical constituents of White Peony and Licorice were isolated and identified, which interact with 73 liver protection-related targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed along with network analysis. Results showed that the synergistic mechanism of the White Peony and Licorice herbal pair was associated with their coregulation of bile secretion and ABC transporter pathways. In addition, Licorice exhibits a specific response to drug and xenobiotic metabolism pathways, whereas White Peony responds to Toll-like receptor signaling, C-type lectin receptor signaling, IL-17 signaling, and TNF signaling pathways, resulting in the prevention of hepatocyte apoptosis and the reduction of immune and inflammation-mediated liver damage. These findings suggest that a White Peony and Licorice herbal pair supplement would have a liver-protecting benefit through complimentary and synergistic mechanisms. This approach provides a new path to explore herbal compatibility in dietary supplements derived from TCM theory.
Collapse
|
5
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Wang C, Cai Z, Shi J, Chen S, Tan M, Chen J, Chen L, Zou L, Chen C, Liu Z, Liu X. Comparative Metabolite Profiling of Wild and Cultivated Licorice Based on Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole-Time of Flight Tandem Mass Spectrometry. Chem Pharm Bull (Tokyo) 2019; 67:1104-1115. [DOI: 10.1248/cpb.c19-00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Zhichen Cai
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine
| |
Collapse
|
7
|
Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae Radix and Coptidis Rhizoma Improve Glucose and Lipid Metabolism in T2DM Rats via Regulation of the Metabolic Profiling and MAPK/PI3K/Akt Signaling Pathway. Int J Mol Sci 2018; 19:E3634. [PMID: 30453687 PMCID: PMC6274950 DOI: 10.3390/ijms19113634] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Aim Scutellariae Radix (SR) and Coptidis Rhizoma (CR) have often been combined to cure type 2 diabetes mellitus (T2DM) in the clinical practice for over thousands of years, but their compatibility mechanism is not clear. Mitogen-activated protein kinase (MAPK) signaling pathway has been suggested to play a critical role during the process of inflammation, insulin resistance, and T2DM. This study was designed to investigate their compatibility effects on T2DM rats and explore the underlying mechanisms by analyzing the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Methods The compatibility effects of SR and CR were evaluated with T2DM rats induced by a high-fat diet (HFD) along with a low dose of streptozocin (STZ). Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to discover potential biomarkers. The levels of pro-inflammatory cytokines; biochemical indexes in serum, and the activities of key enzymes related to glycometabolism in liver were assessed by ELISA kits. qPCR was applied to examine mRNA levels of key targets in MAPK and insulin signaling pathways. Protein expressions of p65; p-p65; phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K); phosphorylated-PI3K (p-PI3K); protein kinase B (Akt); phosphorylated Akt (p-Akt) and glucose transporter 2 (Glut2) in liver were investigated by Western blot analysis. Results Remarkably, hyperglycaemia, dyslipidemia, inflammation, and insulin resistance in T2DM were ameliorated after oral administration of SR and CR, particularly their combined extracts. The effects of SR, CR, low dose of combined extracts (LSC) and high dose of combined extracts (HSC) on pro-inflammatory cytokine transcription in T2DM rats showed that the MAPK pathway might account for the phenomenon with down-regulation of MAPK (P38 mitogen-activated protein kinases (P38), extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK)) mRNA, and protein reduction in p-P65. While mRNA levels of key targets such as insulin receptor substrate 1 (IRS1), PI3K, Akt2, and Glut2 in the insulin signaling pathway were notably up-modulated, phosphorylations of PI3K, Akt, and expression of Glut2 were markedly enhanced. Moreover, the increased activities of phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), glucose 6-phosphatase (G6Pase), and glycogen phosphorylase (GP) were highly reduced and the decreased activities of glucokinase (GK), phosphofructokinase (PFK), pyruvate kinase (PK), and glycogen synthase (GS) in liver were notably increased after treatment. Further investigation indicated that the metabolic profiles of plasma and urine were clearly improved in T2DM rats. Fourteen potential biomarkers (nine in plasma and five in urine) were identified. After intervention, these biomarkers returned to normal level to some extent. Conclusion The results showed that SR, CR, and combined extract groups were normalized. The effects of combined extracts were more remarkable than single herb treatment. Additionally, this study also showed that the metabonomics method is a promising tool to unravel how traditional Chinese medicines work.
