1
|
Wang ZJ, Hong YR, Wang XY, Wang JZ, Zhai YJ, Cui W, Han WB. Fungal Coculture of Herpotrichia sp. and Trametes versicolor Induces Production of Diverse Metabolites with Anti-Parkinson's Neuroprotective Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:2180-2193. [PMID: 39214601 DOI: 10.1021/acs.jnatprod.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Co-cultivation of isopod-associated fungi Herpotrichia sp. SF09 and Trametes versicolor SF09A led to the reciprocal induction of thirteen new compounds (1-7 and 9-13) with diverse architectures. Importantly, compounds 1 and 2 are rare fungal sesquiterpene-saccharide hybrids incorporating a xylopyranose moiety, compound (±)-3 represents the first example of a natural linear sesquiterpene racemate, and compound 7 is a rare α-pyrone derivative with a xylopyranose motif. Their structures were elucidated by analysis of NMR and mass spectrometry data, and their absolute configurations were determined by Mosher's method, microscale derivatization, and single-crystal X-ray diffraction, as well as ECD calculations. All the isolated compounds ameliorated MPP+-induced oxidative damage in PC12 cells in a dose-dependent fashion. Among them, compounds 5 and 15 showed significant protective action against neuronal injury by MPP+ at 5 μM. Meanwhile, transcriptome sequencing was performed to evaluate the molecular mechanism of the neuroprotective activity for compound 5. Results indicated that compound 5 might mitigate MPP+-induced neuronal injury through the regulation of multiple signaling pathways, including the PI3K-Akt and MAPK pathways. Our findings suggested that compound 5 could be a promising neuroprotective agent for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Zi-Jue Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yi-Rui Hong
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xin-Yu Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jing-Zhe Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
2
|
Barzkar N, Sukhikh S, Babich O. A comprehensive review of marine sponge metabolites, with emphasis on Neopetrosia sp. Int J Biol Macromol 2024; 280:135823. [PMID: 39313052 DOI: 10.1016/j.ijbiomac.2024.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The secondary metabolites that marine sponges create are essential to the advancement of contemporary medicine and are often employed in clinical settings. Over the past five years, microbes associated with sponges have yielded the identification of 140 novel chemicals. Statistics show that most are derived from actinomycetes (bacteria) and ascomycotes (fungi). The aim of this study was to investigate the biological activity of metabolites from marine sponges. Chlocarbazomycins A-D, which are a group of novel chlorinated carbazole alkaloids isolated from the sponge Neopetrosia fennelliae KUFA 0811, exhibit antimicrobial, cytotoxic, and enzyme inhibitory activities. Recently, marine sponges of the genus Neopetrosia have attracted attention due to the unique chemical composition of the compounds they produce, including alkaloids of potential importance in drug discovery. Fridamycin H and fridamycin I are two novel type II polyketides synthesized by sponge-associated bacteria exhibit antitrypanosomal activity. Fintiamin, composed of amino acids and terpenoid moieties, shows affinity for the cannabinoid receptor CB 1. It was found that out of 27 species of Neopetrosia sponges, the chemical composition of only 9 species has been studied. These species mainly produce bioactive substances such as alkaloids, quinones, sterols, and terpenoids. The presence of motuporamines is a marker of the species Neopetrosia exigua. Terpenoids are specific markers of Neopetrosia vanilla species. Although recently discovered, secondary metabolites from marine sponges have been shown to have diverse biological activities, antimicrobial, antiviral, antibacterial, antimicrobial, antioxidant, antimalarial, and anticancer properties, providing many lead compounds for drug development. The data presented in this review on known and future natural products derived from sponges will further clarify the role and importance of microbes in marine sponges and trace the prospects of their applications, especially in medicine, cosmeceuticals, environmental protection, and manufacturing industries.
