1
|
Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenol induces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small cell lung cancer cell lines. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:503-514. [PMID: 38849220 DOI: 10.1016/j.joim.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Studies have demonstrated that cycloastragenol induces antitumor effects in prostate, colorectal and gastric cancers; however, its efficacy for inhibiting the proliferation of lung cancer cells is largely unexplored. This study explores the efficacy of cycloastragenol for inhibiting non-small cell lung cancer (NSCLC) and elucidates the underlying molecular mechanisms. METHODS The effects of cycloastragenol on lung cancer cell proliferation were assessed using an adenosine triphosphate monitoring system based on firefly luciferase and clonogenic formation assays. Cycloastragenol-induced apoptosis in lung cancer cells was evaluated using dual staining flow cytometry with an annexin V-fluorescein isothiocyanate/propidium iodide kit. To elucidate the role of cycloastragenol in the induction of apoptosis, apoptosis-related proteins were examined using Western blots. Immunofluorescence and Western blotting were used to determine whether cycloastragenol could induce autophagy in lung cancer cells. Genetic techniques, including small interfering RNA technology, were used to investigate the underlying mechanisms. The effects against lung cancer and biosafety of cycloastragenol were evaluated using a mouse subcutaneous tumor model. RESULTS Cycloastragenol triggered both autophagy and apoptosis. Specifically, cycloastragenol promoted apoptosis by facilitating the accumulation of phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), a critical apoptosis-related protein. Moreover, cycloastragenol induced a protective autophagy response through modulation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)/unc-51-like autophagy-activating kinase (ULK1)/mammalian target of rapamycin (mTOR) pathway. CONCLUSION Our study sheds new light on the antitumor efficacy and mechanism of action of cycloastragenol in NSCLC. This insight provides a scientific basis for exploring combination therapies that use cycloastragenol and inhibiting the AMPK/ULK1/mTOR pathway as a promising approach to combating lung cancer. Please cite this article as follows: Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenolinduces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small celllung cancer cell lines. J Integr Med. 2024; 22(4): 504-515.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Pei Liang
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lian Yang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai 200237, China
| | - Li-Jun Jia
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - He-Gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
2
|
Gaobotse G, Venkataraman S, Brown PD, Masisi K, Kwape TE, Nkwe DO, Rantong G, Makhzoum A. The use of African medicinal plants in cancer management. Front Pharmacol 2023; 14:1122388. [PMID: 36865913 PMCID: PMC9971233 DOI: 10.3389/fphar.2023.1122388] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer is the third leading cause of premature death in sub-Saharan Africa. Cervical cancer has the highest number of incidences in sub-Saharan Africa due to high HIV prevalence (70% of global cases) in African countries which is linked to increasing the risk of developing cervical cancer, and the continuous high risk of being infected with Human papillomavirus In 2020, the risk of dying from cancer amongst women was higher in Eastern Africa (11%) than it was in Northern America (7.4%). Plants continue to provide unlimited pharmacological bioactive compounds that are used to manage various illnesses, including cancer. By reviewing the literature, we provide an inventory of African plants with reported anticancer activity and evidence supporting their use in cancer management. In this review, we report 23 plants that have been used for cancer management in Africa, where the anticancer extracts are usually prepared from barks, fruits, leaves, roots, and stems of these plants. Extensive information is reported about the bioactive compounds present in these plants as well as their potential activities against various forms of cancer. However, information on the anticancer properties of other African medicinal plants is insufficient. Therefore, there is a need to isolate and evaluate the anticancer potential of bioactive compounds from other African medicinal plants. Further studies on these plants will allow the elucidation of their anticancer mechanisms of action and allow the identification of phytochemicals that are responsible for their anticancer properties. Overall, this review provides consolidated and extensive information not only on diverse medicinal plants of Africa but on the different types of cancer that these plants are used to manage and the diverse mechanisms and pathways that are involved during cancer alleviation.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Phenyo D. Brown
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - David O. Nkwe
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| |
Collapse
|
3
|
