1
|
Luo Y, Yu J, Lin Z, Wang X, Zhao J, Liu X, Qin W, Xu G. Metabolic characterization of sphere-derived prostate cancer stem cells reveals aberrant urea cycle in stemness maintenance. Int J Cancer 2024; 155:742-755. [PMID: 38647131 DOI: 10.1002/ijc.34967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Alteration of cell metabolism is one of the essential characteristics of tumor growth. Cancer stem cells (CSCs) are the initiating cells of tumorigenesis, proliferation, recurrence, and other processes, and play an important role in therapeutic resistance and metastasis. Thus, identification of the metabolic profiles in prostate cancer stem cells (PCSCs) is critical to understanding prostate cancer progression. Using untargeted metabolomics and lipidomics methods, we show distinct metabolic differences between prostate cancer cells and PCSCs. Urea cycle is the most significantly altered metabolic pathway in PCSCs, the key metabolites arginine and proline are evidently elevated. Proline promotes cancer stem-like characteristics via the JAK2/STAT3 signaling pathway. Meanwhile, the enzyme pyrroline-5-carboxylate reductase 1 (PYCR1), which catalyzes the conversion of pyrroline-5-carboxylic acid to proline, is highly expressed in PCSCs, and the inhibition of PYCR1 suppresses the stem-like characteristics of prostate cancer cells and tumor growth. In addition, carnitine and free fatty acid levels are significantly increased, indicating reprogramming of fatty acid metabolism in PCSCs. Reduced sphingolipid levels and increased triglyceride levels are also observed. Collectively, our data illustrate the comprehensive landscape of the metabolic reprogramming of PCSCs and provide potential therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Yuanyuan Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiachuan Yu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhikun Lin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Jinhui Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Medical Proteomics, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| |
Collapse
|
2
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Chen H, Fang S, Zhu X, Liu H. Cancer-associated fibroblasts and prostate cancer stem cells: crosstalk mechanisms and implications for disease progression. Front Cell Dev Biol 2024; 12:1412337. [PMID: 39092186 PMCID: PMC11291335 DOI: 10.3389/fcell.2024.1412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Hao Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Lamichhane A, Tavana H. Three-Dimensional Tumor Models to Study Cancer Stemness-Mediated Drug Resistance. Cell Mol Bioeng 2024; 17:107-119. [PMID: 38737455 PMCID: PMC11082110 DOI: 10.1007/s12195-024-00798-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/01/2024] [Indexed: 05/14/2024] Open
Abstract
Solid tumors often contain genetically different populations of cancer cells, stromal cells, various structural and soluble proteins, and other soluble signaling molecules. The American Cancer society estimated 1,958,310 new cancer cases and 609,820 cancer deaths in the United States in 2023. A major barrier against successful treatment of cancer patients is drug resistance. Gain of stem cell-like states by cancer cells under drug pressure or due to interactions with the tumor microenvironment is a major mechanism that renders therapies ineffective. Identifying approaches to target cancer stem cells is expected to improve treatment outcomes for patients. Most of our understanding of drug resistance and the role of cancer stemness is from monolayer cell cultures. Recent advances in cell culture technologies have enabled developing sophisticated three-dimensional tumor models that facilitate mechanistic studies of cancer drug resistance. This review summarizes the role of cancer stemness in drug resistance and highlights the various tumor models that are used to discover the underlying mechanisms and test potentially novel therapeutics.
Collapse
Affiliation(s)
- Astha Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| |
Collapse
|
5
|
Zhang Y, Li Y. β-hydroxybutyrate inhibits malignant phenotypes of prostate cancer cells through β-hydroxybutyrylation of indoleacetamide-N-methyltransferase. Cancer Cell Int 2024; 24:121. [PMID: 38555451 PMCID: PMC10981303 DOI: 10.1186/s12935-024-03277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent cancers in men and is associated with high mortality and disability rates. β-hydroxybutyrate (BHB), a ketone body, has received increasing attention for its role in cancer. However, its role in PCa remains unclear. This study aimed to explore the mechanism and feasibility of BHB as a treatment alternative for PCa. METHODS Colony formation assay, flow cytometry, western blot assay, and transwell assays were performed to determine the effect of BHB on the proliferation and metastasis of PCa cells. Tumor sphere formation and aldehyde dehydrogenase assays were used to identify the impact of BHB or indoleacetamide-N-methyltransferase (INMT) on the stemness of PCa cells. N6-methyladenosine (m6A)-meRIP real-time reverse transcription polymerase chain reaction and dual luciferase assays were conducted to confirm INMT upregulation via the METTL3-m6A pathway. Co-IP assay was used to detect the epigenetic modification of INMT by BHB-mediated β-hydroxybutyrylation (kbhb) and screen enzymes that regulate INMT kbhb. Mouse xenograft experiments demonstrated the antitumor effects of BHB in vivo. RESULTS BHB can inhibit the proliferation, migration, and invasion of PCa cells by suppressing their stemness. Mechanistically, INMT, whose expression is upregulated by the METTL3-m6A pathway, was demonstrated to be an oncogenic gene that promotes the stem-like characteristics of PCa cells. BHB can suppress the malignant phenotypes of PCa by kbhb of INMT, which in turn inhibits INMT expression. CONCLUSIONS Our findings indicate a role of BHB in PCa metabolic therapy, thereby suggesting an epigenetic therapeutic strategy to target INMT in aggressive PCa. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China.
| | - Yunlong Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China
| |
Collapse
|
6
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
7
|
Jameel M, Fatma H, Nadtochii LA, Siddique HR. Molecular Insight into Prostate Cancer: Preventive Role of Selective Bioactive Molecules. Life (Basel) 2023; 13:1976. [PMID: 37895357 PMCID: PMC10608662 DOI: 10.3390/life13101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (CaP) is one of the most prevalent male malignancies, accounting for a considerable number of annual mortalities. However, the prompt identification of early-stage CaP often faces delays due to diverse factors, including socioeconomic inequalities. The androgen receptor (AR), in conjunction with various other signaling pathways, exerts a central influence on the genesis, progression, and metastasis of CaP, with androgen deprivation therapy (ADT) serving as the primary therapeutic strategy. Therapeutic modalities encompassing surgery, chemotherapy, hormonal intervention, and radiotherapy have been formulated for addressing early and metastatic CaP. Nonetheless, the heterogeneous tumor microenvironment frequently triggers the activation of signaling pathways, culminating in the emergence of chemoresistance, an aspect to which cancer stem cells (CSCs) notably contribute. Phytochemicals emerge as reservoirs of bioactive agents conferring manifold advantages against human morbidity. Several of these phytochemicals demonstrate potential chemoprotective and chemosensitizing properties against CaP, with selectivity exhibited towards malignant cells while sparing their normal counterparts. In this context, the present review aims to elucidate the intricate molecular underpinnings associated with metastatic CaP development and the acquisition of chemoresistance. Moreover, the contributions of phytochemicals to ameliorating CaP initiation, progression, and chemoresistance are also discussed.
