1
|
Ponzetto F, Parasiliti-Caprino M, Leoni L, Marinelli L, Nonnato A, Nicoli R, Kuuranne T, Ghigo E, Mengozzi G, Settanni F. LC-MS/MS measurement of endogenous steroid hormones and phase II metabolites in blood volumetric absorptive microsampling (VAMS) for doping control purposes. Clin Chim Acta 2024; 557:117890. [PMID: 38537673 DOI: 10.1016/j.cca.2024.117890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Volumetric Absorptive Microsampling (VAMS) is emerging as a valuable technique in the collection of dried biological specimens, offering a potential alternative to traditional sampling methods. The objective of this study was to assess the suitability of 30 μL VAMS for the measurement of endogenous steroid hormones. METHODS A novel LC-MS/MS method was developed for the quantification of 18 analytes in VAMS samples, including main endogenous free steroids and phase II metabolites of androgens. The method underwent validation in accordance with ISO/IEC 17025:2017 and World Anti-Doping Agency (WADA) requirements. Subsequently, it was applied to authentic VAMS samples obtained from 20 healthy volunteers to assess the stability of target analytes under varying storage conditions. RESULTS The validation protocol assessed method's selectivity, matrix effect, extraction recovery, quantitative performance, carry-over and robustness. The analysis of authentic samples demonstrated the satisfactory stability of monitored steroids in VAMS stored at room temperature, 4 °C, -20 °C and -80 °C for up to 100 days and subjected to up to 3 freezing-thawing cycles. CONCLUSIONS The validated LC-MS/MS method demonstrated its suitability for the measurement of steroids in dried blood VAMS. The observed stability of steroidal compounds suggests promising prospects for future applications of VAMS, both in anti-doping contexts and clinical research.
Collapse
Affiliation(s)
- Federico Ponzetto
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Mirko Parasiliti-Caprino
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura Leoni
- Clinical Biochemistry Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Marinelli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonello Nonnato
- Clinical Biochemistry Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine Geneva and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine Geneva and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulio Mengozzi
- Clinical Biochemistry Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy; Clinical Biochemistry Laboratory, City of Health and Science University Hospital, Turin, Italy
| | - Fabio Settanni
- Clinical Biochemistry Laboratory, City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
2
|
de Sá e Silva DM, Thaitumu M, Theodoridis G, Witting M, Gika H. Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites. Metabolites 2023; 13:1038. [PMID: 37887363 PMCID: PMC10609074 DOI: 10.3390/metabo13101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Volumetric absorptive microsampling (VAMS) has arisen as a relevant tool in biological analysis, offering simplified sampling procedures and enhanced stability. Most of the attention VAMS has received in the past decade has been from pharmaceutical research, with most of the published work employing VAMS targeting drugs or other exogenous compounds, such as toxins and pollutants. However, biomarker analysis by employing blood microsampling has high promise. Herein, a comprehensive review on the applicability of VAMS devices for the analysis of endogenous metabolites/biomarkers was performed. The study presents a full overview of the analysis process, incorporating all the steps in sample treatment and validation parameters. Overall, VAMS devices have proven to be reliable tools for the analysis of endogenous analytes with biological importance, often offering improved analyte stability in comparison with blood under ambient conditions as well as a convenient and straightforward sample acquisition model.
Collapse
Affiliation(s)
- Daniel Marques de Sá e Silva
- Department of Chemistry, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece (G.T.)
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
| | - Marlene Thaitumu
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Department of Chemistry, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece (G.T.)
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 6, 85354 Freising, Germany
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Volumetric absorptive microsampling-LC-MS/MS assays for quantitation of giredestrant in dried human whole blood. Bioanalysis 2022; 14:1377-1389. [PMID: 36655682 DOI: 10.4155/bio-2022-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Volumetric absorption microsampling devices offer minimally invasive and user-friendly collection of capillary blood in volumes as low as 10 μl. Herein we describe the assay validation for determination of the selective estrogen receptor degrader giredestrant (GDC-9545) in dried human whole blood collected using the Mitra® and Tasso-M20 devices. Both LC-MS/MS assays met validation acceptance criteria for the linear range 1-1000 ng/ml giredestrant. Mitra and Tasso-M20 samples were stable for 84 and 28 days at ambient conditions, respectively, and for 7-9 days at 40 and -70°C. Blood hematocrit, hyperlipidemia and anticoagulant did not impact quantitation of giredestrant. These validated assays are suitable for the determination of giredestrant in dried blood samples collected using Mitra and Tasso-M20 microsampling devices.