Collapse
Affiliation(s)
- Noora Barzkar
- Higher Institution Center of Excellence, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Stanislav Sukhikh
- SEC "Applied Biotechnologies", Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| | - Olga Babich
- SEC "Applied Biotechnologies", Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| |
Collapse
|
3
|
Li X, Chen Y, Liu Z, Li S, Liu H, Wang Y, Zhang W, Yan H. Cytotoxic pyrone derivatives from the deep-sea-derived fungus Cladosporium halotolerans FS702. Nat Prod Res 2024; 38:594-600. [PMID: 36938638 DOI: 10.1080/14786419.2023.2187794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Two new compounds (R)-6-((8S)-hydroxypropyl)-2-methyl-5,6-dihydro-4H-pyran-4-one (1) and (R)-6-((8R)-hydroxypropyl)-2-methyl-5,6-dihydro-4H-pyran-4-one (2), together with four known compounds were isolated from the marine-derived fungus Cladosporium halotolerans FS702. The structures of these compounds were determined on the basis of extensive spectroscopic analysis including 1D/2D NMR, IR, UV, HRESIMS, ECD calculations as well as the modified Mosher's method. Cytotoxic assay results showed that compound 2 had significant cytotoxic activity against SF-268, MCF-7, HepG-2, and A549 cells lines with IC50 values of 0.16, 0.47, 0.33 and 0.23 µM, respectively.
Collapse
Affiliation(s)
- Xuejiao Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanlin Wang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hanjing Yan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Li Y, Wang Y, Wang H, Shi T, Wang B. The Genus Cladosporium: A Prospective Producer of Natural Products. Int J Mol Sci 2024; 25:1652. [PMID: 38338931 PMCID: PMC10855219 DOI: 10.3390/ijms25031652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Cladosporium, a genus of ascomycete fungi in the Dematiaceae family, is primarily recognized as a widespread environmental saprotrophic fungus or plant endophyte. Further research has shown that the genus is distributed in various environments, particularly in marine ecosystems, such as coral reefs, mangroves and the polar region. Cladosporium, especially the marine-derived Cladosporium, is a highly resourceful group of fungi whose natural products have garnered attention due to their diverse chemical structures and biological activities, as well as their potential as sources of novel leads to compounds for drug production. This review covers the sources, distribution, bioactivities, biosynthesis and structural characteristics of compounds isolated from Cladosporium in the period between January 2000 and December 2022, and conducts a comparative analysis of the Cladosporium isolated compounds derived from marine and terrestrial sources. Our results reveal that 34% of Cladosporium-derived natural products are reported for the first time. And 71.79% of the first reported compounds were isolated from marine-derived Cladosporium. Cladosporium-derived compounds exhibit diverse skeletal chemical structures, concentrating in the categories of polyketides (48.47%), alkaloids (19.21%), steroids and terpenoids (17.03%). Over half of the natural products isolated from Cladosporium have been found to have various biological activities, including cytotoxic, antibacterial, antiviral, antifungal and enzyme-inhibitory activities. These findings testify to the tremendous potential of Cladosporium, especially the marine-derived Cladosporium, to yield novel bioactive natural products, providing a structural foundation for the development of new drugs.
Collapse
Affiliation(s)
- Yanjing Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| | - Yifei Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| | - Han Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| | - Ting Shi
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.L.); (Y.W.); (H.W.)
| |
Collapse
|
5
|
Li DD, Luo X, Ying W, La Kim E, Hong J, Lee JH, Jung JH. Peroxisome Proliferator Activated Receptor-γ Agonistic Compounds from the Jellyfish-Derived Fungus Cladosporium oxysporum. Chem Biodivers 2023; 20:e202300851. [PMID: 37584103 DOI: 10.1002/cbdv.202300851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
In our search for peroxisome proliferator-activated receptor (PPAR) agonists, five undescribed compounds, namely two acyclic diterpenes (1 and 2; cladopsol A and cladopsol B), two sesquiterpenes (3 and 4; cladopsol C and cladopsol D), and one C21-ecdysteroid (5; cladopsol E), and 15 known compounds were isolated from the jellyfish-derived fungus - Cladosporium oxysporum. The structures of the undescribed compounds were defined using UV, NMR, HR-ESI-MS, and electronic circular dichroism (ECD) spectroscopy and a modified Mosher's method. Luciferase reporter assay and docking analysis suggested that cladopsol B may function as a PPAR-γ partial agonist with a potential antidiabetic lead which may evade the side effects of full agonists. Moreover, cladopsol B stimulated glucose uptake in HepG2 cells with an efficacy comparable to that of rosiglitazone, but with less side effect induced by lipid accumulation in 3T3-L1 cells. Therefore, cladopsol B could serve as a molecular skeleton in a study of advanced antidiabetic lead with less side effect.