Palangmonthip W, Wu R, Tarima S, Bobholz SA, LaViolette PS, Gallan AJ, Iczkowski KA. Corpora amylacea in benign prostatic acini are associated with concurrent, predominantly low-grade cancer. Prostate 2020; 80:687-697. [PMID: 32271960 PMCID: PMC10561550 DOI: 10.1002/pros.23980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Corpora amylacea (CAM), in benign prostatic acini, contain acute-phase proteins. Do CAM coincide with carcinoma? METHODS Within 270 biopsies, 83 prostatectomies, and 33 transurethral resections (TURs), CAM absence was designated CAM 0; corpora in less than 5% of benign acini: CAM 1; in 5% to 25%: CAM 2; in more than 25%: CAM 3. CAM were compared against carcinoma presence, clinicopathologic findings, and grade groups (GG) 1 to 2 vs 3 to 5. The frequency of CAM according to anatomic zone was counted. A pilot study was conducted using paired initial benign and repeat biopsies (33 benign, 24 carcinoma). RESULTS A total of 68.9% of biopsies, 96.4% of prostatectomies, and 66.7% of TURs disclosed CAM. CAM ≥1 was common at an older age (P = .019). In biopsies, 204 cases (75%) had carcinoma; and CAM of 2 to 3 (compared to 0-1) were recorded in 25.0% of carcinomas but only 7.4% of benign biopsies (P = .005; odds ratio [OR] = 5.1). CAM correlated with high percent Gleason pattern 3, low GG (P = .035), and chronic inflammation (CI). CI correlated inversely with carcinoma (P = .003). CAM disclosed no association with race, body mass index, serum prostate specific antigen (PSA), acute inflammation (in biopsies), atrophy, or carcinoma volume. With CAM 1, the odds of GG 3 to 5 carcinoma, by comparison to CAM 0, decreased more than 2× (OR = 0.48; P = .032), with CAM 2, more than 3× (OR = 0.33; P = .005), and with CAM 3, almost 3× (OR = 0.39, P = .086). For men aged less than 65, carcinoma predictive model was: Score = (2 × age) + (5 × PSA) - (20 × degree of CAM); using our data, area under the ROC curve was 78.17%. When the transition zone was involved by cancer, it showed more CAM than in cases where it was uninvolved (P = .012); otherwise zonal distributions were similar. In the pilot study, CAM ≥1 predicted carcinoma on repeat biopsy (P < .05; OR = 8), as did CAM 2 to 3 (P < .0001; OR = 30). CI was not significant, and CAM retained significance after adjusting for CI. CONCLUSION CAM correlate with carcinoma. Whether abundant CAM in benign biopsies adds value amidst high clinical suspicion, warrants further study.
Collapse
Affiliation(s)
- Watchareepohn Palangmonthip
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ruizhe Wu
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samuel A. Bobholz
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
4
|
Chen C, Ni Y, Jiang B, Yan S, Xu B, Fan B, Huang H, Chen G. Anti-aging derivatives of cycloastragenol produced by biotransformation. Nat Prod Res 2019; 35:2685-2690. [DOI: 10.1080/14786419.2019.1662011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chen Chen
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Yaohui Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, PR China
| | - Baocheng Jiang
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Song Yan
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Boyi Fan
- School of Pharmacy, Nantong University, Nantong, PR China
| | - Huilian Huang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang, PR China
| | - Guangtong Chen
- School of Pharmacy, Nantong University, Nantong, PR China
| |
Collapse
|
5
|
Hwang ST, Kim C, Lee JH, Chinnathambi A, Alharbi SA, Shair OHM, Sethi G, Ahn KS. Cycloastragenol can negate constitutive STAT3 activation and promote paclitaxel-induced apoptosis in human gastric cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152907. [PMID: 30981183 DOI: 10.1016/j.phymed.2019.152907] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cycloastragenol (CAG), a triterpene aglycone is commonly prescribed for treating hypertension, cardiovascular disease, diabetic nephropathy, viral hepatitis, and various inflammatory-linked diseases. HYPOTHESIS We investigated CAG for its action on signal transducer and activator of transcription 3 (STAT3) activation cascades, and its potential to sensitize gastric cancer cells to paclitaxel-induced apoptosis. METHODS The effect of CAG on STAT3 phosphorylation and other hallmarks of cancer was deciphered using diverse assays in both SNU-1 and SNU-16 cells. RESULTS We observed that CAG exhibited cytotoxic activity against SNU-1 and SNU-16 cells to a greater extent as compared to normal GES-1 cells. CAG predominantly caused negative regulation of STAT3 phosphorylation at tyrosine 705 through the abrogation of Src and Janus-activated kinases (JAK1/2) activation. We noted that CAG impaired translocation of STAT3 protein as well as its DNA binding activity. It further decreased cellular proliferation and mediated its anticancer effects predominantly by causing substantial apoptosis rather than autophagy. In addition, CAG potentiated paclitaxel-induced anti-oncogenic effects in gastric tumor cells. CONCLUSIONS Our results indicate that CAG can function to impede STAT3 activation in human gastric tumor cells and therefore it may be a suitable candidate agent for therapy of gastric cancer.