Collapse
|
4
|
Dried urine spot and dried blood spot sample collection for rapid and sensitive monitoring of exposure to ricin and abrin by LC–MS/MS analysis of ricinine and l-abrine. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Delahaye L, Veenhof H, Koch BCP, Alffenaar JWC, Linden R, Stove C. Alternative Sampling Devices to Collect Dried Blood Microsamples: State-of-the-Art. Ther Drug Monit 2021; 43:310-321. [PMID: 33470777 DOI: 10.1097/ftd.0000000000000864] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
ABSTRACT Dried blood spots (DBS) have been used in newborn screening programs for several years. More recently, there has been growing interest in using DBS as a home sampling tool for the quantitative determination of analytes. However, this presents challenges, mainly because of the well-known hematocrit effect and other DBS-specific parameters, including spotted volume and punch site, which could add to the method uncertainty. Therefore, new microsampling devices that quantitatively collect capillary dried blood are continuously being developed. In this review, we provided an overview of devices that are commercially available or under development that allow the quantitative (volumetric) collection of dried blood (-based) microsamples and are meant to be used for home or remote sampling. Considering the field of therapeutic drug monitoring (TDM), we examined different aspects that are important for a device to be implemented in clinical practice, including ease of patient use, technical performance, and ease of integration in the workflow of a clinical laboratory. Costs related to microsampling devices are briefly discussed, because this additionally plays an important role in the decision-making process. Although the added value of home sampling for TDM and the willingness of patients to perform home sampling have been demonstrated in some studies, real clinical implementation is progressing at a slower pace. More extensive evaluation of these newly developed devices, not only analytically but also clinically, is needed to demonstrate their real-life applicability, which is a prerequisite for their use in the field of TDM.
Collapse
Affiliation(s)
- Lisa Delahaye
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| | - Herman Veenhof
- University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia; and
| | - Rafael Linden
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| |
Collapse
|
6
|
Li Y, Jiang Y, Cao H, Lin H, Ren W, Huang J, Zhang J. Therapeutic drug monitoring of valproic acid using a dried plasma spot sampling device. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4603. [PMID: 33729629 DOI: 10.1002/jms.4603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 06/12/2023]
Abstract
Valproic acid (VPA) dosing needs to be individualized for epilepsy patients through therapeutic drug monitoring (TDM). The patients must show up in the clinic at the therapeutic window time to venipuncture sample. Dried plasma spot (DPS) sampling is an alternative way to replace conventional venipuncture sampling. The aim of this study was to develop and validate a DPS-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to monitor VPA in a routine clinical laboratory setting. We compare the DPS with the wet plasma method of clinical samples by LC-MS/MS. The method was linear over the dynamic range of 10-200 μg/ml (covering entire therapeutic range) with a correlation coefficient r2 ≥ 0.995. Both the DPS and wet plasma methods were fully validated for the accuracy, precision, recovery, and matrix effect. The analyte stability was examined under conditions mimicking the sample storage, transport, and analysis procedures. A clinical study with epilepsy patients receiving VPA (n = 35) showed that, after correction for hematocrit (HCT), plasma concentrations can be successfully calculated from the DPS quantification results. Passing-Bablok regression coefficients showed no proportional bias between estimated and measured plasma concentrations. Similar agreement was found by Bland-Altman plots. The dried sample could be mailed to the clinical lab to test by regular mail service. So DPS can be used for drug monitoring with self-sampling strategy at the patient's convenient time and place specially for ambulatory patients not attending a clinic.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yi Jiang
- Department of Breast Disease, The Second Hospital of Jilin University, Changchun, China
| | - Haiwei Cao
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Hua Lin
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Ren