Collapse
Affiliation(s)
- Dan-Dan Li
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, P.R. China
| | - Wang Ying
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun La Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joon-Hee Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jee H Jung
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
6
|
Zhai LL, Jiang TT, Zhang R, Li JN, Zhai YJ, Zhang Q, Li D, Han WB. Ergostane-type sterols and sesquiterpenes with anti-neuroinflammatory activity from a Nigrograna species associated with Clematis shensiensis. PHYTOCHEMISTRY 2023; 211:113690. [PMID: 37150432 DOI: 10.1016/j.phytochem.2023.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Nigrograna sp. LY66, an endophytic fungus associated with the herbal medicinal plant Clematis shensiensis, produced four undescribed steroids, nigergostanes A-D (1-4), including an unusual ketal-containing nigergostane (1), and four undescribed sesquiterpenoids decorated with cyclohexanone motifs, nigbisabolanes A-D (7-10), along with three known compounds, 23R-hydroxy-(20Z,24R)-ergosta-4,6,8(14),20(22)-tetraen-3-one (5), ergosta-5,7,22-trien-3β-ol (6), and curculonone A (11). The structures and absolute configurations of these undescribed compounds were confirmed using spectroscopic data (NMR and HRESIMS), modified Mosher's method, and ECD experiments. Additionally, compounds 5 and 8 displayed significant inhibition of nitric oxide generation in lipopolysaccharide-induced BV-2 microglial cells with IC50 values of 2.8 and 2.7 μM, respectively, and is thus more potent than that of the positive control, quercetin (IC50 = 8.77 μM). A molecular docking study revealed that 23-OH of 5 binds to the Y347 residue of inducible nitric oxide synthase (iNOS), whereas the 2-OH and 9,10-diol moieties of 8 bind to R381 and W463 and haeme residues of iNOS, respectively, which has rarely been reported in previous studies. These findings provide a set of undescribed lead compounds that can be developed into anti-neuroinflammatory agents.
Collapse
Affiliation(s)
- Liang-Liang Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Ting-Ting Jiang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Rong Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Sallam A, El-Metwally M, Sabry MA, Elsbaey M. Cladamide: a new ceramide from the endophytic fungus Cladosporium cladosporioides. Nat Prod Res 2023; 37:1082-1091. [PMID: 34622719 DOI: 10.1080/14786419.2021.1986709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A new ceramide, named cladamide (1), in addition to cinnamic acid (2), para-coumaric acid (3), stigmasterol-3-O-β-D-glucoside (4), and uracil (5), was isolated from the white beans culture of Cladosporium cladosporioides, a marine-derived endohpytic fungus isolated from the leaves of the mangrove, Avicennia marina (Forssk.) Vierh. Structure elucidation of compound 1 was established on the basis of extensive 1D and 2D NMR spectroscopic techniques in combination with HR-ESI-MS. The ability of the isolated compounds to inhibit acetylcholine esterase was evaluated. Compound 3 showed the highest acetylcholine esterase inhibitory activity (IC50 = 0.057 ± 0.003 µM), followed by compound 4 (IC50 = 0.068 ± 0.003 µM) and compound 1 (IC50 = 0.099 ± 0.005 µM) compared to donepezil, the positive control, (IC50 = 0.044 ± 0.002 µM). Compounds 2 and 5 showed lower activity (IC50 = 0.182 ± 0.009 and 0.236 ± 0.012 µM, respectively). The results were further validated by molecular docking study.