Collapse
Affiliation(s)
- Mohd Jameel
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Liudmila A. Nadtochii
- Department of Microbiology, Saint Petersburg State Chemical & Pharmaceutical University, 197022 Saint Petersburg, Russia
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| |
Collapse
|
8
|
Garimella SV, Gampa SC, Chaturvedi P. Mitochondria in Cancer Stem Cells: From an Innocent Bystander to a Central Player in Therapy Resistance. Stem Cells Cloning 2023; 16:19-41. [PMID: 37641714 PMCID: PMC10460581 DOI: 10.2147/sccaa.s417842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer continues to rank among the world's leading causes of mortality despite advancements in treatment. Cancer stem cells, which can self-renew, are present in low abundance and contribute significantly to tumor recurrence, tumorigenicity, and drug resistance to various therapies. The drug resistance observed in cancer stem cells is attributed to several factors, such as cellular quiescence, dormancy, elevated aldehyde dehydrogenase activity, apoptosis evasion mechanisms, high expression of drug efflux pumps, protective vascular niche, enhanced DNA damage response, scavenging of reactive oxygen species, hypoxic stability, and stemness-related signaling pathways. Multiple studies have shown that mitochondria play a pivotal role in conferring drug resistance to cancer stem cells, through mitochondrial biogenesis, metabolism, and dynamics. A better understanding of how mitochondria contribute to tumorigenesis, heterogeneity, and drug resistance could lead to the development of innovative cancer treatments.
Collapse
Affiliation(s)
- Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
10
|
Hypoxia promotes conversion to a stem cell phenotype in prostate cancer cells by activating HIF-1α/Notch1 signaling pathway. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03093-w. [PMID: 36757381 DOI: 10.1007/s12094-023-03093-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE The hypoxic tumor microenvironment and the maintenance of stem cells are relevant to the malignancy of prostate cancer (PCa). However, whether HIF-1α in the hypoxic microenvironment mediates the transformation of prostate cancer to a stem cell phenotype and the mechanism have not been elucidated. MATERIALS AND METHODS Prostate cancer stem cells (PCSCs) from PC-3 cell lines were examined for the expression of CD44, CD133, ALDH1, HIF-1α, Notch1, and HES1. We observed the effect of knockdown HIF-1α in vitro and mice models and evaluated the impact of HIF-1α on the Notch1 pathway as well as stem cell dedifferentiation. The effects on sphere formation, cell proliferation, apoptosis, cell cycle, and invasive metastasis were evaluated. RESULTS In our study, hypoxia upregulated HIF-1α expression and induced a stem cell phenotype through activation of the Notch1 pathway, leading to enhanced proliferation, invasion, and migration of PCa PC-3 cells. The knockdown of HIF-1α significantly inhibited cell dedifferentiation and the ability to proliferate, invade and metastasize. However, the inhibitory effect of knocking down HIF-1α was reversed by Jagged1, an activator of the Notch1 pathway. These findings were further confirmed in vivo, where hypoxia could enhance the tumorigenicity of xenograft tumors by upregulating the expression of HIF-1α to activate the Notch1 pathway. In addition, the expression of HIF-1α and Notch1 was significantly increased in human PCa tissues, and high expression of HIF-1α correlated with the malignancy of PCa. CONCLUSION In a hypoxic environment, HIF-1α promotes PCa cell dedifferentiation to stem-like cell phenotypes by activating the Notch1 pathway and enhancing the proliferation and invasive capacity of PC-3 cells.
Collapse
|
11
|
Barrios O, Sánchez BG, Rodríguez-Prieto T, Cano J, Bort A, Gómez R, Díaz-Laviada I. Alteration of the HIF-1α/VEGF Signaling Pathway and Disruption of the Cell Cycle by Second Generation Carbosilan Dendrimers. Biomacromolecules 2022; 23:5043-5055. [PMID: 36445323 DOI: 10.1021/acs.biomac.2c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Current therapies against prostate cancer (PCa) disease, such as surgery, radiotherapy, or in last term chemical castration by androgen deprivation, have led to significant reduction of the incidence of PCa throughout the world. Worse prognosis is found in those patients which exhibit castration resistance, relapsing into the disease with even greater aggressiveness. Hypoxia cancer cell adaption has been observed to be closely connected to fatal prognostic tumor features. Therefore, hypoxia adaptive mechanisms of cancer cells have attracted large interest as a relevant biological target for treatment-resistant patients. Dendrimers have been established as a promising nanotechnological tool owing to their beneficial physicochemical features such as multivalency and monodispersity. Herein, we have completed a thorough study to better understand the effect within the cell of the already published ruthenium(II)-N-heterocyclic carbene metallodendrimer (G2Ru) that was able to drastically reduce HIF-1α stabilization and exhibited antiproliferative capability against androgen-sensitive (LNCaP) and androgen-resistant prostate cancer cells (LNFLU) in vitro. G2Ru, as well as its cationic imidazolium precursor (G2P), displayed scavenging properties against intracellular and externally stimulated ROS levels, which would presumably hinder the stabilization of HIF-1α by prolyl hydroxylase (PHD) inhibition. Furthermore, these dendrimers have shown considerably beneficial properties against tumor progression capability in terms of apoptosis, cell cycle, CSCs expression, and epithelial phenotype promotion. Taken all together, in this study we could demonstrate the extraordinary anticancer properties of NHC-based carbosilane dendrimers against androgen-resistant prostate cancer cells in vitro.