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Petrick LM, Arora M, Niedzwiecki MM. Minimally Invasive Biospecimen Collection for Exposome Research in Children's Health. Curr Environ Health Rep 2021; 7:198-210. [PMID: 32535858 DOI: 10.1007/s40572-020-00277-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The advent of low-volume biosampling and novel biomarker matrices offers non- or minimally invasive approaches to sampling in children. These new technologies, combined with advancements in mass spectrometry that provide high sensitivity, robust measurements of low-concentration exposures, facilitate the application of untargeted metabolomics in children's exposome research. Here, we review emerging sampling technologies for alternative biomatrices-dried capillary blood, interstitial fluid, saliva, teeth, and hair-and highlight recent applications of these samplers to drive discovery in population-based exposure research. RECENT FINDINGS Biosampling and biomarker technologies demonstrate potential to directly measure exposures during key developmental time periods. While saliva is the most traditional of the reported biomatrices, each technology has key advantages and disadvantages. For example, hair and teeth provide retrospective analysis of past exposures, and dried capillary blood provides quantitative measurements of systemic exposures that can be more readily compared with traditional venous blood measurements. Importantly, all technologies can or have the potential to be used at home, increasing the convenience and parental support for children's biosampling. This review describes emerging sample collection technologies that hold promise for children's exposome studies. While applications in metabolomics are still limited, these novel matrices are poised to facilitate longitudinal exposome studies to discover key exposures and windows of susceptibility affecting children's health.
Collapse
Affiliation(s)
- Lauren M Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Protti M, Mandrioli R, Mercolini L. Quantitative microsampling for bioanalytical applications related to the SARS-CoV-2 pandemic: Usefulness, benefits and pitfalls. J Pharm Biomed Anal 2020; 191:113597. [PMID: 32927419 PMCID: PMC7456588 DOI: 10.1016/j.jpba.2020.113597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
The multiple pathological effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and its total novelty, mean that currently a lot of diagnostic and therapeutic tools, established and tentative alike, are needed to treat patients in a timely, effective way. In order to make these tools more reliable, faster and more feasible, biological fluid microsampling techniques could provide many advantages. In this review, the most important microsampling techniques are considered (dried matrix spots, volumetric absorptive microsampling, microfluidics and capillary microsampling, solid phase microextraction) and their respective advantages and disadvantages laid out. Moreover, currently available microsampling applications of interest for SARS-CoV-2 therapy are described, in order to make them as much widely known as possible, hopefully providing useful information to researchers and clinicians alike.
Collapse
Affiliation(s)
- Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
9
|
A review of recent advances in microsampling techniques of biological fluids for therapeutic drug monitoring. J Chromatogr A 2020; 1635:461731. [PMID: 33285415 DOI: 10.1016/j.chroma.2020.461731] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Conventional sampling of biological fluids often involves a bulk quantity of samples that are tedious to collect, deliver and process. Miniaturized sampling approaches have emerged as promising tools for sample collection due to numerous advantages such as minute sample size, patient friendliness and ease of shipment. This article reviews the applications and advances of microsampling techniques in therapeutic drug monitoring (TDM), covering the period January 2015 - August 2020. As whole blood is the gold standard sampling matrix for TDM, this article comprehensively highlights the most historical microsampling technique, the dried blood spot (DBS), and its development. Advanced developments of DBS, ranging from various automation DBS, paper spray mass spectrometry (PS-MS), 3D dried blood spheroids and volumetric absorptive paper disc (VAPD) and mini-disc (VAPDmini) are discussed. The volumetric absorptive microsampling (VAMS) approach, which overcomes the hematocrit effect associated with the DBS sample, has been employed in recent TDM. The sample collection and sample preparation details in DBS and VAMS are outlined and summarized. This review also delineates the involvement of other biological fluids (plasma, urine, breast milk and saliva) and their miniaturized dried matrix forms in TDM. Specific features and challenges of each microsampling technique are identified and comparison studies are reviewed.