Collapse
Affiliation(s)
- Amal Sallam
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Metwally
- Division of Marine Environment, National Institute of Oceanography and Fisheries, Hurgada, Egypt
| | - Mohamed A Sabry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa Elsbaey
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Atanasoff‐Kardjalieff AK, Seidl B, Steinert K, Daniliuc CG, Schuhmacher R, Humpf H, Kalinina S, Studt‐Reinhold L. Biosynthesis of the Isocoumarin Derivatives Fusamarins is Mediated by the PKS8 Gene Cluster in Fusarium. Chembiochem 2023; 24:e202200342. [PMID: 36137261 PMCID: PMC10947347 DOI: 10.1002/cbic.202200342] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Fusarium mangiferae causes the mango malformation disease (MMD) on young mango trees and seedlings resulting in economically significant crop losses. In addition, F. mangiferae produces a vast array of secondary metabolites (SMs), including mycotoxins that may contaminate the harvest. Their production is tightly regulated at the transcriptional level. Here, we show that lack of the H3 K9-specific histone methyltransferase, FmKmt1, influences the expression of the F. mangiferae polyketide synthase (PKS) 8 (FmPKS8), a so far cryptic PKS. By a combination of reverse genetics, untargeted metabolomics, bioinformatics and chemical analyses including structural elucidation, we determined the FmPKS8 biosynthetic gene cluster (BGC) and linked its activity to the production of fusamarins (FMN), which can be structurally classified as dihydroisocoumarins. Functional characterization of the four FMN cluster genes shed light on the biosynthetic pathway. Cytotoxicity assays revealed moderate toxicities with IC50 values between 1 and 50 μM depending on the compound.
Collapse
Affiliation(s)
- Anna K. Atanasoff‐Kardjalieff
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| | - Bernhard Seidl
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Katharina Steinert
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Hans‐Ulrich Humpf
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Svetlana Kalinina
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Lena Studt‐Reinhold
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| |
Collapse
|
9
|
Tammam MA, Gamal El-Din MI, Abood A, El-Demerdash A. Recent advances in the discovery, biosynthesis, and therapeutic potential of isocoumarins derived from fungi: a comprehensive update. RSC Adv 2023; 13:8049-8089. [PMID: 36909763 PMCID: PMC9999372 DOI: 10.1039/d2ra08245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
Microorganisms still remain the main hotspots in the global drug discovery avenue. In particular, fungi are highly prolific producers of vast structurally diverse specialized secondary metabolites, which have displayed a myriad of biomedical potentials. Intriguingly, isocoumarins is one distinctive class of fungal natural products polyketides, which demonstrated numerous remarkable biological and pharmacological activities. This review article provides a comprehensive state-of-the-art over the period 2000-2022 about the discovery, isolation, classifications, and therapeutic potentials of isocoumarins exclusively reported from fungi. Indeed, a comprehensive list of 351 structurally diverse isocoumarins were documented and classified according to their fungal sources [16 order/28 family/55 genera] where they have been originally discovered along with their reported pharmacological activities wherever applicable. Also, recent insights around their proposed and experimentally proven biosynthetic pathways are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University Fayoum 63514 Egypt
| | - Mariam I Gamal El-Din
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Amira Abood
- Chemistry of Natural and Microbial Products Department, National Research Center Dokki Cairo Egypt
- School of Bioscience, University of Kent Canterbury UK
| | - Amr El-Demerdash
- Organic Chemistry Division, Department of Chemistry, Faculty of Sciences, Mansoura University Mansoura 35516 Egypt
- Department of Biochemistry and Metabolism, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
10
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
11
|
Mohamed GA, Ibrahim SRM. Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Mar Drugs 2021; 19:645. [PMID: 34822516 PMCID: PMC8622643 DOI: 10.3390/md19110645] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