Collapse
Affiliation(s)
- Xiang Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
8
|
Wang C, Cai H, Zhao H, Yan Y, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Xu C, Liu X. Distribution patterns for metabolites in medicinal parts of wild and cultivated licorice. J Pharm Biomed Anal 2018; 161:464-473. [DOI: 10.1016/j.jpba.2018.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/29/2018] [Accepted: 09/02/2018] [Indexed: 01/15/2023]
|
9
|
Zhang Y, Wang C, Yang F, Yang Z, Wang F, Sun G. UHPLC-ESI-Q-TOF-MS/MS analysis, antioxidant activity combined fingerprints for quality consistency evaluation of compound liquorice tablets. RSC Adv 2018; 8:27661-27673. [PMID: 35542699 PMCID: PMC9084299 DOI: 10.1039/c8ra02431f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
Traditional Chinese medicines (TCM)/herbal medicines (HM) are too complicated to comprehensively investigate their quality consistency effectively with a single detection technique. Hence, finding an effective, rapid, and comprehensive quality control (QC) method is of great importance for guaranteeing the safety and efficacy of TCM/HM in clinical applications. In our current research, a novel strategy of multi-wavelength fusion HPLC fingerprints and ultraviolet (UV) spectroscopic fingerprinting was proposed and successfully applied to monitor the quality consistency of compound liquorice tablets (CLT). The quality grades of 35 CLT samples from two manufacturers were successfully discriminated and evaluated by the averaged linear quantified fingerprint method (ALQFM) from a qualitative and quantitative perspective. The results showed that the UV spectroscopic fingerprints agreed well with the multi-wavelength fusion HPLC fingerprints. In addition, ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS) was applied to investigate the chemical constituents in CLT samples, providing an important chemical structural foundation for further QC and bioactivity studies. Additionally, a simple flow injection analysis (FIA) was developed to investigate the antioxidant capacity in CLT, which was based on the scavenging of 2,2-diphenyl-1-picrylhydrazyl radicals by antioxidants. Furthermore, the fingerprint-efficacy relationship between high-performance liquid chromatography (HPLC) fingerprints and the antioxidant activities of CLT samples was established utilizing orthogonal projection to latent structures (OPLS). In conclusion, this study indicated that integrating UHPLC-ESI-Q-TOF-MS/MS, UV spectroscopic fingerprints, and multi-wavelength fusion HPLC fingerprints coupled with the antioxidant activities reported could give important clues for further pharmacological and clinical studies of CLT. Meanwhile, it provides a practical strategy for the rapid screening and identifying of TCM/HM quality consistency.
Collapse
Affiliation(s)
- Yujing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang Liaoning 110016 P. R. China
| | - Chao Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang Liaoning P. R. China
| | - Fangliang Yang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang Liaoning 110016 P. R. China
| | - Zhe Yang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang Liaoning 110016 P. R. China
| | - Fangren Wang
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang Liaoning 110016 P. R. China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang Liaoning 110016 P. R. China
| |
Collapse
|
10
|
Lu S, Han Y, Chu H, Kong L, Zhang A, Yan G, Sun H, Wang P, Wang X. Characterizing serum metabolic alterations of Alzheimer's disease and intervention of Shengmai-San by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. Food Funct 2017; 8:1660-1671. [DOI: 10.1039/c7fo00154a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Metabolomics approach describing the nervous protective mechanism of Shengmai-San (SMS) in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Shengwen Lu
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Ying Han
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Hang Chu
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Ling Kong
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Aihua Zhang
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Guangli Yan
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Hui Sun
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Ping Wang
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Xijun Wang
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| |
Collapse
|
11
|
Li A, Ma N, Zhao Z, Yuan M, Li H, Wang Q. Glycyrrhetinic acid might increase the nephrotoxicity of bakuchiol by inhibiting cytochrome P450 isoenzymes. PeerJ 2016; 4:e2723. [PMID: 27904813 PMCID: PMC5126668 DOI: 10.7717/peerj.2723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Background Licorice, a popular traditional Chinese medicine (TCM), is widely used to moderate the effects (detoxification) of other herbs in TCM and often combined with Fructus Psoraleae. However, the classical TCM book states that Fructus Psoraleae is incompatible with licorice; the mechanism underlying this incompatibility has not been identified. Glycyrrhetinic acid (GA), the active metabolite of licorice, may increase the toxicity of bakuchiol (BAK), the main chemical ingredient in Psoralea corylifolia, by inhibiting its detoxification enzymes CYP450s. Methods The effect of concomitant GA administration on BAK-induced nephrotoxicity was investigated, and the metabolic interaction between BAK and GA was further studied in vitro and in vivo. The cytotoxicity was assessed using an MTT assay in a co-culture model of HK-2 cell and human