Collapse
|
10
|
Technological advancement in dry blood matrix microsampling and its clinical relevance in quantitative drug analysis. Bioanalysis 2020; 12:1483-1501. [DOI: 10.4155/bio-2020-0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the past few decades, dried blood matrix biosampling has witnessed a marvelous interest among the researcher due to its user-friendly operation during blood sampling in preclinical and clinical applications. It also complies with the basic 3Rs (reduce, reuse and recycle) philosophy. Because of comparative simplicity, a huge number of researchers are paying attention to its technological advancements for widespread application in the bioanalysis and diagnosis arena. In this review, we have explained different approaches to be considered during dried blood matrix based microsampling including their clinical relevance in therapeutic drug monitoring. We have also discussed various strategies for avoiding and minimizing major unwanted analytical interferences associated with this technique during drug quantification. Further, various recent technological advancement in microsampling devices has been discussed correlating their clinical applications.
Collapse
|
11
|
Determination of anabolic steroids in dried blood using microsampling and gas chromatography-tandem mass spectrometry: Application to a testosterone gel administration study. J Chromatogr A 2020; 1628:461445. [DOI: 10.1016/j.chroma.2020.461445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
|
12
|
Li Y, Jiang Y, Lin T, Wan Q, Yang X, Xu G, Huang J, Li Z. Amantadine hydrochloride monitoring by dried plasma spot technique: High‐performance liquid chromatography–tandem mass spectrometry based clinical assay. J Sep Sci 2020; 43:2264-2269. [PMID: 32160411 DOI: 10.1002/jssc.201901298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Yanyan Li
- Department of Clinical LaboratoryThe 1st Hospital of Jilin University Changchun P. R. China
| | - Yi Jiang
- Department of Breast DiseaseThe Second Hospital of Jilin University Changchun P. R. China
| | - Tao Lin
- Department of Neurosurgery at The Affiliated Hospital of Qingdao UniversityInstitute of Neuroregeneration & Neurorehabilitation of Qingdao University Qingdao P. R. China
| | - Qi Wan
- Department of Neurosurgery at The Affiliated Hospital of Qingdao UniversityInstitute of Neuroregeneration & Neurorehabilitation of Qingdao University Qingdao P. R. China
| | - Xiaoquan Yang
- Department of Clinical LaboratoryThe 1st Hospital of Jilin University Changchun P. R. China
| | - Guoxing Xu
- Department of Rehabilitation MedicineThe 1st hospital of Jilin University Changchun P. R. China
| | - Jing Huang
- Department of Clinical LaboratoryThe 1st Hospital of Jilin University Changchun P. R. China
| | - Zhenlan Li
- Department of Rehabilitation MedicineThe 1st hospital of Jilin University Changchun P. R. China
| |
Collapse
|
13
|
Ma JB, Wu HW, Liao YF, Rui QH, Zhu Y, Zhang Y. Application of petal-shaped ionic liquids modified covalent organic frameworks for one step cleanup and extraction of general anesthetics in human plasma samples. Talanta 2020; 210:120652. [PMID: 31987200 DOI: 10.1016/j.talanta.2019.120652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/08/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022]
Abstract
Here, the novel petal-shaped ionic liquids modified covalent organic frameworks (PS-IL-COFs) particles have been synthesized by using ionic liquids as modifying agent, which could be beneficial to avoid the aggregation of COFs during the preparation and improve its dispersing performance. The novel PS-IL-COFs particles have been used and evaluated in the one step cleanup and extraction (OSCE) procedure for human plasma prior to the analysis of 3 general anesthetics by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). In the OSCE procedure, human plasma samples are directly mixed with extraction solvent and PS-IL-COFs particles, and the extraction and cleanup procedure have been carried out simultaneously. Compared with the Oasis PRiME HLB cartridge method, the OSCE procedure using PS-IL-COFs particles as sorbents is much more effective for the minimization of ion suppression resulted from blood phospholipids. Under optimal conditions, the PS-IL-COFs particles show higher cleanup efficiency of 3 general anesthetics with recoveries in the range of 82.5%-115%. The limits of quantification (LOQs) for propofol, ketamine and etomidate are 0.18 μg/L, 0.15 μg/L and 0.016 μg/L, respectively. Validation results on linearity, specificity, precision and trueness, as well as on the application to analysis of general anesthetics in a case of a 54-year-old female suffered gallstone demonstrate the applicability to clinical studies.