The marine environment is an underexplored treasure that hosts huge biodiversity of microorganisms. Marine-derived fungi are a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including alkaloids, macrolides, diketopiperazines, pyrones, tetralones, sterols, phenolics, terpenes, lactones, and tetramic acid derivatives that possess versatile bioactivities. Moreover, they produce diverse enzymes with biotechnological and industrial relevance. This review gives an overview on the Cladosporium species derived from marine habitats, including their metabolites and bioactivities, as well as the industrial and biotechnological potential of these species. In the current review, 286 compounds have been listed based on the reported data from 1998 until July 2021. Moreover, more than 175 references have been cited.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
12
|
Raihan T, Rabbee MF, Roy P, Choudhury S, Baek KH, Azad AK. Microbial Metabolites: The Emerging Hotspot of Antiviral Compounds as Potential Candidates to Avert Viral Pandemic Alike COVID-19. Front Mol Biosci 2021; 8:732256. [PMID: 34557521 PMCID: PMC8452873 DOI: 10.3389/fmolb.2021.732256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
The present global COVID-19 pandemic caused by the noble pleomorphic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a vulnerable situation in the global healthcare and economy. In this pandemic situation, researchers all around the world are trying their level best to find suitable therapeutics from various sources to combat against the SARS-CoV-2. To date, numerous bioactive compounds from different sources have been tested to control many viral diseases. However, microbial metabolites are advantageous for drug development over metabolites from other sources. We herein retrieved and reviewed literatures from PubMed, Scopus and Google relevant to antiviral microbial metabolites by searching with the keywords "antiviral microbial metabolites," "microbial metabolite against virus," "microorganism with antiviral activity," "antiviral medicine from microbial metabolite," "antiviral bacterial metabolites," "antiviral fungal metabolites," "antiviral metabolites from microscopic algae' and so on. For the same purpose, the keywords "microbial metabolites against COVID-19 and SARS-CoV-2" and "plant metabolites against COVID-19 and SARS-CoV-2" were used. Only the full text literatures available in English and pertinent to the topic have been included and those which are not available as full text in English and pertinent to antiviral or anti-SARS-CoV-2 activity were excluded. In this review, we have accumulated microbial metabolites that can be used as antiviral agents against a broad range of viruses including SARS-CoV-2. Based on this concept, we have included 330 antiviral microbial metabolites so far available to date in the data bases and were previously isolated from fungi, bacteria and microalgae. The microbial source, chemical nature, targeted viruses, mechanism of actions and IC50/EC50 values of these metabolites are discussed although mechanisms of actions of many of them are not yet elucidated. Among these antiviral microbial metabolites, some compounds might be very potential against many other viruses including coronaviruses. However, these potential microbial metabolites need further research to be developed as effective antiviral drugs. This paper may provide the scientific community with the possible secret of microbial metabolites that could be an effective source of novel antiviral drugs to fight against many viruses including SARS-CoV-2 as well as the future viral pandemics.
Collapse
Affiliation(s)
- Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Puja Roy
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Swapnila Choudhury
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
13
|
Li J, Tao H, Lei XX, Zhang H, Zhou X, Liu Y, Li Y, Yang B. Arthriniumsteroids A-D, four new steroids from the soft coral-derived fungus Simplicillium lanosoniveum SCSIO41212. Steroids 2021; 171:108831. [PMID: 33836206 DOI: 10.1016/j.steroids.2021.108831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 01/30/2023]
Abstract
Four new steroids derivatives, namely arthriniumsteroids A - D (1-4), together with two known compounds, were isolated from the soft coral-derived fungus Simplicillium lanosoniveum SCSIO41212. Their structures were elucidated by spectroscopic analysis and by comparison with those reported in the literature. The absolute configuration of 2 was confirmed by single-crystal X-ray diffraction. In bioassay, all compounds showed weak inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells.
Collapse
Affiliation(s)
- Jixing Li
- Pharmacy School of Guilin Medical University, Guilin 541004, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xin-Xin Lei
- Pharmacy School of Guilin Medical University, Guilin 541004, China
| | - Han Zhang
- Pharmacy School of Guilin Medical University, Guilin 541004, China
| | - Xuefeng Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Yonghong Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Yunqiu Li
- Pharmacy School of Guilin Medical University, Guilin 541004, China.
| | - Bin Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China.