Collapse
Affiliation(s)
- Oscar Barrios
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain
| | - Belén G Sánchez
- University of Alcalá, Biochemistry and Molecular Biology Unit. Department of Systems Biology and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain
| | - Tamara Rodríguez-Prieto
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid, 28034, Spain
| | - Jesús Cano
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid, 28034, Spain
| | - Alicia Bort
- University of Alcalá, Biochemistry and Molecular Biology Unit. Department of Systems Biology and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain.,Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, Connecticut 06520, United States
| | - Rafael Gómez
- University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid, 28034, Spain
| | - Inés Díaz-Laviada
- University of Alcalá, Biochemistry and Molecular Biology Unit. Department of Systems Biology and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, 28871, Spain
| |
Collapse
|
12
|
Bhuyan S, Pal B, Pathak L, Saikia PJ, Mitra S, Gayan S, Mokhtari RB, Li H, Ramana CV, Baishya D, Das B. Targeting hypoxia-induced tumor stemness by activating pathogen-induced stem cell niche defense. Front Immunol 2022; 13:933329. [PMID: 36248858 PMCID: PMC9559576 DOI: 10.3389/fimmu.2022.933329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor hypoxia and oxidative stress reprograms cancer stem cells (CSCs) to a highly aggressive and inflammatory phenotypic state of tumor stemness. Previously, we characterized tumor stemness phenotype in the ATP Binding Cassette Subfamily G Member 2 (ABCG2)–positive migratory side population (SPm) fraction of CSCs exposed to extreme hypoxia followed by reoxygenation. Here, we report that post-hypoxia/reoxygenation SPm+/ABCG2+ CSCs exerts defense against pathogen invasion that involves bystander apoptosis of non-infected CSCs. In an in vitro assay of cancer cell infection by Bacillus Calmette Guerin (BCG) or mutant Mycobacterium tuberculosis (Mtb) strain 18b (Mtb-m18b), the pathogens preferentially replicated intracellular to SPm+/ABCG2+ CSCs of seven cell lines of diverse cancer types including SCC-25 oral squamous cancer cell line. The conditioned media (CM) of infected CSCs exhibited direct anti-microbial activity against Mtb and BCG, suggesting niche defense against pathogen. Importantly, the CM of infected CSCs exhibited marked in vitro bystander apoptosis toward non-infected CSCs. Moreover, the CM-treated xenograft bearing mice showed 10- to 15-fold reduction (p < 0.001; n = 7) in the number of CSCs residing in the hypoxic niches. Our in vitro studies indicated that BCG-infected SPm+/ABCG2+ equivalent EPCAM+/ABCG2+ CSCs of SCC-25 cells underwent pyroptosis and released a high mobility group box protein 1 (HMGB1)/p53 death signal into the tumor microenvironment (TME). The death signal can induce a Toll-like receptor 2/4–mediated bystander apoptosis in non-infected CSCs by activating p53/MDM2 oscillation and subsequent activation of capase-3–dependent intrinsic apoptosis. Notably, SPm+/ABCG2+ but not SP cells undergoing bystander apoptosis amplified the death signal by further release of HMGB1/p53 complex into the TME. These results suggest that post-hypoxia SPm+/ABCG2+ CSCs serve a functional role as a tumor stemness defense (TSD) phenotype to protect TME against bacterial invasion. Importantly, the CM of TSD phenotype undergoing bystander apoptosis may have therapeutic uses against CSCs residing in the hypoxic niche.
Collapse
Affiliation(s)
- Seema Bhuyan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bidisha Pal
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Lekhika Pathak
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Partha Jyoti Saikia
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Shirsajit Mitra
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Sukanya Gayan
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
| | - Reza Bayat Mokhtari
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Hong Li
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Chilakamarti V. Ramana
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Stem Cell and Infectious Diseases, KaviKrishna Laboratory, Research Park, Indian Institute of Technology, Guwahati, India
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, United States
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, United States
- *Correspondence: Bikul Das,
| |
Collapse
|
13
|
Choi S, Lee S, Han YH, Choi J, Kim I, Lee J, An HJ. miR-31-3p functions as a tumor suppressor by directly targeting GABBR2 in prostate cancer. Front Oncol 2022; 12:945057. [PMID: 36059697 PMCID: PMC9434366 DOI: 10.3389/fonc.2022.945057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs are key regulators of gene expression in tumorigenesis. In this study, we investigated the tumor-suppressive function of miR-31-3p. Analysis of the Gene Expression Omnibus database revealed that the expression of miR-31-3p in prostate cancer tissues is lower than that in adjacent normal tissues from patients with prostate cancer. Moreover, miR-31-3p induces apoptosis in DU145, PC-3, and LNCap prostate cancer cells, while those transfected with miR-31-3p exhibit significantly decreased cell proliferation, migration, invasiveness, and tumor sphere-forming ability, as determined using the cell counting kit-8, transwell, and sphere-forming assays. Further analysis revealed that GABBR2 is a direct target of miR-31-3p. Within a DU145 xenograft murine model, intratumoral injection of a miR-31-3p mimic suppresses tumor growth. Taken together, the findings of this study suggest that miR-31-3p performs a novel tumor-suppressive function in prostate cancer and may represent a novel target for anti-prostate cancer miRNA therapeutics.
Collapse
Affiliation(s)
- Sujin Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Junwon Choi
- Department of Molecular Science and Technology, Ajou University, Yeongtong-gu, South Korea
| | - Isaac Kim
- Department of General Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| | - Jusung Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Pangyo-ro, South Korea
| |
Collapse
|
14
|
Jinna N, Rida P, Smart M, LaBarge M, Jovanovic-Talisman T, Natarajan R, Seewaldt V. Adaptation to Hypoxia May Promote Therapeutic Resistance to Androgen Receptor Inhibition in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23168844. [PMID: 36012111 PMCID: PMC9408190 DOI: 10.3390/ijms23168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) surpasses other BC subtypes as the most challenging to treat due to its lack of traditional BC biomarkers. Nearly 30% of TNBC patients express the androgen receptor (AR), and the blockade of androgen production and AR signaling have been the cornerstones of therapies for AR-positive TNBC. However, the majority of women are resistant to AR-targeted therapy, which is a major impediment to improving outcomes for the AR-positive TNBC subpopulation. The hypoxia signaling cascade is frequently activated in the tumor microenvironment in response to low oxygen levels; activation of the hypoxia signaling cascade allows tumors to survive despite hypoxia-mediated interference with cellular metabolism. The activation of hypoxia signaling networks in TNBC promotes resistance to most anticancer drugs including AR inhibitors. The activation of hypoxia network signaling occurs more frequently in TNBC compared to other BC subtypes. Herein, we examine the (1) interplay between hypoxia signaling networks and AR and (2) whether hypoxia and hypoxic stress adaptive pathways promote the emergence of resistance to therapies that target AR. We also pose the well-supported question, “Can the efficacy of androgen-/AR-targeted treatments be enhanced by co-targeting hypoxia?” By critically examining the evidence and the complex entwinement of these two oncogenic pathways, we argue that the simultaneous targeting of androgen biosynthesis/AR signaling and hypoxia may enhance the sensitivity of AR-positive TNBCs to AR-targeted treatments, derail the emergence of therapy resistance, and improve patient outcomes.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Max Smart
- Rowland Hall, Salt Lake City, UT 84102, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
15
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
16
|
O'Reilly D, Buchanan PJ. Hypoxic Signaling Is Modulated by Calcium Channel, CaV1.3, in Androgen-Resistant Prostate Cancer. Bioelectricity 2022; 4:81-91. [PMID: 39350777 PMCID: PMC11441368 DOI: 10.1089/bioe.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Androgen deprivation therapy (ADT) remains a key treatment for advance prostate cancer (PCa), but resistance leads to terminal castrate-resistant prostate cancer (CRPC). Its development is linked to the emergence of a hypoxic tumor microenvironment and associated hypoxia inducible factor (HIF) signaling, which is known to be modulated by intracellular calcium. ADT is also known to upregulate store-operated calcium entry (SOCE) through voltage-gated calcium channel, CaV1.3. Consequently, the role of CaV1.3 in supporting hypoxic signaling and CRPC biology was explored. Materials Androgen-sensitive PCa LNCaP cells were cultured with and without ADT bicalutamide, alongside ADT-resistant CRPC cells (LNCaP-ABL), either in normal or low oxygen (O2) (1%) conditions. HIF-1α, CaV1.3, and androgen receptor (AR) gene expression was measured by qPCR and protein expression with Western blot in the presence or absence of siCaV1.3. SOCE was determined through Fura-2AM fluorescence measurement. Cell proliferation was quantified by WST-1 assay and survival by colony formation. Results CaV1.3 expression was increased during ADT but not hypoxia, correlating with an associated increase in SOCE. HIF-1α expression was upregulated by ADT under normal O2 conditions and increased during hypoxia across all cells but with a higher fold change in early ADT-resistant and CRPC cells. Under hypoxic conditions CaV1.3 small interfering RNA resulted in a significant reduction in HIF-1α expression for ADT-sensitive cells but increased in CRPC. A similar pattern was also observed for AR expression. Cell survival was found significantly reduced by siCaV1.3 under hypoxic conditions for all cells, with and without ADT. Whereas cell proliferation under the same conditions was reduced in CRPC only. Conclusion This study highlights that CaV1.3 can modulated HIF signaling and impact on PCa tumor biology under hypoxia, but further investigation is required to ascertain if this mediated through SOCE or a noncanonical mechanism.