liver microsomes (HLMs). The effect of GA on the metabolism of BAK, and on the activities of CYP isoforms were investigated in HLMs. The toxicokinetics and tissue exposure of BAK as well as the renal and hepatic functional markers were measured after the administration of a single oral dose in rats. Results In vitro studies showed that the metabolic detoxification of BAK was significantly reduced by GA, and BAK was toxic to HK-2 cells, as indicated by 25∼40% decreases in viability when combined with GA. Further investigation revealed that GA significantly inhibited the metabolism of BAK in HLMs in a dose-dependent manner. GA strongly inhibits CYP3A4 and weakly inhibits CYP2C9 and CYP1A2; these CYP isoforms are involved in the metabolism of BAK. In vivo experiment found that a single oral dose of BAK combined with GA or in the presence of 1-aminobenzotriazole (ABT), altered the toxicokinetics of BAK in rats, increased the internal exposure, suppressed the elimination of BAK prototype, and therefore may have enhanced the renal toxicity. Conclusion The present study demonstrated that GA inhibits CYP isoforms and subsequently may increase the nephrotoxicity of BAK, which underlie one of the possible mechanisms responsible for the incompatibility of Licorice with Fructus Psoraleae.
Collapse
Affiliation(s)
- Aifang Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Nana Ma
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Zijing Zhao
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Mei Yuan
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Hua Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China.,Key Laboratory of State Administration of Traditional Chinese Medicine (TCM) for Compatibility Toxicology, Beijing, China
| |
Collapse
|
12
|
Song Y, Song Q, Li J, Zheng J, Li C, Zhang Y, Zhang L, Jiang Y, Tu P. An integrated platform for directly widely-targeted quantitative analysis of feces part II: An application for steroids, eicosanoids, and porphyrins profiling. J Chromatogr A 2016; 1460:74-83. [DOI: 10.1016/j.chroma.2016.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
|
13
|
Jiang Z, Wang Y, Zheng Y, Yang J, Zhang L. Ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry and chemometric analysis of licorice based on the simultaneous determination of saponins and flavonoids. J Sep Sci 2016; 39:2928-40. [DOI: 10.1002/jssc.201600246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Zhenzuo Jiang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Research and Development Center of TCM; Tianjin International Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Research and Development Center of TCM; Tianjin International Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Yunfeng Zheng
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing P. R. China
| | - Jing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Research and Development Center of TCM; Tianjin International Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Lei Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Research and Development Center of TCM; Tianjin International Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| |
Collapse
|
14
|
Mi S, Lim DW, Turner JM, Wales PW, Curtis JM. Determination of Bile Acids in Piglet Bile by Solid Phase Extraction and Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Lipids 2016; 51:359-72. [DOI: 10.1007/s11745-016-4125-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/07/2016] [Indexed: 12/01/2022]
|
15
|
Escalona A, Muñoz R, Irribarra V, Solari S, Allende F, Francisco Miquel J. Bile acids synthesis decreases after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis 2015; 12:763-769. [PMID: 26948941 DOI: 10.1016/j.soard.2015.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bariatric surgery is the most effective treatment alternative in morbid obesity. The mechanisms contributing to these benefits remain poorly understood. Bile acids (BAs) are mediators of different regulatory functions in glucose and cholesterol homeostasis and energy expenditure. Recent evidence suggests that BAs are critically important for the beneficial effects of sleeve gastrectomy (SG). OBJECTIVES The aim of this study was to evaluate the effect of SG on BA synthesis. SETTING University Hospital. Santiago, Chile. METHODS Obese patients were evaluated before and after SG (1, 3, 6, and 12 months). BA synthesis was evaluated through the serum marker, 7 α-hydroxy-4-cholesten-3-one (C4). Primary and secondary BA and C4 were determined by high performance liquid chromatography coupled with tandem mass spectrometry detection (HPLC-MS/MS). RESULTS From June 2013 to January 2014, 19 patients (age 37.6±7.8 years; BMI 35.8±3.5 kg/m(2); 79% female) were included in this study. Mean weight loss at 1, 3, 6, and 12 months was 11.3, 17.5, 23.6, and 25.4 kg, respectively, equivalent to 11.8, 18.6, 24.8, and 26.9 of total body water percentage (%TBW) (P<.0001), respectively and 43.2, 68.2, 91, and 98.8 of percentage of excess weight loss (%EWL), respectively (P<.001). Serum C4 levels at baseline, 1, 3, 6, and 12 months were 23.4±21.1, 4.9±8.2, 8.7±12.1, 13.8±12.9, and 18.8±16.8 ng/mL (P<.0001), respectively. Fibroblast growth factor 19 (FGF19) levels at baseline, 1, 3, 6, and 12 months were 71±33.3, 130.5±66.2, 117.8±57.2, 134.6±91.7, and 124.3±85.9 pg/mL (P = .019), respectively. CONCLUSION Serum levels of C4 decrease after SG, indicating a reduction in the synthesis of BA. FGF19 may play a role in decreasing BA synthesis. Further studies are necessary to characterize the effect of bariatric surgery on BA homeostasis.