| |
Collapse
|
14
|
Sun TT, Zhu HJ, Cao F. Marine Natural Products as a Source of Drug Leads against Respiratory Viruses: Structural and Bioactive Diversity. Curr Med Chem 2021; 28:3568-3594. [PMID: 33106135 DOI: 10.2174/0929867327666201026150105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Respiratory viruses, including influenza virus, respiratory syncytial virus, coronavirus, etc., have seriously threatened the human health. For example, the outbreak of severe acute respiratory syndrome coronavirus, SARS, affected a large number of countries around the world. Marine organisms, which could produce secondary metabolites with novel structures and abundant biological activities, are an important source for seeking effective drugs against respiratory viruses. This report reviews marine natural products with activities against respiratory viruses, the emphasis of which was put on structures and antiviral activities of these natural products. This review has described 167 marinederived secondary metabolites with activities against respiratory viruses published from 1981 to 2019. Altogether 102 references are cited in this review article.
Collapse
Affiliation(s)
- Tian-Tian Sun
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Hua-Jie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Fei Cao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
15
|
Zhang B, Zhang T, Xu J, Lu J, Qiu P, Wang T, Ding L. Marine Sponge-Associated Fungi as Potential Novel Bioactive Natural Product Sources for Drug Discovery: A Review. Mini Rev Med Chem 2021; 20:1966-2010. [PMID: 32851959 DOI: 10.2174/1389557520666200826123248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Marine sponge-associated fungi are promising sources of structurally interesting and bioactive secondary metabolites. Great plenty of natural products have been discovered from spongeassociated fungi in recent years. Here reviewed are 571 new compounds isolated from marine fungi associated with sponges in 2010-2018. These molecules comprised eight different structural classes, including alkaloids, polyketides, terpenoids, meroterpenoids, etc. Moreover, most of these compounds demonstrated profoundly biological activities, such as antimicrobial, antiviral, cytotoxic, etc. This review systematically summarized the structural diversity, biological function, and future potential of these novel bioactive natural products for drug discovery.
Collapse
Affiliation(s)
- Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Ting Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jianzhou Xu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jian Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Panpan Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| |
Collapse
|
16
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
17
|
Yi M, Lin S, Zhang B, Jin H, Ding L. Antiviral potential of natural products from marine microbes. Eur J Med Chem 2020; 207:112790. [PMID: 32937282 PMCID: PMC7457942 DOI: 10.1016/j.ejmech.2020.112790] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Humans have been suffered from viral infections over the centuries, such as influenza, HSV, and HIV, which have killed millions of people worldwide. However, the availability of effective treatments for infectious diseases remains limited until now, as most of the viral pathogens resisted to many medical treatments. Marine microbes are currently one of the most copious sources of pharmacologically active natural products, which have constantly provided promising antivirus agents. To date, a large number of marine microbial secondary metabolites with antiviral activities have been widely reported. In this review, we have summarized the potential antivirus compounds from marine microorganisms over the last decade. In addition, the structures, bioactivities, and origins of these compounds were discussed as well.
Collapse
Affiliation(s)
- Mengqi Yi
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Sixiao Lin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
18
|
Teng YF, Xu L, Wei MY, Wang CY, Gu YC, Shao CL. Recent progresses in marine microbial-derived antiviral natural products. Arch Pharm Res 2020; 43:1215-1229. [PMID: 33222073 PMCID: PMC7680217 DOI: 10.1007/s12272-020-01286-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Viruses have always been a class of pathogenic microorganisms that threaten the health and safety of human life worldwide. However, for a long time, the treatment of viral infections has been slow to develop, and only a few antiviral drugs have been using clinically. Compared with these from terrestrial environments, marine-derived microorganisms can produce active substances with more novel structures and unique functions. From 2015 to 2019, 89 antiviral compounds of 8 structural classes have been isolated from marine microorganisms, of which 35 exhibit anti-H1N1 activity. This review surveys systematically marine microbial-derived natural products with antiviral activity and illustrates the impact of these compounds on antiviral drug discovery research.