Collapse
Affiliation(s)
- Debbie O'Reilly
- DCU Cancer Research Group, National Institute Cellular Biotechnology, School of Nursing, Psychotherapy and Community Health, Dublin City University (DCU), Dublin, Ireland
| | - Paul J Buchanan
- DCU Cancer Research Group, National Institute Cellular Biotechnology, School of Nursing, Psychotherapy and Community Health, Dublin City University (DCU), Dublin, Ireland
| |
Collapse
|
17
|
Hassan S, Blick T, Wood J, Thompson EW, Williams ED. Circulating Tumour Cells Indicate the Presence of Residual Disease Post-Castration in Prostate Cancer Patient-Derived Xenograft Models. Front Cell Dev Biol 2022; 10:858013. [PMID: 35493092 PMCID: PMC9043137 DOI: 10.3389/fcell.2022.858013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the lethal form of prostate cancer. Epithelial mesenchymal plasticity (EMP) has been associated with disease progression to CRPC, and prostate cancer therapies targeting the androgen signalling axis, including androgen deprivation therapy (ADT), promote EMP. We explored effects of castration on EMP in the tumours and circulating tumour cells (CTCs) of patient-derived xenograft (PDX)-bearing castrated mice using human-specific RT-qPCR assays and immunocytochemistry. Expression of prostate epithelial cell marker KLK3 was below detection in most tumours from castrated mice (62%, 23/37 mice), consistent with its known up-regulation by androgens. Endpoint tumour size after castration varied significantly in a PDX model-specific pattern; while most tumours were castration-sensitive (BM18, LuCaP70), the majority of LuCaP105 tumours continued to grow following castration. By contrast, LuCaP96 PDX showed a mixed response to castration. CTCs were detected in 33% of LuCaP105, 43% of BM18, 47% of LuCaP70, and 54% of LuCaP96 castrated mice using RPL32 mRNA measurement in plasma. When present, CTC numbers estimated using human RPL32 expression ranged from 1 to 458 CTCs per ml blood, similar to our previous observations in non-castrated mice. In contrast to their non-castrated counterparts, there was no relationship between tumour size and CTC burden in castrated mice. Unsupervised hierarchical clustering of the gene expression profiles of CTCs collected from castrated and non-castrated mice revealed distinct CTC sub-groups within the pooled population that were classified as having mesenchymal, epithelial, or EMP hybrid gene expression profiles. The epithelial signature was only found in CTCs from non-castrated mice. Hybrid and mesenchymal signatures were detected in CTCs from both castrated and non-castrated mice, with an emphasis towards mesenchymal phenotypes in castrated mice. Post-castration serum PSA levels were either below detection or very low for all the CTC positive samples highlighting the potential usefulness of CTCs for disease monitoring after androgen ablation therapy. In summary, our study of castration effects on prostate cancer PDX CTCs showed that CTCs were often detected in the castrate setting, even in mice with no palpable tumours, and demonstrated the superior ability of CTCs to reveal residual disease over the conventional clinical biomarker serum PSA.
Collapse
Affiliation(s)
- Sara Hassan
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Tony Blick
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Jack Wood
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Erik W. Thompson
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- *Correspondence: Elizabeth D. Williams,
| |
Collapse
|
18
|
Advances in neuroendocrine prostate cancer research: From model construction to molecular network analyses. J Transl Med 2022; 102:332-340. [PMID: 34937865 DOI: 10.1038/s41374-021-00716-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the most common cancer among men and has a high incidence and associated mortality worldwide. It is an androgen-driven disease in which tumor growth is triggered via ligand-mediated signaling through the androgen receptor (AR). Recent evidence suggests that the widespread use of effective AR pathway inhibitors may increase the occurrence of neuroendocrine prostate cancer (NEPC), an aggressive and treatment-resistant AR-negative variant; however, mechanisms controlling NEPC development remain to be elucidated. Various preclinical models have recently been developed to investigate the mechanisms driving the NEPC differentiation. In the present study, we summarized strategies for the development of NEPC models and proposed a novel method for model evaluation, which will help in the timely and accurate identification of NEPC by virtue of its ability to recapitulate the heterogeneity of prostate cancer. Moreover, we discuss the origin and the mechanism of NEPC. The understanding of the regulatory network mediating neuroendocrine differentiation presented in this review could provide valuable insights into the identification of novel drug targets for NEPC as well as into the causes of antiandrogenic drug resistance.