Collapse
Affiliation(s)
- Jian-Bo Ma
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315010, China
| | - Hong-Wei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yu-Feng Liao
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315010, China
| | - Qiu-Hong Rui
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315010, China
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Yun Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
14
|
Londhe V, Rajadhyaksha M. Opportunities and obstacles for microsampling techniques in bioanalysis: Special focus on DBS and VAMS. J Pharm Biomed Anal 2020; 182:113102. [DOI: 10.1016/j.jpba.2020.113102] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
|
15
|
Ruggiero C, Ramirez S, Ramazzotti E, Mancini R, Muratori R, Raggi MA, Conti M. Multiplexed therapeutic drug monitoring of antipsychotics in dried plasma spots by LC-MS/MS. J Sep Sci 2020; 43:1440-1449. [PMID: 32077627 DOI: 10.1002/jssc.201901200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 01/19/2023]
Abstract
In this work, a convenient method for the therapeutic monitoring of seven common antipsychotic drugs in "dried plasma spot" samples has been developed. It is based on the liquid chromatography tandem mass spectrometry technique, operating in multiple reaction monitoring mode, and a straightforward procedure for the simultaneous extraction of all antipsychotics in a single step, with high extraction yield. The method was fully validated with proper accuracy, precision, selectivity and sensitivity, for all the drugs. Limits of quantification were 0.12, 1.09, 1.46, 1.47, 5.70, 1.32, 1.33 µg/L for haloperidol, aripiprazole, olanzapine, quetiapine, clozapine, risperidone, and paliperidone, respectively. Accuracy, intra- and interday precision values were <10% for all drugs at all concentration levels examined. The method was tested in the analysis of 30 plasma samples from real patients for each drug. The proposed analytical approach, by combining practical and logistical advantages of microsampling with liquid chromatography tandem mass spectrometry analytical performance, could offer an ideal strategy for accurate and timely therapeutic drug monitoring of antipsychotic drugs in most clinical settings, even in remote centers and/or in out-patient settings, bringing so many potential improvements in psychiatric patient care.
Collapse
Affiliation(s)
- Carla Ruggiero
- LUM Metropolitan Laboratory, AUSL Bologna, Bologna, Italy
| | | | | | - Rita Mancini
- LUM Metropolitan Laboratory, AUSL Bologna, Bologna, Italy
| | | | | | - Matteo Conti
- LUM Metropolitan Laboratory, AUSL Bologna, Bologna, Italy
| |
Collapse
|
16
|
Determination of free G-type nerve agents in blood: in situ derivatization on a dried blood spot (DBS) paper followed by LC–MS/MS analysis. Forensic Toxicol 2020. [DOI: 10.1007/s11419-019-00516-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Schmidt M, Rauh M, Schmid MC, Huebner H, Ruebner M, Wachtveitl R, Cordasic N, Rascher W, Menendez-Castro C, Hartner A, Fahlbusch FB. Influence of Low Protein Diet-Induced Fetal Growth Restriction on the Neuroplacental Corticosterone Axis in the Rat. Front Endocrinol (Lausanne) 2019; 10:124. [PMID: 30915031 PMCID: PMC6421269 DOI: 10.3389/fendo.2019.00124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/11/2019] [Indexed: 01/21/2023] Open
Abstract
Objectives: Placental steroid metabolism is linked to the fetal hypothalamus-pituitary-adrenal axis. Intrauterine growth restriction (IUGR) might alter this cross-talk and lead to maternal stress, in turn contributing to the pathogenesis of anxiety-related disorders of the offspring, which might be mediated by fetal overexposure to, or a reduced local enzymatic protection against maternal glucocorticoids. So far, direct evidence of altered levels of circulating/local glucocorticoids is scarce. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) allows quantitative endocrine assessment of blood and tissue. Using a rat model of maternal protein restriction (low protein [LP] vs. normal protein [NP]) to induce IUGR, we analyzed fetal and maternal steroid levels via LC-MS/MS along with the local expression of 11beta-hydroxysteroid-dehydrogenase (Hsd11b). Methods: Pregnant Wistar dams were fed a low protein (8%, LP; IUGR) or an isocaloric normal protein diet (17%, NP; controls). At E18.5, the expression of Hsd11b1 and 2 was determined by RT-PCR in fetal placenta and brain. Steroid profiling of maternal and fetal whole blood, fetal brain, and placenta was performed via LC-MS/MS. Results: In animals with LP-induced reduced body (p < 0.001) and placental weights (p < 0.05) we did not observe any difference in the expressional Hsd11b1/2-ratio in brain or placenta. Moreover, LP diet did not alter corticosterone (Cort) or 11-dehydrocorticosterone (DH-Cort) levels in dams, while fetal whole blood levels of Cort were significantly lower in the LP group (p < 0.001) and concomitantly in LP brain (p = 0.003) and LP placenta (p = 0.002). Maternal and fetal progesterone levels (whole blood and tissue) were not influenced by LP diet. Conclusion: Various rat models of intrauterine stress show profound alterations in placental Hsd11b2 gatekeeper function and fetal overexposure to corticosterone. In contrast, LP diet in our model induced IUGR without altering maternal steroid levels or placental enzymatic glucocorticoid barrier function. In fact, IUGR offspring showed significantly reduced levels of circulating and local corticosterone. Thus, our LP model might not represent a genuine model of intrauterine stress. Hypothetically, the observed changes might reflect a fetal attempt to maintain anabolic conditions in the light of protein restriction to sustain regular brain development. This may contribute to fetal origins of later neurodevelopmental sequelae.
Collapse
Affiliation(s)
- Marius Schmidt
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias C. Schmid
- Institute of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Hanna Huebner
- Department of Gynaecology and Obstetrics/Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynaecology and Obstetrics/Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Rainer Wachtveitl
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Nada Cordasic
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Rascher
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian B. Fahlbusch
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- *Correspondence: Fabian B. Fahlbusch
| |
Collapse
|
18
|
Yuan X, Lu Y, Xiao C, Zhu J, Zhang W, Yu C, Li S. Application of a micro plasma collection card for the detection of homocysteine by liquid chromatography with tandem mass spectrometry. J Sep Sci 2018; 41:4167-4176. [PMID: 30207427 DOI: 10.1002/jssc.201800579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Xiangmei Yuan
- School of Life Sciences; Shanghai University; Shanghai P. R. China
| | - Youli Lu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital; Fudan University; Shanghai P. R. China
- Shanghai Clinical Center; Chinese Academy of Science; Shanghai P. R. China
| | - Can Xiao
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital; Fudan University; Shanghai P. R. China
- Shanghai Clinical Center; Chinese Academy of Science; Shanghai P. R. China
| | - Jianmin Zhu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital; Fudan University; Shanghai P. R. China
- Shanghai Clinical Center; Chinese Academy of Science; Shanghai P. R. China
| | - Wei Zhang
- School of Life Sciences; Shanghai University; Shanghai P. R. China
| | - Chen Yu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital; Fudan University; Shanghai P. R. China
- Shanghai Clinical Center; Chinese Academy of Science; Shanghai P. R. China
| | - Shuijun Li
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital; Fudan University; Shanghai P. R. China
- Shanghai Clinical Center; Chinese Academy of Science; Shanghai P. R. China
| |
Collapse
|
19
|
Protti M, Mandrioli R, Mercolini L. Tutorial: Volumetric absorptive microsampling (VAMS). Anal Chim Acta 2018; 1046:32-47. [PMID: 30482302 DOI: 10.1016/j.aca.2018.09.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
Abstract
Volumetric absorptive microsampling (VAMS) is a recent microsampling technique used to obtain dried specimens of blood and other biological matrices for application to a plethora of bioanalytical purposes. As such, it can be likened to dried blood spot (DBS) technique that has been in wide use for the last 40 years. However, VAMS promises to bring some significant advantages over DBS, related to sampling volume accuracy, haematocrit (HCT) dependence, pre-treatment and automation. Although some aspects still need to be investigated in depth, VAMS is increasingly recognised as a viable alternative to DBS and other dried microsampling techniques. In this tutorial, different aspects of VAMS approach are described and discussed, presenting the procedures adopted and the results obtained by those authors who have developed this kind of analytical workflow in the last few years. Hopefully, this will help other scientists to find new solutions to old and recent problems related to microsampling and to produce new, sound and interesting science in this field.