Collapse
Affiliation(s)
- Yun-Fei Teng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Li Xu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell , Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
19
|
He ZH, Zhang G, Yan QX, Zou ZB, Xiao HX, Xie CL, Tang XX, Luo LZ, Yang XW. Cladosporactone A, a Unique Polyketide with 7-Methylisochromen-3-one Skeleton from the Deep-Sea-Derived Fungus Cladosporium cladosporioides. Chem Biodivers 2020; 17:e2000158. [PMID: 32259395 DOI: 10.1002/cbdv.202000158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
A unique polyketide cladosporactone A along with eight known compounds were isolated from the deep-sea-derived Cladosporium cladosporioides. The structure of cladosporactone A was established by spectroscopic analyses, and the absolute configuration was clarified by the theoretical ECD calculation. Cladosporactone A is the first member of polyketide with the 7-methylisochromen-3-one skeleton.
Collapse
Affiliation(s)
- Zhi-Hui He
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Gang Zhang
- Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, 1999 Guankouzhong Road, Xiamen, 361023, R. P. China
| | - Qin-Xiang Yan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Zhen-Biao Zou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Hong-Xiu Xiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Xi-Xiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| | - Lian-Zhong Luo
- Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, 1999 Guankouzhong Road, Xiamen, 361023, R. P. China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, R. P. China
| |
Collapse
|
20
|
Han X, Bao XF, Wang CX, Xie J, Song XJ, Dai P, Chen GD, Hu D, Yao XS, Gao H. Cladosporine A, a new indole diterpenoid alkaloid with antimicrobial activities from Cladosporium sp. Nat Prod Res 2019; 35:1115-1121. [PMID: 31307232 DOI: 10.1080/14786419.2019.1641807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cladosporine A (1), a new indole diterpenoid alkaloid, was isolated from the extract of a fungal strain Cladosporium sp. JNU17DTH12-9-01. Its structure was elucidated by extensive spectroscopic analysis, and the absolute configurations were determined by electronic circular dichroism (ECD) experiments. This is the first report of the presence of indole diterpenoid alkaloid in the genus Cladosporium. The antimicrobial activities against Staphylococcus aureus 209P, Escherichia coli ATCC0111, Aspergillus niger R330, and Candida albicans FIM709 were evaluated. Compound 1 showed MICs of 4 μg/mL and 16 μg/mL against S. aureus 209P and C. albicans FIM709, respectively.
Collapse
Affiliation(s)
- Xue Han
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xue-Feng Bao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Jun Xie
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xiao-Jun Song
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Ping Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
21
|
New Alkaloids and Polyketides from the Marine Sponge-Derived Fungus Penicillium sp. SCSIO41015. Mar Drugs 2019; 17:md17070398. [PMID: 31284448 PMCID: PMC6669684 DOI: 10.3390/md17070398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023] Open
Abstract
The sponge-derived fungus Penicillium sp. SCSIO41015 cultured on solid rice medium yielded twenty-one compounds (1-21), including two new alkaloids (1 and 2) and one new pyrone derivative (3). Their structures were elucidated by analysis of 1D/2D NMR data and HR-ESI-MS. Their absolute configurations were established by single-crystal X-ray diffraction analysis and comparison of the experimental with reported specific rotation values. Compound 16 exhibited selective cytotoxic activity against the human gastric cancer cells MGC803, with IC50 value of 5.19 μM. Compounds 9 and 18 showed weak antibacterial activity against Staphylococcus aureus and Acinetobacter baumannii, respectively, both with MIC values of 57 μg/mL. Furthermore, compound 16 displayed potent antibacterial activity against S. aureus with an MIC value of 3.75 μg/mL.
Collapse
|
22
|
Steroids from Marine-Derived Fungi: Evaluation of Antiproliferative and Antimicrobial Activities of Eburicol. Mar Drugs 2019; 17:md17060372. [PMID: 31234456 PMCID: PMC6628047 DOI: 10.3390/md17060372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022] Open
Abstract
The most common sterol in fungi is ergosterol, which has frequently been investigated in human pathogenic fungal strains. This sterol, and others isolated from fungal strains, has also demonstrated cytotoxicity against cancer cell lines and antimicrobial activities. Marine fungi can produce high amounts of bioactive compounds. So, a screening was performed to study sterol composition using GC/MS in 19 marine fungal strains and ergosterol was always the major one. One strain, Clonostachys rosea MMS1090, was selected due to its high amount of eburicol and a one strain many compounds approach was performed on seven culture media to optimize its production. After purification and structural identification by NMR, eburicol was assessed against four cancer cell lines, MCF-7, MDA-MB-231, NSCLC-N6-L16 and A549, and seven human pathogenic bacteria Staphylococcus aureus, Bacillus sp., Bacillus cereus, Listeria ivanovii, Escherichia coli, Citrobacter freundii and Salmonella spp. The most significant activity was cytotoxicity against MCF-7 cells (2 µM). This is the first report of such an accumulation of eburicol in the marine fungal strain C. rosea confirming its potential in the production of bioactive lipids.