Collapse
|
19
|
Lee J, Troike K, Fodor R, Lathia JD. Unexplored Functions of Sex Hormones in Glioblastoma Cancer Stem Cells. Endocrinology 2022; 163:bqac002. [PMID: 35023543 PMCID: PMC8807164 DOI: 10.1210/endocr/bqac002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 01/14/2023]
Abstract
Biological sex impacts a wide array of molecular and cellular functions that impact organismal development and can influence disease trajectory in a variety of pathophysiological states. In nonreproductive cancers, epidemiological sex differences have been observed in a series of tumors, and recent work has identified previously unappreciated sex differences in molecular genetics and immune response. However, the extent of these sex differences in terms of drivers of tumor growth and therapeutic response is less clear. In glioblastoma (GBM), the most common primary malignant brain tumor, there is a male bias in incidence and outcome, and key genetic and epigenetic differences, as well as differences in immune response driven by immune-suppressive myeloid populations, have recently been revealed. GBM is a prototypic tumor in which cellular heterogeneity is driven by populations of therapeutically resistant cancer stem cells (CSCs) that underlie tumor growth and recurrence. There is emerging evidence that GBM CSCs may show a sex difference, with male tumor cells showing enhanced self-renewal, but how sex differences impact CSC function is not clear. In this mini-review, we focus on how sex hormones may impact CSCs in GBM and implications for other cancers with a pronounced CSC population. We also explore opportunities to leverage new models to better understand the contribution of sex hormones vs sex chromosomes to CSC function. With the rising interest in sex differences in cancer, there is an immediate need to understand the extent to which sex differences impact tumor growth, including effects on CSC function.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
| | - Katie Troike
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
| | - R’ay Fodor
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic
- Case Comprehensive Cancer Center
| |
Collapse
|
20
|
Bahmad HF, Demus T, Moubarak MM, Daher D, Alvarez Moreno JC, Polit F, Lopez O, Merhe A, Abou-Kheir W, Nieder AM, Poppiti R, Omarzai Y. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Med Sci (Basel) 2022; 10:medsci10010015. [PMID: 35225948 PMCID: PMC8883996 DOI: 10.3390/medsci10010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men. Common treatments include active surveillance, surgery, or radiation. Androgen deprivation therapy and chemotherapy are usually reserved for advanced disease or biochemical recurrence, such as castration-resistant prostate cancer (CRPC), but they are not considered curative because PCa cells eventually develop drug resistance. The latter is achieved through various cellular mechanisms that ultimately circumvent the pharmaceutical’s mode of action. The need for novel therapeutic approaches is necessary under these circumstances. An alternative way to treat PCa is by repurposing of existing drugs that were initially intended for other conditions. By extrapolating the effects of previously approved drugs to the intracellular processes of PCa, treatment options will expand. In addition, drug repurposing is cost-effective and efficient because it utilizes drugs that have already demonstrated safety and efficacy. This review catalogues the drugs that can be repurposed for PCa in preclinical studies as well as clinical trials.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Correspondence: or ; Tel.: +1-786-961-0216
| | - Timothy Demus
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
- CNRS, IBGC, UMR5095, Universite de Bordeaux, F-33000 Bordeaux, France
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Francesca Polit
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Olga Lopez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ali Merhe
- Department of Urology, Jackson Memorial Hospital, University of Miami, Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
| | - Alan M. Nieder
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Yumna Omarzai
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
21
|
Zhou X, Zou L, Liao H, Luo J, Yang T, Wu J, Chen W, Wu K, Cen S, Lv D, Shu F, Yang Y, Li C, Li B, Mao X. Abrogation of HnRNP L enhances anti-PD-1 therapy efficacy via diminishing PD-L1 and promoting CD8 + T cell-mediated ferroptosis in castration-resistant prostate cancer. Acta Pharm Sin B 2022; 12:692-707. [PMID: 35256940 PMCID: PMC8897216 DOI: 10.1016/j.apsb.2021.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/20/2021] [Accepted: 07/09/2021] [Indexed: 01/18/2023] Open
Abstract
Owing to incurable castration-resistant prostate cancer (CRPC) ultimately developing after treating with androgen deprivation therapy (ADT), it is vital to devise new therapeutic strategies to treat CRPC. Treatments that target programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for human cancers with clinical benefit. However, many patients, especially prostate cancer, fail to respond to anti-PD-1/PD-L1 treatment, so it is an urgent need to seek a support strategy for improving the traditional PD-1/PD-L1 targeting immunotherapy. In the present study, analyzing the data from our prostate cancer tissue microarray, we found that PD-L1 expression was positively correlated with the expression of heterogeneous nuclear ribonucleoprotein L (HnRNP L). Hence, we further investigated the potential role of HnRNP L on the PD-L1 expression, the sensitivity of cancer cells to T-cell killing and the synergistic effect with anti-PD-1 therapy in CRPC. Indeed, HnRNP L knockdown effectively decreased PD-L1 expression and recovered the sensitivity of cancer cells to T-cell killing in vitro and in vivo, on the contrary, HnRNP L overexpression led to the opposite effect in CRPC cells. In addition, consistent with the previous study, we revealed that ferroptosis played a critical role in T-cell-induced cancer cell death, and HnRNP L promoted the cancer immune escape partly through targeting YY1/PD-L1 axis and inhibiting ferroptosis in CRPC cells. Furthermore, HnRNP L knockdown enhanced antitumor immunity by recruiting infiltrating CD8+ T cells and synergized with anti-PD-1 therapy in CRPC tumors. This study provided biological evidence that HnRNP L knockdown might be a novel therapeutic agent in PD-L1/PD-1 blockade strategy that enhanced anti-tumor immune response in CRPC.
Collapse
Key Words
- ADT, androgen deprivation therapy
- Anti-PD-1 therapy
- CRPC, castration-resistant prostate cancer
- Castration-resistant prostate cancer
- DMSO, dimethyl sulfoxide
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- Fer-1, ferrostatin-1
- Ferroptosis
- GSH, glutathione
- HnRNP L
- HnRNP L, heterogeneous nuclear ribonucleoprotein L
- IL, interleukin
- INF-γ, interferon gamma
- Immune checkpoint blockade
- Immune escape
- PD-1, programmed cell death protein 1
- PD-L1
- PD-L1, programmed death ligand1
- ROS, reactive oxygen species
- STAT, signal transducer and activator of transcription
- YY1
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Xumin Zhou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Libin Zou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hangyu Liao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junqi Luo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenbin Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shengren Cen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Daojun Lv
- Department of Urology, Minimally Invasive Surgery Center, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yu Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chun Li
- Nursing Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Corresponding authors. Tel.: +86 20 62782725; fax: +86 20 62782725.
| | - Bingkun Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Corresponding authors. Tel.: +86 20 62782725; fax: +86 20 62782725.