Collapse
Affiliation(s)
- Alex Escalona
- Department of Surgery. Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| | - Rodrigo Muñoz
- Department of Digestive Surgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Veronica Irribarra
- Department of Nutrition, Diabetes and Metabolism, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sandra Solari
- Department of Clinical Laboratories, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fidel Allende
- Department of Clinical Laboratories, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Francisco Miquel
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Shi J, Cao B, Wang XW, Aa JY, Duan JA, Zhu XX, Wang GJ, Liu CX. Metabolomics and its application to the evaluation of the efficacy and toxicity of traditional Chinese herb medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:204-216. [PMID: 26657802 DOI: 10.1016/j.jchromb.2015.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
Traditional Chinese herb medicines (TCHMs) have been used in the treatment of a variety of diseases for thousands of years in Asian countries. The active components of TCHMs usually exert combined synergistic therapeutic effects on multiple targets, but with less potential therapeutic effect based on routine indices than Western drugs. These complex effects make the assessment of the efficacy of TCHMs and the clarification of their underlying mechanisms very challenging, and therefore hinder their wider application and acceptance. Metabolomics is a crucial part of systems biology. It allows the quantitative measurement of large numbers of the low-molecular endogenous metabolites involved in metabolic pathways, and thus reflects the fundamental metabolism status of the body. Recently, dozens of metabolomic studies have been devoted to prove the efficacy/safety, explore the underlying mechanisms, and identify the potential biomarkers to access the action targets of TCHMs, with fruitful results. This article presents an overview of these studies, focusing on the progress made in exploring the pharmacology and toxicology of various herbal medicines.
Collapse
Affiliation(s)
- Jian Shi
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Bei Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xin-Wen Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Ji-Ye Aa
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jin-Ao Duan
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan-Xuan Zhu
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Ji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Chang-Xiao Liu
- Research Center of New Drug Evaluation, The National Laboratory of Pharmacodynamics and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
17
|
Zhang Z, Bo T, Bai Y, Ye M, An R, Cheng F, Liu H. Quadrupole time-of-flight mass spectrometry as a powerful tool for demystifying traditional Chinese medicine. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Li K, Buchinger TJ, Bussy U, Fissette SD, Johnson NS, Li W. Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1001:27-34. [PMID: 26253808 DOI: 10.1016/j.jchromb.2015.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 12/11/2022]
Abstract
Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC-MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile-water (containing 7.5mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25mL/min for 12min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00-5,000ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.
Collapse
Affiliation(s)
- Ke Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Skye D Fissette
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas S Johnson
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI 49759, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA; U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI 49759, USA.