Collapse
|
23
|
Cong Z, Huang X, Liu Y, Liu Y, Wang P, Liao S, Yang B, Zhou X, Huang D, Wang J. Cytotoxic anthracycline and antibacterial tirandamycin analogues from a marine-derived Streptomyces sp. SCSIO 41399. J Antibiot (Tokyo) 2018; 72:45-49. [DOI: 10.1038/s41429-018-0103-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022]
|
24
|
Pang X, Lin X, Yang J, Zhou X, Yang B, Wang J, Liu Y. Spiro-Phthalides and Isocoumarins Isolated from the Marine-Sponge-Derived Fungus Setosphaeria sp. SCSIO41009. JOURNAL OF NATURAL PRODUCTS 2018; 81:1860-1868. [PMID: 30091601 DOI: 10.1021/acs.jnatprod.8b00345] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fourteen new polyketides classified as four phthalides, setosphalides A and B, 5- O-desmethylcolletotrialide, and ( S)-colletotrialide (1-4), three isocoumarin derivatives, exserolides I-K (5-7), four pyrones, setosphapyrones A-D (8-11), one furanone (12), and two depsidones (13 and 14), along with 17 known polyketides were isolated from cultures of the sponge-derived fungus Setosphaeria sp. SCSIO41009. The structures and absolute configurations of these new compounds (1-14) were determined by spectroscopic analyses, X-ray diffraction, chiral-phase HPLC analysis, modified Mosher's method, and comparison of ECD spectra to calculations. Setosphalides A (1) and B (2) are the first examples possessing a 5,5 spiroketal skeleton in phthalide derivatives. Botryorhodines I (13) and J (14) showed moderate antifungal activities against the phytopathogenic fungi Colletotrichum asianum and Colletotrichum acutatum. Compound 18 (7- O-demethylmonocerin) exhibited potent radical scavenging activity against DPPH.
Collapse
Affiliation(s)
- Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
25
|
Perylenequione Derivatives with Anticancer Activities Isolated from the Marine Sponge-Derived Fungus, Alternaria sp. SCSIO41014. Mar Drugs 2018; 16:md16080280. [PMID: 30110969 PMCID: PMC6117713 DOI: 10.3390/md16080280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Seven new secondary metabolites classified as two perylenequinone derivatives (1 and 2), an altenusin derivative (3), two phthalide racemates (4 and 5), and two phenol derivatives (6 and 7), along with twenty-one known compounds (8–28) were isolated from cultures of the sponge-derived fungus, Alternaria sp. SCSIO41014. The structures and absolute configurations of these new compounds (1–7) were determined by spectroscopic analysis, X-ray single crystal diffraction, chiral-phase HPLC separation, and comparison of ECD spectra to calculations. Altertoxin VII (1) is the first example possessing a novel 4,8-dihydroxy-substituted perylenequinone derivative, while the phenolic hydroxy groups have commonly always substituted at C-4 and C-9. Compound 1 exhibited cytotoxic activities against human erythroleukemia (K562), human gastric carcinoma cells (SGC-7901), and hepatocellular carcinoma cells (BEL-7402) with IC50 values of 26.58 ± 0.80, 8.75 ± 0.13, and 13.11 ± 0.95 μg/mL, respectively. Compound 11 showed selectively cytotoxic activity against K562, with an IC50 value of 19.67 ± 0.19 μg/mL. Compound 25 displayed moderate inhibitory activity against Staphylococcus aureus with an MIC value of 31.25 μg/mL.
Collapse
|