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Corresponding authors. Tel.: +86 20 62782725; fax: +86 20 62782725.
| |
Collapse
|
22
|
Lin Q, Cao J, Du X, Yang K, Shen Y, Wang W, Klocker H, Shi J, Zhang J. The HeyL-Aromatase Axis Promotes Cancer Stem Cell Properties by Endogenous Estrogen-Induced Autophagy in Castration-Resistant Prostate Cancer. Front Oncol 2022; 11:787953. [PMID: 35096586 PMCID: PMC8789881 DOI: 10.3389/fonc.2021.787953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023] Open
Abstract
Treatment of patients with castration-resistant prostate cancer (CRPC) remains a major clinical challenge. We previously showed that estrogenic effects contribute to CRPC progression and are primarily caused by the increased endogenous estradiol produced via highly expressed aromatase. However, the mechanism of aromatase upregulation and its role in CRPC are poorly described. In this study, we report that HeyL is aberrantly upregulated in CRPC tissues, and its expression is positively correlated with aromatase levels. HeyL overexpression increased endogenous estradiol levels and estrogen receptor-α (ERα) transcriptional activity by upregulating CYP19A1 expression, which encodes aromatase, enhancing prostate cancer stem cell (PCSC) properties in PC3 cells. Mechanistically, HeyL bound to the CYP19A1 promoter and activated its transcription. HeyL overexpression significantly promoted bicalutamide resistance in LNCaP cells, which was reversed by the aromatase inhibitor letrozole. In PC3 cells, the HeyL-aromatase axis promoted the PCSC phenotype by upregulating autophagy-related genes, while the autophagy inhibitor chloroquine (CQ) suppressed the aromatase-induced PCSC phenotype. The activated HeyL-aromatase axis promoted PCSC autophagy via ERα-mediated estrogenic effects. Taken together, our results indicated that the HeyL-aromatase axis could increase endogenous estradiol levels and activate ERα to suppress PCSC apoptosis by promoting autophagy, which enhances the understanding of how endogenous estrogenic effects influence CRPC development.
Collapse
Affiliation(s)
- Qimei Lin
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Laboratory of the Ministry of Education, Nankai University, Tianjin, China
| | - Jiasong Cao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Laboratory of the Ministry of Education, Nankai University, Tianjin, China.,Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Laboratory of the Ministry of Education, Nankai University, Tianjin, China
| | - Kuo Yang
- Department of Urology of the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yongmei Shen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Laboratory of the Ministry of Education, Nankai University, Tianjin, China.,Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Weishu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Helmut Klocker
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Laboratory of the Ministry of Education, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Laboratory of the Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
23
|
Rios-Colon L, Kumar P, Kim S, Sharma M, Su Y, Kumar A, Singh S, Stocks N, Liu L, Joshi M, Schlaepfer IR, Kumar D, Deep G. Carnitine Palmitoyltransferase 1 Regulates Prostate Cancer Growth under Hypoxia. Cancers (Basel) 2021; 13:cancers13246302. [PMID: 34944922 PMCID: PMC8699124 DOI: 10.3390/cancers13246302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Cancer cell survival in hypoxia areas, with low oxygen and food supply as well as abundant waste material, is critical to their aggressiveness and associated with disease relapse and mortality. Therefore, it is vital to understand the molecular regulators of cancer cell survival under these harsh physiological conditions. In the present study, we assessed the role of a mitochondrial protein carnitine palmitoyltransferase (CPT1A) in regulating prostate cancer (PCa) cell survival and proliferation under hypoxic conditions in both cell culture and animal models. The results showed that CPT1A expression in PCa cells is key to their survival and proliferation in the hypoxic tumor microenvironment. These results have high translational significance in improving cancer prognosis and therapy. Abstract Hypoxia and hypoxia-related biomarkers are the major determinants of prostate cancer (PCa) aggressiveness. Therefore, a better understanding of molecular players involved in PCa cell survival under hypoxia could offer novel therapeutic targets. We previously reported a central role of mitochondrial protein carnitine palmitoyltransferase (CPT1A) in PCa progression, but its role in regulating PCa survival under hypoxia remains unknown. Here, we employed PCa cells (22Rv1 and MDA-PCa-2b) with knockdown or overexpression of CPT1A and assessed their survival under hypoxia, both in cell culture and in vivo models. The results showed that CPT1A knockdown in PCa cells significantly reduced their viability, clonogenicity, and sphere formation under hypoxia, while its overexpression increased their proliferation, clonogenicity, and sphere formation. In nude mice, 22Rv1 xenografts with CPT1A knockdown grew significantly slower compared to vector control cells (~59% reduction in tumor volume at day 29). On the contrary, CPT1A-overexpressing 22Rv1 xenografts showed higher tumor growth compared to vector control cells (~58% higher tumor volume at day 40). Pathological analyses revealed lesser necrotic areas in CPT1A knockdown tumors and higher necrotic areas in CPT1A overexpressing tumors. Immunofluorescence analysis of tumors showed that CPT1A knockdown strongly compromised the hypoxic areas (pimonidazole+), while CPT1A overexpression resulted in more hypoxia areas with strong expression of proliferation biomarkers (Ki67 and cyclin D1). Finally, IHC analysis of tumors revealed a significant decrease in VEGF or VEGF-D expression but without significant changes in biomarkers associated with microvessel density. These results suggest that CPT1A regulates PCa survival in hypoxic conditions and might contribute to their aggressiveness.
Collapse
Affiliation(s)
- Leslimar Rios-Colon
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA;
| | - Pawan Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
- Division of Pathology, ICAR—Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Susy Kim
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Yixin Su
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Ashish Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Sangeeta Singh
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Nalexus Stocks
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Liang Liu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Molishree Joshi
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Isabel R. Schlaepfer
- Division of Medical Oncology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA;
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
- Correspondence: ; Tel.: +336-716-9363
| |
Collapse
|
24
|
Seki T, Shimizu Y, Ishii K, Takahama Y, Kato K, Yano T. NK Cells Can Preferentially Target Prostate Cancer Stem-like Cells via the TRAIL/DR5 Signaling Pathway. Biomolecules 2021; 11:1702. [PMID: 34827699 PMCID: PMC8615937 DOI: 10.3390/biom11111702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The occurrence of androgen-dependent prostate cancer mainly depends on prostate cancer stem cells. To reduce the risk of androgen-dependent prostate cancer, the direct elimination of prostate cancer stem cells is important, but an elimination strategy has not yet been established. A previous study showed that natural killer (NK) cells can preferentially target cancer stem cells in several solid tumors except prostate cancer. In this context, this study was undertaken to investigate if NK cells can selectively attack androgen-dependent prostate cancer stem cells. METHODS Prostate cancer stem-like cells were separated from an androgen-dependent prostate cancer cell line (LNCaP) using a three-dimensional culture system. LNCaP stem-like cells or LNCaP cells were co-cultured with human NK cells (KHYG-1) for 24-72 h, and cell viability was determined using the WST-8 method. The expression of each protein in the cell membrane was evaluated through FACS analysis, and mRNA levels were determined using real-time PCR. RESULTS KHYG-1 cells had more potent cytotoxicity against LNCaP stem-like cells than LNCaP cells, and the potency of the cytotoxicity was strongly related to the TRAIL/DR5 cell death pathway. CONCLUSION NK cells can preferentially target prostate cancer stem-like cells via the TRAIL/DR5 pathway.