Collapse
Affiliation(s)
- Michele Protti
- Pharmaco-Toxicological Analysis Laboratory (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Rimini, Italy
| | - Laura Mercolini
- Pharmaco-Toxicological Analysis Laboratory (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|
20
|
Yishai Aviram L, Magen M, Chapman S, Neufeld Cohen A, Lazar S, Dagan S. Dry Blood Spot sample collection for post-exposure monitoring of chemical warfare agents – In vivo determination of phosphonic acids using LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:60-65. [DOI: 10.1016/j.jchromb.2018.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/07/2018] [Accepted: 06/17/2018] [Indexed: 02/06/2023]
|
21
|
Kok MG, Fillet M. Volumetric absorptive microsampling: Current advances and applications. J Pharm Biomed Anal 2018; 147:288-296. [DOI: 10.1016/j.jpba.2017.07.029] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022]
|
22
|
Pieragostino D, Agnifili L, Cicalini I, Calienno R, Zucchelli M, Mastropasqua L, Sacchetta P, Del Boccio P, Rossi C. Tear Film Steroid Profiling in Dry Eye Disease by Liquid Chromatography Tandem Mass Spectrometry. Int J Mol Sci 2017; 18:ijms18071349. [PMID: 28672794 PMCID: PMC5535842 DOI: 10.3390/ijms18071349] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 12/01/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder of the ocular surface unit resulting in eye discomfort, visual disturbance, and ocular surface damage; the risk of DED increases with age in both sexes, while its incidence is higher among females caused by an overall hormonal imbalance. The role of androgens has recently investigated and these hormones were considered to have a protective function on the ocular surface. In order to correlate DED to tear steroid levels, a robust, specific, and selective method for the simultaneous quantification of cortisol (CORT), corticosterone (CCONE), 11-deoxycortisol (11-DECOL), 4-androstene-3,17-dione (ADIONE), testosterone (TESTO), 17α-hydroxyprogesterone (17-OHP), and progesterone (PROG) was developed and applied for the analysis of tear samples. The method involves a simple extraction procedure of steroids from tears collected on Schirmer strips, followed by a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. In total, tear samples from 14 DED female patients and 13 healthy female controls were analysed and, CORT, ADIONE, and 17-OHP response levels resulted significantly decreased in dry eye patients respect to controls. The receiver operating characteristic (ROC) curve obtained by the combination of these three steroids (AUC = 0.964) demonstrated the good diagnostic power of the differential tear steroids in identifying DED. In conclusion, the present method made it possible, for the first time, to study steroid profiling directly in tear fluid.
Collapse
Affiliation(s)
- Damiana Pieragostino
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Analytical Biochemistry and Proteomics Laboratory, Research Centre on Aging and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Luca Agnifili
- Opthalmic Clinic, Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Ilaria Cicalini
- Analytical Biochemistry and Proteomics Laboratory, Research Centre on Aging and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Roberta Calienno
- Opthalmic Clinic, Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Mirco Zucchelli
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Analytical Biochemistry and Proteomics Laboratory, Research Centre on Aging and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Leonardo Mastropasqua
- Opthalmic Clinic, Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Paolo Sacchetta
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Analytical Biochemistry and Proteomics Laboratory, Research Centre on Aging and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Laboratory, Research Centre on Aging and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Claudia Rossi
- Department of Medical Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Analytical Biochemistry and Proteomics Laboratory, Research Centre on Aging and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|