Collapse
Affiliation(s)
- Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chulwon Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Hyun Lee
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Graziani V, Esposito A, Scognamiglio M, Chambery A, Russo R, Ciardiello F, Troiani T, Potenza N, Fiorentino A, D'Abrosca B. Spectroscopic Characterization and Cytotoxicity Assessment towards Human Colon Cancer Cell Lines of Acylated Cycloartane Glycosides from Astragalus boeticus L. Molecules 2019; 24:molecules24091725. [PMID: 31058835 PMCID: PMC6539726 DOI: 10.3390/molecules24091725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
In several European countries, especially in Sweden, the seeds of the species Astragalus boeticus L. were widely used as coffee substitutes during the 19th century. Nonetheless, data regarding the phytochemistry and the pharmacological properties of this species are currently extremely limited. Conversely, other species belonging to the Astragalus genus have already been extensively investigated, as they were used for millennia for treating various diseases, including cancer. The current work was addressed to characterize cycloartane glycosides from A. boeticus, and to evaluate their cytotoxicity towards human colorectal cancer (CRC) cell lines. The isolation of the metabolites was performed by using different chromatographic techniques, while their chemical structures were elucidated by nuclear magnetic resonance (NMR) (1D and 2D techniques) and electrospray-ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometry. The cytotoxic assessment was performed in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in Caco-2, HT-29 and HCT-116 CRC cells. As a result, the targeted phytochemical study of A. boeticus enabled the isolation of three new cycloartane glycosides, 6-O-acetyl-3-O-(4-O-malonyl)-β-d-xylopyranosylcycloastragenol (1), 3-O-(4-O-malonyl)-β-d-xylopyranosylcycloastragenol (2), 6-O-acetyl-25-O-β-d-glucopyranosyl-3-O-β-d-xylopyranosylcycloastragenol (3) along with two known compounds, 6-O-acetyl-3-O-β-d-xylopyranosylcycloastragenol (4) and 3-O-β-d-xylopyranosylcycloastragenol (5). Importantly, this work demonstrated that the acetylated cycloartane glycosides 1 and 4 might preferentially inhibit cell growth in the CRC cell model resistant to epidermal growth factor receptor (EGFR) inhibitors.
Collapse
Affiliation(s)
- Vittoria Graziani
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Assunta Esposito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Monica Scognamiglio
- Department of Biochemistry, Max Planck Institute for Chemical Ecology-Beutenberg Campus, Hans-Knöll-Straße, 8 D-07745 Jena, Germany.
| | - Angela Chambery
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Rosita Russo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Fortunato Ciardiello
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" - Via Pansini, 5, 80131 Napoli, Italy.
| | - Teresa Troiani
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" - Via Pansini, 5, 80131 Napoli, Italy.
| | - Nicoletta Potenza
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Brigida D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy.
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
7
|
Lin H, Jiang B, Chen C, Song Y, Yang M, Huang H, Chen G. Microbial transformation of the anti-aging agent cycloastragenol by Mucor racemosus. Nat Prod Res 2018; 33:3103-3108. [DOI: 10.1080/14786419.2018.1519822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Haijun Lin
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Baocheng Jiang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Chen Chen
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yan Song
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Min Yang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Huilian Huang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, ministry of education, Nanchang 330004, PR China
| | - Guangtong Chen
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| |
Collapse
|
8
|
|