Collapse
Affiliation(s)
- Taiga Seki
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 347-0193, Japan; (T.S.); (K.I.); (Y.T.)
| | - Yui Shimizu
- Graduate School of Science and Engineering, Toyo University, Saitama 350-8555, Japan; (Y.S.); (K.K.)
| | - Kyota Ishii
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 347-0193, Japan; (T.S.); (K.I.); (Y.T.)
| | - Yuzuki Takahama
- Graduate School of Food and Nutritional Sciences, Toyo University, Gunma 347-0193, Japan; (T.S.); (K.I.); (Y.T.)
| | - Kazunori Kato
- Graduate School of Science and Engineering, Toyo University, Saitama 350-8555, Japan; (Y.S.); (K.K.)
| | - Tomohiro Yano
- Research Institute of Life Innovation, Toyo University, Gunma 347-0193, Japan
| |
Collapse
|
25
|
Okamoto T, Noro D, Hatakeyama S, Narita S, Mitsuzuka K, Sakurai T, Kawamura S, Hoshi S, Shimoda J, Tanaka T, Kawaguchi T, Ishidoya S, Ito A, Tsuchiya N, Habuchi T, Ohyama C. Impact of pretreatment anemia on upfront abiraterone acetate therapy for metastatic hormone-sensitive prostate cancer: a multicenter retrospective study. BMC Cancer 2021; 21:605. [PMID: 34034691 PMCID: PMC8152305 DOI: 10.1186/s12885-021-08206-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Anemia has been a known prognostic factor in metastatic hormone-sensitive prostate cancer (mHSPC). We therefore examined the effect of anemia on the efficacy of upfront abiraterone acetate (ABI) in patients with mHSPC. Methods We retrospectively evaluated 66 mHSPC patients with high tumor burden who received upfront ABI between 2018 and 2020 (upfront ABI group). We divided these patients into two groups: the anemia-ABI group (hemoglobin < 13.0 g/dL, n = 20) and the non-anemia-ABI group (n = 46). The primary objective was to examine the impact of anemia on the progression-free survival (PFS; clinical progression or PC death before development of castration resistant PC) of patients in the upfront ABI group. Secondary objectives included an evaluation of the prognostic significance of upfront ABI and a comparison with a historical cohort (131 mHSPC patients with high tumor burden who received androgen deprivation therapy (ADT/complete androgen blockade [CAB] group) between 2014 and 2019). Results We found that the anemia-ABI group had a significantly shorter PFS than the non-anemia-ABI group. A multivariate Cox regression analysis showed that anemia was an independent prognostic factor of PFS in the upfront ABI group (hazard ratio, 4.66; P = 0.014). Patients in the non-anemia-ABI group were determined to have a significantly longer PFS than those in the non-anemia-ADT/CAB group (n = 68) (P < 0.001). However, no significant difference was observed in the PFS between patients in the anemia-ABI and the anemia-ADT/CAB groups (n = 63). Multivariate analyses showed that upfront ABI could significantly prolong the PFS of patients without anemia (hazard ratio, 0.17; P < 0.001), whereas ABI did not prolong the PFS of patients with anemia. Conclusion Pretreatment anemia was a prognostic factor among mHSPC patients who received upfront ABI. Although the upfront ABI significantly improved the PFS of mHSPC patients without anemia, its efficacy in patients with anemia might be limited. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08206-8.
Collapse
Affiliation(s)
- Teppei Okamoto
- Department of Urology, Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, 5 Zaifu-chou, Hirosaki, 036-8562, Japan
| | - Daisuke Noro
- Department of Urology, Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, 5 Zaifu-chou, Hirosaki, 036-8562, Japan
| | - Shingo Hatakeyama
- Department of Urology, Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, 5 Zaifu-chou, Hirosaki, 036-8562, Japan.
| | - Shintaro Narita
- Department of Urology, Akita University School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Koji Mitsuzuka
- Department of Urology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Toshihiko Sakurai
- Department of Urology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata, 990-9585, Japan
| | - Sadafumi Kawamura
- Department of Urology, Miyagi Cancer Center, 47-1, Nodayama, Shiote, Aijima, Natori, Miyagi, 981-1293, Japan
| | - Senji Hoshi
- Department of Urology, Yamagata Prefectural Central Hospital, 1800, Aoyanagi, Yamagata, 990-2292, Japan
| | - Jiro Shimoda
- Department of Urology, Iwate Prefectural Isawa Hospital, 61, Ryugabaab, Mizusawa-ku, Oshu, Iwate, 023-0864, Japan
| | - Toshikazu Tanaka
- Department of Urology, Aomori Prefectural Central Hospital, 2-1-1, Higashi-tsukurimichi, Aomori, Aomori, 030-8553, Japan
| | - Toshiaki Kawaguchi
- Department of Urology, Aomori Prefectural Central Hospital, 2-1-1, Higashi-tsukurimichi, Aomori, Aomori, 030-8553, Japan
| | - Shigeto Ishidoya
- Department of Urology, Sendai City Hospital, 1-1-1, Nagamachi, Asuto, Taihaku-ku, Sendai, Miyagi, 982-8502, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata, 990-9585, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan
| | - Chikara Ohyama
- Department of Urology, Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, 5 Zaifu-chou, Hirosaki, 036-8562, Japan
| |
Collapse
|
26
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
27
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
28
|
Phage display screening identifies a prostate specific antigen (PSA) -/lo prostate cancer cell specific peptide to retard castration resistance of prostate cancer. Transl Oncol 2021; 14:101020. [PMID: 33508757 PMCID: PMC7844130 DOI: 10.1016/j.tranon.2021.101020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
To our knowledge, this is the first study to identify a peptide (named as “TAP1”) that specifically binds with PSA−/lo prostate cancer cells. TAP1 inhibited PCa growth both in vitro and in vivo. TAP1 also improved the anti-tumor effect of the anti-androgens and chemotherapeutic agents in vitro. The effects of TAP1 might at least in part by shortening the lengths of telomeres and decreasing the expression of HOXB9 and TGF-β2. Our results indicated that therapeutic peptides that specifically target prostate cancer stem cell might be a very valuable and promising approach to overcome chemoresistance and prevent recurrence in patients with PCa.