| |
Collapse
|
19
|
Gong H, Zhang BK, Yan M, Fang PF, Li HD, Hu CP, Yang Y, Cao P, Jiang P, Fan XR. A protective mechanism of licorice (Glycyrrhiza uralensis): isoliquiritigenin stimulates detoxification system via Nrf2 activation. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:134-139. [PMID: 25557030 DOI: 10.1016/j.jep.2014.12.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice (Glycyrrhizae radix), the root of Glycyrrhiza uralensis Fisch. (Leguminosae), is mainly used to moderate the characteristics of toxic herbs in Traditional Chinese Medicine, which could be partly interpreted as detoxification. However, the underlying mechanism is still not fully elucidated. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in the protection against toxic xenobiotics. In our previous research, we have identified that extracts from Glycyrrhiza uralensis induced the expression of Nrf2 nuclear protein and its downstream genes. This research aims to screen the most potent Nrf2 inducer isolated from Glycyrrhiza uralensis and examine its effect on Nrf2 signaling pathway and detoxification system. MATERIALS AND METHODS Four compounds derived from Glycyrrhiza uralensis (glycyrrhetinic acid, liquiritigenin, isoliquiritigenin and liquiritin) were screened by ARE-luciferase reporter. The most potent ARE-luciferase inducer was chosen to further examine its effect on Nrf2 and detoxification genes in HepG2 cells. The role of Nrf2-dependent mechanism was tested by using Nrf2 knockout mice (Nrf2 KO) and Nrf2 wild-type mice (Nrf2 WT). RESULTS ARE-luciferase reporter assay showed these four compounds were all potent Nrf2 inducers, and isoliquiritigenin was the most potent inducer. Isoliquiritigenin significantly up-regulated the expression of Nrf2 and its downstream detoxification genes UDP-glucuronosyltransferase 1A1 (UGT1A1), glutamate cysteine ligase (GCL), multidrug resistance protein 2 (MRP2) and bile salt export pump (BSEP) in vitro and in vivo. Additionally, isoliquiritigenin showed Nrf2-dependent transactivation of UGT1A1, GCLC and MRP2. CONCLUSIONS Isoliquiritigenin, isolated from Glycyrrhiza uralensis, stimulates detoxification system via Nrf2 activation, which could be a potential protective mechanism of licorice.
Collapse
Affiliation(s)
- Hui Gong
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Bi-kui Zhang
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Miao Yan
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China.
| | - Ping-fei Fang
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Huan-de Li
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Chun-ping Hu
- Laboratory of Cellular and Molecular Biology, Jiangsu Academy of Traditional Chinese Medicine, 100# Shizi Street, Hongshan Road, Nanjing, Jiangsu 210028, China
| | - Yang Yang
- Laboratory of Cellular and Molecular Biology, Jiangsu Academy of Traditional Chinese Medicine, 100# Shizi Street, Hongshan Road, Nanjing, Jiangsu 210028, China
| | - Peng Cao
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; Laboratory of Cellular and Molecular Biology, Jiangsu Academy of Traditional Chinese Medicine, 100# Shizi Street, Hongshan Road, Nanjing, Jiangsu 210028, China.
| | - Pei Jiang
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Xin-rong Fan
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
20
|
Ma C, Qian Y, Fan X, Shang E, Yao X, Ma S. Using UPLC-QTOF-MS to analyze the chemical changes between traditional and dispensing granule decoctions of San-Ao-Tang. J Chromatogr Sci 2013; 52:277-92. [PMID: 23572319 DOI: 10.1093/chromsci/bmt026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study, a chemical profiling approach based on ultra-performance liquid chromatography coupled with photodiode array detection and time-of-flight mass spectrometry (UPLC-PDA-TOF-MS) was proposed to rapidly evaluate the chemical consistency between traditional and dispensing granule decoctions of traditional medicine combinatorial formulae and validated using San-Ao-Tang (SAT) as a model combinatorial formula. SAT is an effective traditional Chinese medicine, which is usually used in treating asthma and other diseases of the respiratory system. Two decoctions were prepared: traditional decoction, which is a water extract of three mixed constituent herbs of SAT; and dispensing granule decoction, which is a mixed water extract of each individual herb of SAT. Batches of these two decoction samples were subjected to UPLC-PDA-TOF-MS analysis and the data sets of t(R)-m/z pairs, ion intensities and sample codes were processed with supervised orthogonal partial least squared discriminant analysis to holistically compare their differences. Once a clear classification trend was found in the score plot, further statistics were performed to generate points at the two ends of S, and the components that correlated to these ions were regarded as the most changed components during decoction of the combinatorial formula. The changed components were identified by comparing the mass/ultraviolet spectra and retention times with those of reference compounds and/or tentatively assigned by matching empirical molecular formulae with those of the known compounds published in the literature. Using the proposed approach, global chemical differences were found between traditional and dispensing granule decoctions, like ephedrine, pseudoephedrine, norpseudoephedrine, licorice saponine H2, licorice saponine G2 and amygdalin.
Collapse
Affiliation(s)
- Chunhua Ma
- 1Jiangsu Key Laboratory for High Technology of TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | |
Collapse
|