Patients with prostate cancer (PCa) will eventually progress to castrate-resistant prostate cancer (CRPC) after androgen deprivation therapy (ADT) treatment. Prostate-specific antigen (PSA)−/lo cells which harbor self-renewing long-term tumor-propagating cells that can be enriched using ALDH+CD44+α2β1+ and can initiate tumor development may represent a critical source of CRPC cells. Our purpose was to find a peptide that specifically targets PSA−/lo PCa cells to retard the development of CRPC. PSA+ and PSA−/lo cells were successfully separated from LNCaP xenograft tumors after prostate- PSAP-GFP vector infection and FACS. A variety of PSA−/lo cells specifically targeting peptide (named as “TAP1” targeted affinity peptide 1) was identified by using phage display library screening. The highest binding rate in TAP1 binding cell subpopulations are identified to be among ALDH+CD44+CXCR4+CD24+ cells. TAP1 significantly inhibited PCa growth both in vitro and in vivo. TAP1 significantly improved the anti-proliferation effect of the anti-androgens (Charcoal dextran-stripped serum (CDSS)+Bicalutamide, Enzalutamide) and chemotherapeutic agents (Abiraterone, Docetaxel, Etoposide) in vitro. TAP1 treatment shortens the length of telomeres in ALDH+CD44+CXCR4+CD24+ cells and significantly reduces the expression of Homeobox B9 (HOXB9) and TGF-β2. In conclusion, PSA−/lo PCa cell-specific targeting peptide (TAP1) that suppressed PCa cell growth both in vitro and in vivo and improved the drug sensitivities of anti-androgens and chemotherapeutic agents at least through shortening the length of telomere and reducing the expression of HOXB9 and TGF-β2. Therapeutic peptides that specifically target prostate cancer stem cell might be a very valuable and promising approach to overcome chemoresistance and prevent recurrence in patients with PCa.
Collapse
|
29
|
Huang X, Zhou W, Zhang Y. Transcription factor YY1 enhances the stemness of lung cancer cells by stabilizing hypoxia factor HIF-1α under a hypoxic microenvironment. ENVIRONMENTAL TOXICOLOGY 2021; 36:114-122. [PMID: 32881243 DOI: 10.1002/tox.23017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/18/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The hypoxic microenvironment can facilitate the tumor progression, and transcription factor YY1 holds promoting effects in various tumors. This work aims to investigate whether YY1 is involved in hypoxia-induced stemness of lung cancer cells. We showed that hypoxic microenvironment induced the expression of HIF-1α and YY1, and the stemness of lung cancer cells, which was attenuated by YY1 knockdown. Additionally, we found that YY1 regulates the hypoxia-induced stemness in a HIF-1α-dependent manner, but independent on p53 expression. Further analysis revealed that YY1 physically interacted with HIF-1α protein and stabilized HIF-1α protein. Our work indicates a novel YY1/HIF-1α axis regulating the stemness of lung cancer cells.
Collapse
Affiliation(s)
- Xianping Huang
- Department of Cardio-Thoracic Surgery, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Weihe Zhou
- Department of Cardio-Thoracic Surgery, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Yuefeng Zhang
- Department of Cardio-Thoracic Surgery, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
30
|
A Marine Collagen-Based Biomimetic Hydrogel Recapitulates Cancer Stem Cell Niche and Enhances Progression and Chemoresistance in Human Ovarian Cancer. Mar Drugs 2020; 18:md18100498. [PMID: 33003514 PMCID: PMC7599646 DOI: 10.3390/md18100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recent attention has focused on the development of an effective three-dimensional (3D) cell culture system enabling the rapid enrichment of cancer stem cells (CSCs) that are resistant to therapies and serving as a useful in vitro tumor model that accurately reflects in vivo behaviors of cancer cells. Presently, an effective 3D in vitro model of ovarian cancer (OC) was developed using a marine collagen-based hydrogel. Advantages of the model include simplicity, efficiency, bioactivity, and low cost. Remarkably, OC cells grown in this hydrogel exhibited biochemical and physiological features, including (1) enhanced cell proliferation, migration and invasion, colony formation, and chemoresistance; (2) suppressed apoptosis with altered expression levels of apoptosis-regulating molecules; (3) upregulated expression of crucial multidrug resistance-related genes; (4) accentuated expression of key molecules associated with malignant progression, such as epithelial–mesenchymal transition transcription factors, Notch, and pluripotency biomarkers; and (5) robust enrichment of ovarian CSCs. The findings indicate the potential of our 3D in vitro OC model as an in vitro research platform to study OC and ovarian CSC biology and to screen novel therapies targeting OC and ovarian CSCs.
Collapse
|
31
|
Sun X, Lv X, Yan Y, Zhao Y, Ma R, He M, Wei M. Hypoxia-mediated cancer stem cell resistance and targeted therapy. Biomed Pharmacother 2020; 130:110623. [PMID: 32791395 DOI: 10.1016/j.biopha.2020.110623] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is a major obstacle in the treatment of tumors, which easily lead to relapse or poor prognosis. Cancer stem cells (CSCs) are regarded as one of the important targets that mediate tumor resistance. Increasing evidence shows that the tumor hypoxia microenvironment is closely related to the resistance of CSCs to chemotherapy and radiotherapy. In this review, we intend to review the articles that have described how the hypoxic microenvironment affects CSC stemness and mediates tumor resistance and provide new directions and methods in the clinical treatment of tumors. Here, we also discuss the feasibility and development prospects of using hypoxia-inducible factors (HIFs) that regulate the hypoxic microenvironment of tumors as targeted agents to treat tumors, as well as to reduce or even reverse the resistance of tumors to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Rong Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
32
|
Zhang S, Xu Z, Yuan J, Chen H. Ubiquitin-specific peptidase 17 promotes cisplatin resistance via PI3K/AKT activation in non-small cell lung cancer. Oncol Lett 2020; 20:67-74. [PMID: 32565935 PMCID: PMC7286115 DOI: 10.3892/ol.2020.11568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The suppression of ubiquitin-specific peptidase 17 (USP17) has previously been found to result in reduced tumorigenesis and invasion of non-small cell lung cancer (NSCLC) cells. However, the functions and underlying mechanisms of USP17 in NSCLC progression remain unclear. In the present study, cisplatin treatment was found to upregulate USP17 expression in a dose-dependent manner. Furthermore, USP17-overexpressing (USP17-OE) NSCLC A549 and H1299 cells were generated for mechanistic studies. The results from the Cell Counting Kit-8 assay revealed increased cell proliferation in USP17-OE cells compared with that of control cells. Moreover, the viability of USP17-OE cells was significantly higher than that of the control cells, when treated with cisplatin. The results of the biochemical studies demonstrated enhanced PI3K and AKT phosphorylation in USP17-OE NSCLC cells, whereas USP17-knockdown decreased these levels of phosphorylation. By contrast, an AKT inhibitor abolished the USP17-mediated enhancement of proliferation. Moreover, suppression of USP17 or the combination of the AKT inhibitor and cisplatin significantly reduced cell viability. Overall, the results of the present study suggest that PI3K/AKT activation is the underlying mechanism of USP17-mediated cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Shengchao Zhang
- Department of Thoracic Surgery, Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Zhenglang Xu
- Department of Thoracic Surgery, Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Jun Yuan
- Department of Thoracic Surgery, Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Hao Chen
- Department of Thoracic Surgery, Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| |
Collapse
|